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Abstract : One studies the rotational motion of the rigid if the pin of radius v remains propped inside a radial-axial bearing of
radius R and height h .
One considers a permanent contact, the pin being propped in point A located on the plan what limit lower the bearing, in point

B located on lateral cylindrical surface of the bearing and in point D located on the circle what limit higher the bearing.
Keywords : rigid ,clearance,radial-axial bearing, pin.

1. INTRODUCTION

In this paper [2] has studied the rotational motion of a rigid body with big clearance in bearing on a simplified
model in which the pin is reduced a line segment and conventional radius of the bearing was given by the difference
between the real radius of the bearing and the real radius of the pin.

In this paper will develop the mathematical model for real motion case of the pin with big clearance in a radial-axial
bearing.

2. GENERAL ASPECTS

One considers the radial-axial bearing, of radius R and height % (fig. 1) and the pin, of radius r, jointly with
the body with mass m and center of gravity C .

Figure 1
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The pin is propped against bearing in contact point A, between the circle what limit lower the pin with the
plane Oo XYZ what limit lower the bearing, in contact point B between the same circle what limit lower the pin with

lateral cylindrical surface of the bearing and in contact point D between cylindrical surface what limit the pin with the
circle what limit higher the bearing.

One chooses the fixed reference system O,XYZ so that point O, be the center of the below circle of the
bearing and the axis O,Z being the axis of the bearing and one chooses the mobile reference system Oxyz so that the

point O be the center of the below circle of the pin and the axis Oz being the axis of the pin.
Considering the permanent contacts in points D,B, 4 and considering that the body jointly with the pin is
acted by a given system of forces, it is required to develop a mathematical model of the motion.

3. THE EQUATIONS OF MOTION

In order to obtain the equation of motion is used the Lagrange’s equations for the systems with constraints ,
the generalized co-ordinates defining the column matrix

al=x, Y, z, v 0 of a)
where (X 0 Y Z{,) are the co-ordinates of point O relative to the fixed system O, XYZ and (1// 0 (o) are the
Euler’s angles.
In this conditions the Lagrange’s equations, using the scalar notations,
- E_ - kinetic energy;
- F, ,k=12...6 generalized forces ;
- A;,j=12.... Lagrange’s multipliers;

- [B] the constraint matrix

- {L(fi; } {F},; {1} the column matrices defined by relations

(%, SE. SE, SE. SE. SE.) o

9q X, N, 9, 9y 90 Ip
{ } (FJ F, F; F, F5 Fg )T A)
{ } (41 Ay A A A A )T ©)]

is written as

e e RO ®

Forwards one uses the scalar notations:

- (xC, YerZe ) the co-ordinates of point C' in the system Oxyz

- (vx,vy,vz ),(a)x,a)y,a)z ) the components of the velocity of the point O respectively of the angular velocity in the
system Oxyz
(Va0

and the matrix notations,

I, ) moments of inertia relative to system Oxyz

xy?® xz?

(m 0 0 0 -mz, my, Jo —Jy .
[ml=|0 m ol[s]=| mz. 0 -mx |[J]=|-v, I, -J.
10 0 m -my, mx, 0 —J —J. I
(cosy —siny 0 1 0 0 cosp —sing 0 (1 sin6 cos
[w]=|siny  cosy 0|[0)=|0 cos@ —sin6|[p]=|sing cosp 0} [5]: 1 0 0 (6)
| 0 0 1 0 sin@ cos0 0 0 1 0 0 1
00 0 0 0 1 0 -1 0 0 cost —sinf|
[U]=l0 0 -1[u,]=| 0 0 o|u;]=|1 0 ofe]=l0 0 0
01 0 -1 0 0 0 0 0 0 0 0 |
e ™

results in orders:
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- the rotational matrix and its partial derivatives relative to w,8,¢

(=[]} lo): [4,]=[0.][4): [4,]=[4 ] U }[o] - [4,]=[4)-U,] ®

- the matrix [Q] and its partial derivatives relative to 0,

ol=[}e} oo)=10-}lo)  los)=l0) U] ©)
- the time derivatives
[i]=v-[a, ]+ 0-[4,)+6-[4,} [0]=6-[0,]+6-[0, ] (10)
- the matrices [C]and its derivatives
[T4] o] [4,] o [T4] To]7. [l4,] To]
- o EHE o e onl €T ol an

- the matrices of inertia and its derivatives

- b BT e ey

. ~ ~ a12)
v, J-[c, ] -[M]-[cr+[c]-[M]-[cW]T; v, ]=lc, iz et el e,
e, J-le, M el +(ctlizlle, o [vt]=yDoa, e -, [ -]
Taking into account of these, the kinetic energy is written
Loy i) ) (13)
or if one takes into account the dependence
h=tct" -[d] (14)
1 . .
Eo=5-1a)" - [M]4g) (15)
results
9E.
ar { 9% } [vr] )+ oo} (16)
9.1 Dy Taake e Lo Lian e _ L Ty 1
e N A o R A )
T
{SL}[O 0 o S SE SLJ 18)
Yq Sy 80  Y9¢
and if one notes
~ . . 9E
{F}={F}—[M]‘[q]+{§c} (19)
is obtained from (5) the matrix equation of the motion
[} (4)- (B {2} = {7} 20)
to which is added the matrix equations of the contraints
[BJd}= o} @1

