

The 3rd International Conference on "Computational Mechanics and Virtual Engineering" COMEC 2009 29 – 30 OCTOBER 2009, Brasov, Romania

THE QUASI-PLANE MODEL FOR CALCULATING THE FRICTION DRAG ON A SHIP'S HULL

Viorel ANDREI¹, Florin POPESCU²

¹ University "Dunărea de Jos" of Galați, ROMANIA, viorel.andrei@ugal.ro ² University "Dunărea de Jos" of Galați, ROMANIA, florin.popescu@ugal.ro

Abstract: The paper presents the contributions of the authors regarding the extension of boundary layer theory for a plane plate to a quasi-cylindrical surface. Then the new model is applied to a ship's hull in order to determine the friction drag. *Keywords:* boundary layer, quasi-plane, friction drag.

1. PRELIMINARY CONSIDERATIONS

Be T the draft ship full loaded. By cutting-off the hull with "m" equally spaced horizontal planes " Π_j ", with the levels,

$$z_j = j \frac{T}{m}$$
, $j = 1, 2, ..., m$ we obtain the volumes V_j in Figure 1:

Figure 1

By cutting-off the volumes V_i with horizontal planes taken to the levels

If the ratio $\frac{T}{m}$ is sufficiently small, then the bottom of the segments V_j are quasi-cylindrical, and the fluid flow around them is almost flat. Outlines the current line of L_j we choose the $1_j, 2_j, ..., (n-1)_j$, n_j . In the proximity of the arc of the curve $(k-1)_j - k_j$ the velocity of current potential is equal to the weighted average velocity of the fluid $(k-1)_j$, and k_j , calculated by a procedure of Kármán type. The arch of the curve $(k-1)_j - k_j$ is then approximated through the string $(k-1)_j - k_j$.

If $v_{(k-1)_j}$ and v_{kj} are the velocities in points $(k-1)_j$ and k_j , and 1, p_{kj} – is their weight, then the average weighted mead of fluid will be:

$$\bar{\nu}_{p_{y}} = \frac{\nu_{(k-1)j} + p_{kj} \nu_{kj}}{1 + p_{kj}}$$
(1)

where $v_{(k-1)_j}$ and v_{kj} is considered to be included in water line plane L_j .

As the weight p_{kj} , it is determined from the condition that v_{pkj} to have a direction and purpose-oriented segment $(k-1)_i - k_j$ (see Figure 3).

Figure 3

The above condition is equal to :

$$\tan\left(\varphi_{kj}\right) = \tan\left(\theta_{kj}\right) \tag{2}$$

yields:

$$\frac{v_{yp_{kj}}}{v_{xp_{kj}}} = \frac{y_{kj} - y_{(k-1)j}}{x_{kj} - x_{(k-1)j}} = m_{kj}$$
(3)

 m_{kj} is noted as slope the segment defined by the points $(k-1)_j$ and k_j (string). From the relation (1) we deduce that :

$$V_{yp_{kj}} = \frac{V_{y(k-1)j} + p_{kj}V_{y_{kj}}}{1 + p_{kj}} and V_{yp_{kj}} = \frac{V_{y(k-1)j} + p_{kj}V_{y_{kj}}}{1 + p_{kj}}$$
(4)

Thus, relation (1) becomes an equation with the independent variable p_{kj} ::

$$\frac{v_{y(k-1)j} + p_{kj}v_{y_{kj}}}{v_{x(k-1)j} + p_{kj}v_{xkj}} = m_{kj}$$
(5)

the solution

$$p_{kj} = \frac{-\nu_{y(k-1)j} + m_{kj}\nu_{x(k-1)j}}{\nu_{ykj} - m_{kj}\nu_{xkj}}$$
(6)

by having the weight p_{kj} , the relationship (1) is used to calculate the velocity v_{pkj} and its module:

$$\left| \boldsymbol{v}_{p_{kj}}^{-} \right| = \boldsymbol{v}_{p_{kj}} = \sqrt{\frac{\left(\boldsymbol{v}_{x(k-1)j} + \boldsymbol{p}_{kj} \boldsymbol{v}_{xkj} \right)^{2} + \left(\boldsymbol{v}_{y(k-1)j} + \boldsymbol{p}_{kj} \boldsymbol{v}_{ykj} \right)^{2}}{\left(1 + \boldsymbol{p}_{kj} \right)^{2}}$$
(7)

Remarks:

A numerical calculation carried out in accordance with the relationship (6) can lead to the following critical situations:

