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Abstract:  In this paper an analytical technique namely OHAM is proposed to obtain analytical approximate solutions for strongly 

nonlinear problems. Complementary numerical solutions were obtained via a fourth-order Runge–Kutta method and an excellent 

agreement between the solutions obtained through OHAM and the numerical computations was observed, which demonstrate the 

reliability and efficiency of OHAM. 
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1. INTRODUCTION 
 

Often dynamical problems lead to nonlinearity occurrence in the mathematical model describing the mechanical 

behavior. Sometimes, when a complicated and accurate dynamical model is employed, the motion of the system is 

described by strongly nonlinear differential equations, which are very difficult to solve through classic analytical 

methods.  

In order to overcome the shortcomings of classical methods, in the last years some new approximate analytical 

methods were developed, which are valid and work very well even in the absence of small parameters that is 

characteristic only for weakly nonlinear problems.  

Among these new emergent methods, an important place was taken by some iterative methods, which are found to 

be very effective in many practical applications [1-7].   

Beside these new iterative methods, some homotopy methods were developed in the last years [8-9], some of them 

having some limitations and some of them having some “open questions”, which are still unsolved at this moment [8].  

The newest homotopy method, proposed first by Marinca and Herişanu in 2007 is the Optimal Homotopy 

Asymptotic Method (OHAM) [10-13], which proved to be a very powerful analytical tool for strongly nonlinear 

problems arising in various fields of science and engineering. 

In this paper, the Optimal Homotopy Asymptotic Method (OHAM) is applied to investigate the motion of a particle on 

a parabola which rotates with a constant angular velocity about the y-axis as shown in Fig.1. 

 

 

 
. Figure 1:  The particle on a rotating parabola 

 

 

This kind of dynamic model is governed by the following nonlinear differential equation, mentioned by Nayfeh and 

Mook in [15]: 
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with the boundary conditions: 
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where q and Λ are known constants and need not to be small. 

 

 

2. FUNDAMENTALS OF OHAM 
 

The homotopy is a basic concept in topology and has been widely applied in developing some numerical 

algorithms.  

 Starting from the general given equation which describes a system oscillating with an unknown period T 
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where the dot denotes the derivative with respect to time, k is a constant, f is in general a nonlinear term and the initial 

conditions are: 
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where a is the amplitude of the oscillations, it will be more convenient to switch to a scalar time tT/t2 Ωπτ == . Under 

the proposed transformation: 
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In these conditions the original Eq.(3) becomes: 
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while the initial conditions become: 
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where the prime denotes derivative with respect to τ. 

 In order to solve the problem through OHAM, we construct a homotopy H(φ ,h):Rx[0,1]→R which satisfies: 
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while N is a nonlinear operator: 
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where p∈ [0,1] is the embedding parameter, h(τ,p) is an auxiliary function so that h(τ,0)=0, h(τ,p) ≠ 0 for p ≠ 0, λ is 

an arbitrary parameter and Ω0 will be given later. From Eqs.(4) and (5) the initial conditions become in this case: 
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 Obviously when p=0  

and p=1 it holds: 
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where x0(τ) is an initial approximation of x(τ) and when p=1 it holds: 

ΩΩΩΩ == (1)    ,(0) 0          (13) 

 Thus, as the embedding parameter p increases from 0 to 1, φ (τ,p) varies (or deforms) from the initial 

approximation x0(τ) to the solution x(τ) of the initial equation, so does Ω(p) from the initial guess Ω0 to the exact 

frequency Ω.  

 Expansions of )p,(τφ  and Ω(p) in series with respect to the embedding parameter p lead to: 
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where series (14) and (15) contain the auxiliary function h(τ,p) which will ensure their convergence.  

 An appropriate expression for the initial approximation x0(τ) and for the auxiliary function h(τ,p), which ensure 

the convergence of the above series at p=1, leads to obtaining the m th-order approximate solutions given by 
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 The auxiliary function h(τ,p) could be chosen of the form: 
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where K1, K2,…,Km-1 can be constants which are later optimally determined and the last value Km(τ) can be a function 

depending on the variable τ. 

 Substitution of Eqs.(14) and (15) into Eq.(10) yields: 

....),a,,,x,x,x(Np),a,,,x,x(pN),a,,x(N),(N 102102
2

10101000 +++= λΩΩλΩΩλΩΩφ   (19) 

 If we substitute Eqs.(19) and (18) into Eq.(8) and we equate to zero the coefficients of the same powers of p, 

we obtain the following linear equations: 
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 Note that Ωk can be determined avoiding the presence of secular terms in the Eq.(21). 

 The frequency Ω depends upon the arbitrary parameter λ and we apply the so-called “principle of minimal 

sensitivity” in order to fix the value of λ imposing that: 
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 At this moment, the m th-order approximation given by Eq.(16) depends on the parameters (functions) K1, 

K2,…,Km. The constants K1, K2, … Km-1 and those constants which eventually appear in the expression of Km(τ), can be 

identified via various methods, such as the least square method, the Galerkin method, the collocation method or by 

minimizing the square residual error minimizing the functional 
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where a and b are two values, from the domain of the given problem. The unknown constants Ci (i=1,2,…m) can be 

optimally identified from the conditions  
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 This procedure contains the auxiliary function h(τ,p), which provides us with a simple way to adjust and 

control the convergence of solution. It is very important to properly choose the last function Km(τ), which appears in the 

m th-order approximation (16).  