If one derives in relation to the time the relation (21) then from (20), (21) is obtained the matrix equation

{[[A;]] E] } {{q}} { [1{9]} } 22)

If the constraints matrix depends on other parameters than X 0r Y(), ZO, v, O then the vector {q} extends

with the new parameters and the matrix [M ] extends with null rectangular matrices [0 ] with m rows and n

mn
columns.
So if the extended vector is

a=(xy ¥, 2, v 0 ¢ a BT 23)
then the extend matrix is

] {[M] [062]} (24)

0] [0,,]
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4. THE DETERMINING OF THE CONSTRAINTS MATRIX

A. The contact from point A

In point 4 (fig. 1) is made the contact between a mobile curve (the circle with center in O) and a fixed
surface (the plane O, XYZ ). Generally noting with x(cf) y(f) z(cf) the parametric co-ordinates of the curve and with

X(u,v), Y(u,v), Z(u,v) the parametric co-ordinates of the surface, the contact conditions are written

X (u v) X, x(é)
Y(v) (=] Y |+[4]-| »(&) (25)
Z(uwv)] |2 2(¢)
The normal to the surface has the controlling parameters 4, B,C given by the functional determinants
4. Dr.z) B D(Z,X) oo D(X,Y) 26)
D(u,v) D(u,v) D(u,v)
and then the tangent condition is
x, A
(A B C)«[A]« Yy |=0 sau (xp Yy zp)~[A]~ B|=0 27
z, C

where x5, yp.zp are the derivatives in relation to parameter ¢ .

For the contact from point A result
X=u,Y=v;,Z=0;,x=rcosé;y=rsin ;z=0;

0Bl -Cel x ——peinf -y — - (28)
A=0;B=0;C=0;x,=-rsin;y,=rcos&;z, =0
and the second relation (28) is written
sin@ cos((o + 5) =0 29)

T . .
wherefrom result ¢+ & = 5 the co-ordinates of point 4 x, =rsing ; y,=rcos¢ ; z, =0 and from the last scalar

equation of relation (26) is deducted the expression
Zy—rsind=0 (30)

B. The contact from point B

In point B is made the contact like the contact from point A4 and result
X =Rcosug ;Y=Rsinug ; Z=v,x=rcosép;y=rsinéy;z=10
A=cosup;B=sinup ; C=0;x,=-rsinp;y,=rcosép;z,=0 S
from the first relation (22) is obtained the expression
COS(I// —up )Sin(¢+ & )+ sin(l// —ug )cos 960S(¢ +&p ) =0 32)
and from the first relations (25) are deducted the equality
Rcos(l//—uB)—X,, cosy -7, sinl//—rcos(¢+§B): 0

33
Rsin(l//—uB)—Xo siny +%, cosy/+r'c059'cos(go+ch)=0 33)

C. The contact from point D

In point D is made the contact between a mobile surface (the cylindrical surface of the pin) and a fixed curve
(the circle of radius R what limit higher the bearing).

Generally, noting with X (5) Y (é) Z (é) the parametric co-ordinates of the mobile curve, the conatct conditions are
written

X@)] [x x{u,v)

Y(€) |=| ¥y |+[4]| puv) (34)
2(¢) Zy 2(u,v)
The normals to the surface have the controlling parameters
Dbz, D) D) o5
D(u,v) D(u,v) D(u,v)

and the tangent condition is
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Xp a
(@ b o)y, |=0sa (x, v, z,)[4]|b]|=0 (36)

Yp c

where X o Y S Z  are the derivatives in relation to the parameter &.
For the contact from point D result
X=Rcosé&p ; Y=Rsinép ; Z=h,;x=rcosup,y=rsinup;z=vp
a=cosup;b=sinu, ;c=0; x, =-rsiné SV =rcos&p Z, =0
and from relation (36) and from the first equations (34) are obtained the expressions
cos(p +uy)-sinly —&,)—cos@-sin(p+uy)-cosy —&£,)=0
Reos(p—u,)—rcos@sin(y —&,)+ X, cosy + Y, siny =0 (37
Rsin(p+u,)+rcos(y —&,)— X, cos0-cosy +Y,cos @ -cosy + Z, sin — hsin@ =0

D. The expression of the constraints matrix

Were obtained in all seven equations of constraints (30), (32), (33), (37) and the extended vector {q} is

=X, Y, Z) v 0 0 & uy & up) (38)
By derivation with respect to time of these equations is obtained the constraints matrix with seven rows and ten
columns