(a)
$$m_{kj} = \frac{v_{ykj}}{v_{xkj}} \neq \frac{v_{y(k-1)j}}{v_{x(k-1)j}}$$
 (the denominator= 0)
(b) $m_{kj} = \frac{v_{ykj}}{v_{xkj}} = \frac{v_{y(k-1)j}}{v_{x(k-1)j}}$ $\left(\frac{0}{0}\right)$
(c) $p_{kj} = -1$ (denominator=0 in the formulae (7))

In the situation (a) the weight p_{kj} becomes infinite, and the relation (7) equals:

$$v_{p_{kj}} = \sqrt{\lim_{p_{kj} \to +\infty} \frac{\left(v_{x(k-1)j} + p_{kj}v_{xkj}\right)^2 + \left(v_{y(k-1)j} + p_{kj}v_{ykj}\right)^2}{\left(1 + p_{kj}\right)^2}} = \sqrt{v_{xkj}^2 + v_{ykj}^2}$$

$$= \sqrt{v_{xkj}^2 + v_{ykj}^2}$$
(8)

In situation (b) the relationship (6) presents an indetermination, type $\left(\frac{0}{0}\right)$, which amounts by applying the rule of

l'Hôspital in relation to the variable m_{ki} :

$$p_{kj} = -\frac{v_{x(k-1)j}}{v_{xkj}} \tag{9}$$

If the above value is different from "-1", the relationship (7) obviously leads to a finite amount of it. If, however, p_{kj} from the relation (9) has the "-1" value, it will be taken into account the fact that v_{pkj} velocity must be

finite, so the relationship (7) will present an indetermination type $\left(\frac{0}{0}\right)$ compared to the variable p_{kj} . Applying the rule of the l'Hôspital, it issuccessively obtained:

$$v_{p_{kj}} = \sqrt{\lim_{p_{kj} \to -1} \frac{\left(v_{x(k-1)j} + p_{kj}v_{xkj}\right)^{2} + \left(v_{y(k-1)j} + p_{kj}v_{ykj}\right)^{2}}{\left(1 + p_{kj}\right)^{2}}} = \sqrt{\lim_{p_{kj} \to -1} \frac{\left(v_{x(k-1)j} + p_{kj}v_{xkj}\right)v_{xkj} + \left(v_{y(k-1)j} + p_{kj}v_{ykj}\right)v_{ykj}}{\left(1 + p_{kj}\right)^{2}}} =$$
(10)
$$= \sqrt{v_{xkj}^{2} + v_{ykj}^{2}}$$

the same as in the relation (8).

Therefore, we can determine the velocity v_{pkj} (k=1,2,...,n) in all situations.

Furthermore, the problem is reduced to the calculation of the tangential effort of friction developed on a plate plan by a current which is parallel to it, and having in the immediate vicinity of the boundary layer the velocity v_{pki} .

2. THE CALCULATION OF THE TANGENTIAL EFFORT OF FRICTION AND OF THE FRICTION DRAG ON A SHIP

We consider the turbulent boundary layer created on a flat plate by a stream of fluid parallel to the plate, with the velocity ", v_0 ". Kármán's integral equation associated with the exponent law "1/n" of the velocity distribution, within the boundary layer is reduced to a simple differential equation of the form [2]:

$$\rho v_0^2 \frac{d\delta}{dx} \cdot \frac{n}{(n+1)(n+2)} = \tau_0 \tag{11}$$

where:

ρ - fluid density;

x - the direction of current fluid flow;

 δ – the thickness of the boundary layer corresponding to an abscise (x);

 au_0 - Tangential friction effort on plate item built on the abscise "x";

n - a natural number $n \in \{7, 9, 10\}$, dependent on the degree of turbulence of the flow.

As regarding the effort of friction ,, τ_0 ", it is determined by the relationship (2):

$$\tau_0 = 0,028 \left(\frac{n}{n+1}\right)^{1,75} \left(\frac{\nu}{\nu_0 \delta}\right)^{0,25} \rho \nu_0^2 \tag{12}$$

where v is their kinematics viscosity of the fluid.