 Unlike other homotopy methods, such as HAM or HPM, in the proposed procedure (OHAM) the construction 

of homotopy is quite different. In the frame of OHAM the linear operator L is well defined by Eq.(9) and the initial 

approximation is rigorously determined from Eq.(20), while in other homotopy procedures such as HAM these ones are 

arbitrarily chosen. Instead of an infinite series, as is the case of HAM [8], the OHAM searches for only a few terms 

(mostly two or three terms). The way to ensure the convergence in OHAM is quite different and more rigorous. Unlike 

other homotopy procedures [8,9], OHAM ensure a very rapid convergence since it always needs only two iterations for 

achieving a very accurate solution. This is in fact the true power of the method. OHAM does not need a recurrence 

formula as other homotopy procedures such as HAM does.  

 OHAM is an iterative procedure which converges to the exact solution after only two iterations. Iterations are 

performed in a very simple manner by identifying some coefficients. OHAM does not need high-order approximations, 

as HAM does. OHAM does not use the rules established in the frame of HAM, it is a self-sustained method which has 

no “open questions” as other homotopy procedures [8]. OHAM does not need the restrictive condition A(1)=1 as HAM 

does. Finally, OHAM provides an analytic solution for complicated nonlinear problems on only two rows, unlike other 

homotopy procedures which need few pages to express an analytic solution [8].  

 

 

3. TESTING EXAMPLE 

 

 The procedure described above will be tested on the motion of a particle on a rotating parabola, described by 

Eq.(1). Under the transformations (5), Eq.(23) and Eq.(24) become: 
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respectively 
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0ω=Λ and prime denotes differentiation with respect to τ. 

 The linear and nonlinear operators (9) and (10) will be: 
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where φ and Ω are given by Eqs.(14) and (15) respectively and λ is an unknown parameter. From Eqs.(20) and (21), 

(m=2), we obtain the following three equations: 
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 Obviously Eq.(29) has the solution: 
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which will be the initial approximation. Substituting this result into Eq.(30) and assuming that K1=C1=constant, one 

obtain the following equation: 
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where C1 is an unknown constant at this moment.  

 In order to avoid the presence of a secular term it must: 
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With this requirement, the solution of Eq.(33) is: 
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 Substituting Eqs.(32), (34) and (35) into Eq.(31), one obtain the equation in x2: 
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 No secular term in x2(τ) requires that 
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 From Eqs.(37) and (17), one obtain the frequency in the form: 
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where Ω0 is given by Eq.(34). 

 The parameter λ can be determined applying the so-called “principle of minimal sensitivity” (22) and thus we 

obtain 
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 Substitution of this result into Eq.(38) lead to: 

44
1

22

22

0 aqC
2

1
aq21

aq21
−+

+
=

ω
Ω        (40) 

 Substituting Eqs.(38), (39) and (40) into Eq.(36), one obtain: 
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Considering the function K2 of the simplest form: 
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where 2C ′ is a constant and substituting Eq.(42) into Eq.(41), we obtain the equation in x2: 
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The solution of Eq.(43) becomes: 
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 The second order approximate solution will be 
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where x0, x1 and x2 are given by Eqs. (32), (35) and (44). Using the transformations (5), the second order approximate 

solution of Eq.(1) becomes: 
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The constants Ci are obtained in this case using the least square method, as follows: 

For q=1, it is obtained: 

08-0.0657815C    ,91-0.4014832C 21 =′=        (48) 

The second order approximate solution (46) becomes in this case: 
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where Ω is obtained from Eq.(40): Ω=0.596353888. 

Fig.1 shows the comparison between the present solutions and the numerical integration results obtained by a 

fourth-order Runge-Kutta method. 

 

 
Figure 2: Comparison between the approximate solution - Eq.(49) and numerical results from Eq.(1) for 

1qa0 ===ω=Λ  

______ numerical simulation _ _ _ _ approximate solution 

 

It can be seen from Fig.2 that the solutions obtained by means of OHAM are nearly identical with the solutions 

obtained numerically by means of a fourth-order Runge-Kutta method. 
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3. CONCLUSION 

 

 In this paper an analytical technique namely OHAM is proposed to obtain analytical approximate solutions for 

some strongly nonlinear oscillations. The validity of the method is illustrated on the motion of a particle on a rotating 

parabola. Complementary numerical solutions were obtained via a fourth-order Runge–Kutta method and an excellent 

agreement between the solutions obtained through OHAM and the numerical computations was observed, which 

demonstrate the reliability and efficiency of OHAM. This method is valid not only for small, but also for large 

parameters and provides a convenient and rigorous way to control the convergence of approximate solution through the 

auxiliary functions h(τ,p) involving a number of constants Ci which are optimally determined..  

 This method is quite different from classical HAM, especially referring to the parameter λ (determined using 

the principle of minimal sensitivity), the auxiliary function h(τ,p), the linear operator L (unlike HAM the linear operator 

and the initial approximation are not arbitrary chosen) and the presence of some constants C1, C2, … which ensure a fast 

convergence of the method.  

 Unlike HAM which needs recurrence formulas, OHAM is an iterative procedure and iterations are performed 

in a very simple manner by identifying some coefficients and therefore very good approximations are obtained in few 

terms. Actually the capital strength of OHAM is its fast convergence, since after only two iterations it converges to the 

exact solution. 
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