[8]=5;] (39)
where the components B;; are null except the following relations
B,,=1;B,;=-rcos0;
2 =—Bay = =sin(y —u, )sin(p + &,) + cos(y —u, )cos Osin(p + £,)
B,; =—sin(y —u,)sinOcos(p+&,) ;
36 =By, = cosly —u Jcos(p+ &, )= sinly —uy )cos Osinlp+&,) ;
B;, =—cosy ; B;, =—siny
5 = By = —Rsin(l// - “3) 2
56 = By, = _rSin(¢+ 53); B, =—siny ; B, =—cosy ;

oo

oo

s3]

> =

s =By = Rcos(l// _”B)

B,; =rsinOsin(p+&,),; B, = B,, =rcos@cos(p+ &)

s = =By, = cos(p+u, )COS(‘// - GKD)"' COS@COS((” Tup )Sin(‘// - SKD) (40)
B, = sin@sin((p +u, )cos(l// - ggD)

56 = Bs1o = —Sin(¢) Tup )Sin(W - §D)_ COSQCOS((0+ Up )COS(W - §D)

., =cosy ; B, =siny ;

51 =By = rsin(y/—é‘D)

o6 = Bs.i0 = —Rsin(go + “D)

s3]

% W

> W

B,, =—cos0Osiny ; B,, =cosOcosy ; B,; =sin0

B, =—B,, =rcosOcos(y —&,)

B, = —[rsin(l// ~&,))- X, siny +7Y, cost//]sin 0+ (Zo - h)cos@ ;
By =B, = RCOS((D + ”D)

E. The time derivative of the constraints matrix

[5]=1[3,] 1)

where B,-j =0 except the following relations
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B, =r0sin6 ;

B,, =-B,, =—(y —u, )[COS(l// —uy )sin(p+ &, )+ sin(y —u, )cosOcos(p + &, )]—
- écos(l// —uy)sin Hcos(go +&,)—

- ((b +&, Isin(w — U, )cos((o + §B)+ cos(w —u, )cos Hsin((o + &, )]

B, = —(W —1, )cos(w — U, )sin@cos((p + 53)— ésin(w —u, )cos Hcos((o + fB)Jr
+p+ &, Jsinly —u, )sin(p+ &,)

Byy = By, =y — ity = sinly —uy )cos(p + &, )= cos(y —up )cos Osin(p+ &, )]+
O sin(y —u, )sin O sin(p+ &, )+

(fl’ +& I‘ cos(y —u,)sin(p+ &, )= sin(y —u, )cos Osin(p+ &, )]
By =~y siny ; B, ==y cosy ; By, = =By, = _R(‘// ”B)COS(‘// “3);
B36 = 337 = ’”(§0+ SKB)COS((Q + SKB) B, =-y COS‘//:'BM =y siny
B,y = =By = =Ry —ii,)sinly —u,);
B = r[@cos@sm((o + §B) ((0 + §B )sm@cos((p + &, )]
B, =B, = r[— Osin@cos(p+&,)— ((/') +&, )cos@sin((o + fB)]
By =By, = (5~ &, Yeoslip + up )sinly — &)+ cos Osin(p 1 osly - 2,)]-
Osin@sin(p +up )sin(y — &, )+
+(@+ iy - sinlp+uy )eosly — &)+ cosOcos(p+uy )sinly - &, )]
B, = —((b +&, )sin Osin(p +up )sin(y — &, )+ 6 cos O sin(p+u, ) cos(y — &£, )+ 42)
+(@+11, )sin @ cos(p +u,, )cosly —&,);
B56 = B5,10 = (‘/l - éD I_ Sin((” + “D)COS(‘// -$p )+ cos HCOS((P Tup )Sin(‘// -$p )]"'
+8sin 6 cos(p+up)cos(y — &, )+

+(@p+ 1, - cos(p +up )sin(y — &, )+ cos Osin(p +u, ) cos(y —u,, )]
By, =~y siny ; By, =y cosy ; By, = By, = r(‘// §D)COS(V/ éD)
B, = BM(, = —R((o+uD)cos((p+uD)
B,, = 0sin@siny —yrcosOcosy ; B,, = —0sin6cos g —yrcos O siny ; B,; = Ocos O,
B, =—B,, = r[— Osinbcos(y —&,)— (W -&, )cos@sin(l// -&p )]
B,; =—0cos G[rsin(l// —&,)- X, siny +7, cosw]— (Z,—h)sind +
+7Z,c080 — r(l// - géD )COS(I// -¢, )sin 0 -
- (Xo siny +yX, cosw)sin@ + (Yo cosy —yY, sin l//)sin 0

5. The final form of the matrix differential equation of the motion

Because the extended vector {q} = (X o Yo Zy w 0 @ &y upy &p up )T has ten components and
the constraints matrix has seven rows finally are obtained in order the expressions

W= 4 4 A A A A) 43)

[M*H ] [0“]} @4)

[04] [07/]

and the final matrix equation becomes
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: [
M| —[B] | [
b el g “
7 -[8}a)
If the initial column matrices (¢ =0), {g}, {¢} are known from equation (45) are determined the vectors {;j},
{A} and then the solution with function of time.
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