
 409 

 

 

 

The 3rd International Conference on ″″″″Computational Mechanics 
and Virtual Engineering″″″″ 

COMEC 2009 

29th – 30th OCTOBER 2009, Brasov, Romania 
    

 

 

PLOTTING EFFORT DIAGRAMS IN POLAR COORDINATES FOR 

CURVED CIRCULAR BEAMS LOADED WITH COPLANAR 

UNIFORMLY DISTRIBUTED LOADS USING MATHCAD 

 
Prof. dr. ing. Cornel MARIN

1
, ing. Alexandru MARIN

2 

  
1
Universitatea VALAHIA din Târgovişte, email: marin_cor@yahoo.com 

  2 Romair Counsulting Bucharest, email: adu_de@yahoo.com 

 

 
Abstract. Plotting axial, shear and bending efforts for the plane curved circular beam in polar coordinates using computer 

software means a significant improvement of the student’s or engineer’s activity to show the variation of those functions. This 

can be done using the Step FunctionΦ in Mathcad, which allows computation at the left and right of a force(or couple of 

forces) section. This function can limit a function’s representation for a given interval. This actual work presents some 
numerical results for this type of computations, considering different uniformly distributed loads coplanar with the beam’s 

circular axis.  
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1. MATHEMATIC EXPRESSIONS OF THE AXIAL FORCE N, SHEAR FORCE T AND 

BENDING MOMENT M, FOR UNIFORMLY DISTRIBUTED RADIAL LOADS  

 

One considers the curved beam with the geometric circular axis of radius R and 3π/2 angle. The beam has a free 

end at right and a fixed one at left. The loads p are radial and uniformly distributed, coplanar with the beams 

circular axis, as it can be seen in figure 1.a.     
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The axial force N and shear force T expressions are obtained by projecting the elementary force dF=p⋅ds on the 

normal direction On, and the tangential  one tt’ and integrating along the entire length of the circle sector having 

the central angle θ, as shown in fig. 1.b.  

The expression of the bending moment M can be determined computing the elementary force dF=p⋅ds moment, 

with respect to the normal axis On and integrating along  the length of the circle sector as seen in fig. 1.b.  

Taking into account the sectional efforts sign rule for straight bars [4], one obtains: 

     

( ) ( ) ( )

( ) ( )

( ) ( ) ( )















−−=−−=

=−=

−−=−−=

∫

∫

∫

θ

θ

θ

θαθαθ

θαθαθ

θαθαθ

0

2

0

0

.cos1sin)(

;sincos)(

;cos1sin)(

pRRpRdM

pRpRdT

pRpRdN

     (1) 

One can obtain the same expressions of the efforts by computing the equivalent force Fe corresponding to the 

beam sector with central angle θ, applied on the direction of the θ angle bisector and with the application point in 

the gravity center C of the circular sector [4], as it can be seen in fig.1.a:  
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The shear force T can be obtained projecting the equivalent force Fe on the normal direction On and the 

tangential one tt’, in the point corresponding to the current section A on the beam. The bending moment will be 

obtained as the moment of the equivalent force Fe with respect to a normal axis passing through A, as seen in fig. 

1.a: 
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Between the sectional efforts N, T and M and the exterior loads p there are differential relations: 
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Using the differential relations (2) one can check the expressions of the sectional efforts (1): 
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The efforts diagrams in polar coordinates will be plotted on both sides of the beam’s geometrical axis, by the 

same sign rules as in the case of straight beams: positive N and T are on the exterior side and positive M is on the 

interior side.  

This can be done using the step function Φ from Mathcad 14, which allows: 
• Limitation of a function representation for a given angular interval 

• Representation of the diagram jumps corresponding to concentrated forces (or force couples) by computing 

efforts at left and right limit of the specific section. 

In figures 2, 3 and 4 one plotted the shear force T(θ), axial force N(θ) and bending moment M(θ) diagrams in 
polar coordinates ρ - θ, using Mathcad 14.  
The function representation limitation for the angular interval (0, 3π/2) was done using: L(θ)=Φ(θ) - Φ(θ-3π/2) 
The term 4pR added to the shear and axial forces and 4pR2 for the bending moments (fig. 2, 3, 4), given by the 

relations (3), allowed the displacement of the diagrams origin in the point (4pR,0) and their representation on 

both sides of the beam’s geometrical axis [4].  
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Fig. 3. Axial force diagram in polar coordinates   

Fig. 4. Bending moment diagram in polar coordinates   
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2. MATHEMATIC EXPRESSIONS OF THE AXIAL FORCE N, SHEAR FORCE T AND 

BENDING MOMENT M, FOR UNIFORMLY DISTRIBUTED VERTICAL LOADS  

 

One considers the curved beam with the geometric circular axis of radius R and 3π/2 angle. The beam has a free 

end at right and a fixed one at left. The loads p are vertical and uniformly distributed, coplanar with the beams 

circular axis, as it can be seen in figure 5.a.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The axial force N and shear force T expressions are obtained by projecting the elementary force dF=p⋅ds on the 

normal direction On, and the tangential  one tt’ and integrating along the entire length of the circle sector having 

the central angle θ, as shown in fig. 5.b [4].  

The expression of the bending moment Mi can be determined computing the elementary force dF=p⋅ds moment, 

with respect to the normal axis On and integrating along  the length of the circle sector as seen in fig. 5.b.  

Taking into account the sectional efforts sign rule for straight bars [4], one obtains: 
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One can obtain the same expressions of the efforts by computing the equivalent force Fe corresponding to the 

beam sector with central angle θ, applied on the direction of the θ angle bisector and with the application point in 

the gravity center C of the circular sector, as it can be seen in fig.5.a: θ
θ
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The axial and shear force N and T can be obtained projecting the equivalent force Fe on the normal direction On 

and the tangential one tt’, in the point corresponding to the current section A on the beam. The bending moment 

will be obtained as the moment of the equivalent force Fe with respect to a normal axis passing through A, as 

seen in fig. 5.a: 
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In figures 6, 7 and 8 one plotted the shear force T(θ), axial force N(θ) and bending moment M(θ) diagrams in 
polar coordinates ρ - θ, using Mathcad 14 [4].  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Shear force diagram in polar coordinates   
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Fig. 7. Axial force diagram in polar coordinates   

Fig. 8. Bending moment diagram in polar coordinates   
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3. CONCLUSIONS 

 

• If one compared the diagrams obtained in the first case of radial loads, for the two efforts N and M, one can 

notice they are identical, because the corresponding analytical expressions (3) are the same, excepting the 

factor R 

• If one compared the expressions N, T and M for the two loading cases one can notice that in the first case 

they are actually trigonometric constant functions sums. In the second case products between trigonometric 

and linear functions of θ appear 
• In order to plot the efforts diagram one used the analytical expressions determined for each case, multiplied 

with the factor L(θ)=Φ(θ)-Φ(θ-3π/2), which actually limits the function representation in the interval [0, 
3π/2];  

• In order to plot the circular axis, one used the constant function Axis(θ), multiplied with the same factoring 
function L(θ)=Φ(θ)-Φ(θ-3π/2), which actually limits the function representation in the interval [0, 3π/2];  

• The above presented method is really easy to approach and allows the plotting of the efforts diagrams for 

uniformly distributed loads and for concentrated ones as well.  
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