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Abstract : One studies the rotational motion of the rigid if the pin of radius r  remains propped inside a radial-axial bearing of 

radius R  and height h . 

One considers a permanent contact, the pin being propped in point A  located on the plan what limit lower the bearing, in point 

B located on lateral cylindrical surface of the bearing and in point D  located on the circle what limit higher the bearing. 
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1. INTRODUCTION  
 

In this paper [2] has studied the rotational motion of a rigid body with big clearance in bearing on a simplified 

model in which the pin is reduced a line segment and conventional radius of the bearing was given by the difference 

between the real radius of the bearing and the real radius of the pin.  
In this paper will develop the mathematical model for real motion case of the pin with big clearance in a radial-axial 

bearing. 

 

 

2. GENERAL ASPECTS  
 

One considers the radial-axial bearing, of radius R  and height h  (fig. 1) and the pin, of radius r , jointly with 

the body with mass m  and center of gravity C . 

                                     
Figure 1 
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The pin is propped against bearing in contact point A , between the circle what limit lower the pin with the 

plane XYZO0  what limit lower the bearing, in contact point B  between the same circle what limit lower the pin with 

lateral cylindrical surface of the bearing and in contact point D  between cylindrical surface what limit the pin with the 

circle what limit higher the bearing. 

One chooses the fixed reference system XYZO0  so that point 0O  be the center of the below circle of the 

bearing and the axis ZO0  being the axis of the bearing and one chooses the mobile reference system Oxyz  so that the 

point O  be the center of the below circle of the pin and the axis Oz being the axis of the pin. 

Considering the permanent contacts in points A,B,D  and considering that the body jointly with the pin is 

acted by a given system of forces, it is required to develop a mathematical model of the motion. 
 

 

3. THE EQUATIONS OF MOTION 
 

In order to obtain the equation of motion is used the Lagrange’s equations  for the systems with constraints , 

the generalized co-ordinates defining the column matrix 

{ } ( )T000 ZYX q ϕθψ=  (1) 

where ( )000 ZYX  are the co-ordinates of point O  relative to the fixed system XYZO0  and ( )ϕθψ  are the 

Euler’s angles. 

In this conditions the Lagrange’s equations, using the scalar notations, 

- cE - kinetic energy; 

- 6.....2,1k,Fk = generalized forces ; 

- ....2,1j,j =λ  Lagrange’s multipliers; 

- [ ]B  the constraint matrix 

- { } { }λ
ϑ
ϑ

;F;
q

Ec









&
the column matrices defined by relations 

T

ccc

0

c

0

c

0

cc EEE

Z

E

Y

E

X

E

q

E








=









ϕϑ
ϑ

θϑ
ϑ

ψϑ
ϑ

ϑ
ϑ

ϑ
ϑ

ϑ
ϑ

ϑ
ϑ

&&&&&&&
 (2) 
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Forwards one uses the scalar notations: 

- ( )CCC z,y,x  the co-ordinates of point C  in the system Oxyz  

- ( ) ( )z,y,x,zv,yv,xv ωωω  the components of the velocity of the point O  respectively of the angular velocity in the 

system Oxyz   

( ) ( )
yzxzxyzyx J,J,J,J,J,J  moments of inertia relative to system Oxyz  

and the matrix notations, 
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{ } ( )Tzyxzyx vvvv ωωω=  (7) 

results in orders: 
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- the rotational matrix and its partial derivatives relative to ϕθψ ,,  

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]31

T
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- the matrix [ ]Q  and its partial derivatives relative to ϕθ ,  
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- the time derivatives 
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- the  matrices [ ]C and its derivatives 
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- the matrices of inertia and its derivatives  
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Taking into account of these, the kinetic energy is written 
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and if one notes 
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is obtained from (5) the matrix equation of the motion  
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to which is added the matrix equations of the contraints 

[ ]{ } { }0qB =&  (21) 

If one derives in relation to the time the relation (21) then from (20), (21) is obtained the matrix equation 
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If the constraints matrix depends on other parameters than θψ ,,Z,Y,X 000 then the vector { }q  extends 

with the new parameters and the matrix [ ]M  extends with null rectangular matrices [ ]mnO  with m  rows and n  

columns. 
So if the extended vector is 

{ } ( ) T000  ZYXq βαϕθψ=  (23) 

then the extend matrix is  
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4. THE DETERMINING OF THE CONSTRAINTS MATRIX 

 

A. The contact from point A 
 

In point A  (fig. 1) is made the contact between a mobile curve (the circle with center in O ) and a fixed 

surface (the plane XYZO0 ). Generally noting with ( ) ( ) ( )ξξξ z,y,x  the parametric co-ordinates of the curve and with 

( ) ( ) ( )v,uZ,v,uY,v,uX  the parametric co-ordinates of the surface, the contact conditions are written  
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The normal to the surface has the controlling parameters C,B,A  given by the functional determinants  
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and then the tangent condition is  
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where pz,py,px  are the derivatives in relation to parameter ξ . 

For the contact from point A  result 
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and the second relation (28) is written 

( ) 0cossin =+ξϕθ  (29) 

wherefrom result 
2

π
ξϕ −=+ , the co-ordinates of point A  0z;cosry;sinrx AAA === ϕϕ  and from the last scalar 

equation of relation (26) is deducted the expression  
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B. The contact from point B 
 

In point B  is made the contact like the contact from point A and result 
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from the first relation (22) is obtained the expression 
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C. The contact from point D 
 

In point D  is made the contact between a mobile surface (the cylindrical surface of the pin) and a fixed curve 
(the circle of radius R  what limit higher the bearing). 

Generally, noting with ( ) ( ) ( )ξξξ Z,Y,X  the parametric co-ordinates of the mobile curve, the conatct conditions are 

written  
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The normals to the surface have the controlling parameters  
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and the tangent condition is  
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( ) [ ] ( ) [ ] 0

c

b

a

AZYXsau0

Y

Y

X

Acba ppp

p

p

p
T =

















⋅⋅=
















⋅⋅  (36) 

where ppp Z,Y,X  are the derivatives in relation to the parameter ξ . 

For the contact from point D  result  
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and from relation (36) and from the first equations (34) are obtained the expressions  
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D. The expression of the constraints matrix 
 

Were obtained in all seven equations of constraints (30), (32), (33), (37) and the extended vector  { }q  is 

{ } ( )DDBB000 uuZYXq ξξϕθψ=  (38) 

By derivation with respect to time of these equations is obtained the constraints matrix with seven rows and ten 

columns 

[ ] [ ]ijBB =  (39) 

where the components ijB  are null except the following relations  
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E. The time derivative of the constraints matrix 
 

[ ] [ ]ijBB && =  (41) 

where 0Bij =&  except the following relations  
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5. The final form of the matrix differential equation of the motion  
 

Because the extended vector { } ( )TDDBB000 uuZYXq ξξϕθψ= has ten components and 

the constraints matrix has seven rows finally are obtained in order the expressions  
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and the final matrix equation becomes  
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If the initial column matrices ( 0t = ), { }q , { }q&  are known from equation (45) are determined the vectors { }q&& , 

{ }λ  and then the solution with function of time. 
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