Substituting ", τ_0 " in the above differential equation (11) and then integrating it, it is obtained:

. . .

$$\delta^{1,25} = 0,028(n+2)\left(\frac{n}{n+1}\right)^{0,75}\left(\frac{\nu}{\nu_0}\right)x + C$$
⁽¹³⁾

The constant integration ,,C' is determined in the condition:

- for $x=0, \delta=\delta_0$ and so

$$\delta^{1,25} = 0,028 \left(n+2\right) \left(\frac{n}{n+1}\right)^{0,75} \left(\frac{\nu}{\nu_0}\right)^{0,25} + \delta_0^{1,25}$$
(14)

Hence:

$$\delta^{0,25} = \left(\delta^{1,25}\right)^{0,2} = \begin{bmatrix} 0,028(n+2)\left(\frac{n}{n+1}\right)^{0,75}\left(\frac{\nu}{\nu_0}\right)^{0,25} + \delta_0^{1,25} \end{bmatrix}^{0,2}$$
(15)

The effort tangential of friction " τ_0 " becomes:

$$\tau_0 = \frac{0,028 \left(\frac{n}{n+1}\right)^{1,75} \left(\frac{\nu}{\nu_0}\right)^{0,25} \rho \nu_0^2}{\left[0,028 \left(n+2\right) \left(\frac{n}{n+1}\right)^{0,75} \left(\frac{\nu}{\nu_0}\right)^{0,25} x + \delta_0^{1,25}\right]^{0,2}}$$

In the following we will expose the arguments that allow the extension of the validity of the relation (16) in the case of the boundary layer on a surface curve (the surface of the nautical careen):

(16)

• as resulting from chapter1 the surface of the careen was replaced by a union of flat panels with the height $\frac{T}{T}$ and length (measured in horizontal plane) equal to the length of strings $(k-1)_j - k_j$ (Figure 2);

• along such a panel the thickness of the boundary layer is measured in the plane of the water line L_j , in a normal direction on the string $(k-1)_i - k_j$ (obviously, if the water line L_j is located in the area of high plating, then the normal line is rigorously included in the plan line L_i ;

• the direction , x" in the relationship (16) equals, in the case of the studied panel, (x_*) the segment-oriented direction $(k-1)_i - k_j$;

• the velocity v_0 becomes v_{pkj} ;

• $\delta = \delta_{(k-1)j}$; $\delta_{0j} = 0, (\forall j = 1, 2, ..., m)$

Substituting the tangential effort of friction τ_0 with the symbol ", τ_{kj} ", the relationship (16) becomes:

$$\tau_{kj} = \frac{0,028 \left(\frac{n}{n+1}\right)^{1,75} \left(\frac{\nu}{\nu_{pkj}}\right)^{0,25} \rho v_{pkj}^2}{\left[0,028 \left(n+2\right) \left(\frac{n}{n+1}\right)^{0,75} \left(\frac{\nu}{\nu_{pkj}}\right)^{0,25} x_x + \delta_{(k-1)j}^{1,25}\right]^{0,2}} = \frac{\alpha_{kj}}{\left(a_{kj} x_x + b_{kj}\right)^{0,2}}$$
(17)

(the corect α_{kj} , a_{kj} , b_{kj} is obvious).

Norming l_{kj} the length of the string $\overline{(k-1)j-kj}$, the average amount of the tangential effort of friction τ_{kj} , becomes:

$$\overline{\tau}_{kj} = \frac{1}{l_{kj}} \int_{0}^{l_{kj}} \frac{\alpha_{kj}}{(a_{kj}x_x + b_{kj})^{0,2}} dx_x = \frac{\alpha_{kj}}{l_{kj}a_{kj}} \int_{b_{kj}}^{a_{kj}l_{kj} + b_{kj}} \frac{du}{u^{0,2}}$$

$$= 1,25 \frac{\alpha_{kj}}{l_{kj}a_{kj}} \left[\left(a_{kj}l_{kj} + b_{kj} \right)^{0,8} - l_{kj}^{0,8} \right]$$
(18)

The force of friction on the studied panel is :

$$F_{f_{kj}} = \tau_{kj} A_{kj} \tag{19}$$

The projection of the force in the transverse of the ship will represent the friction drag developed by the panel " k_i ":

$$R_{f_{kj}} = F_{f_{kj}} \cos \theta_{kj}$$

$$\cos \theta_{kj} = \frac{x_{kj}}{l_{kj}},$$
(20)
(20)

(see fig. 2, 3).

If we sum the friction drag both from the port and starboard side panel which are adjacent to the water line L_i , then we obtain :

$$R_{f_j} = 2\sum_{k=1}^{n} R_{f_{kj}} , \qquad (21)$$

By adding the relationship (21) compared to "j", it results the for calculus equation of the friction drag with the Appendix:

$$R_f = \sum_{j=1}^m R_{f_j}$$
(22)

REFERENCES:

[1] Andrei, V., Popescu, F., Ariton, V., Algorithm and Computer Code for Calculating the Velocity Around a Ship Hull. (Contract with ICEPRONAV, Galati).
[2] Andrei, V., Elements of the Boundary Layer Theory, University, Galati, 2007.