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Abstract: Rectification and separation processes generally operate far 

from their thermodynamically optimal conditions. Because the rectification 

process is one of the most widespread and energy-consuming processes of 

chemical technology, estimates of its limiting possibilities and the optimal 

profiles of concentrations that correspond to it are very important. In this 

paper we first find an estimate of the reversible rectification efficiency and 

the connection of this efficiency with entropy production. Then we derive the 

conditions on the profiles of concentrations that provide minimal 

irreversibility for a mass transfer process which has a specified intensity. 

Finally we determine an estimate of the limiting performance of the 

rectification process based on the results obtained. 
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1. Introduction 

 

The methods of finite-time thermo-

dynamic have been applied to the analysis 

of processes of chemical technology in refs 
1-6. These analyses take into account the 

irreversibility due to constraints of nonzero 

intensity of the processes and to the 
necessarily finite values of the coefficients 

of mass and heat transfer. Some of these 

have dealt primarily with heat transfer and 

others with chemical species and 
separation processes. The estimates of 

efficiency provided by these methods are 

more realistic than the reversible estimates. 
It is even more important that the analyses 

also give the conditions which show how 

to adjust the regime of the actual process in 
order to approach the limiting, maximal 

effectiveness. In many cases (absorption, 
desorption, membrane separation, 

rectification) the major irreversibility 

factor is the mass-transfer process. If mass 

transfer operates optimally, it minimizes 
the energy consumption when its intensity 

is fixed. Because the rectification process 

is one of the most widespread and energy-
consuming processes of chemical 

technology, estimates of its limiting 

possibilities and the optimal profiles of 

concentrations that correspond to it are 
very important. In this article we first find 

an estimate of the reversible rectification 

efficiency and the connection of this 
efficiency with entropy production. Then 

we derive the conditions on the profiles of 

concentrations that provide minimal 
irreversibility for a mass transfer process 
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which has a specified intensity. Finally we 
determine an estimate of the limiting 

performance of the rectification process 

based on the results obtained. 

 

2. Efficiency of Rectification and   

Entropy Production 

 

2.1. Equations of Thermodynamic 

Balances.  

 
The rectification process is shown 

schematically in Figure 1. The feed of 

mixture Fg  with the (vector of) 

concentrations Fx  flows into the section zk 

of rectification column K.  

The countercurrent fluxes of vapor V and 
liquid (phlegma) L  are established inside 

the column. The vapor is enriched in the 

more volatile components and the liquid is 

enriched in less volatile components in a 

process of mass transfer. The flux of heat 

+q  is added at the lower part of the 

column (the cube). Similarly, a flux of heat 

−q  is removed and the vapor condenses at 

the upper part of column (dephlegmator). 

The temperatures at the cube and 

dephlegmator are +T  and −T , respectively. 

Bg  and Dg  flow out of the cube and 

dephlegmators correspondingly. The first 

of these consists of the less and the second, 

of more volatile components of the 
mixture. 

 

 
 

The thermodynamic balances (mass, 

energy and entropy) for the column with 
the fluxes shown in the Figure 2 have the 

form (1, 2, 3), where ijh , ijs , i = 1, ..., k, 

and j = F, B,D are the molar enthalpies and 

entropies of the ith component of the jth 

flow; k is the number of components in the 

mixture; σ  is the rate of entropy 

production. Using these balances, we 
express the heat used for the process as is 

shown in Eq.(4). 
 

kixgxgxg iBBiDDiFF ,...,1,0 ==−−    (1) 
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Fig.2. Scheme of the  input and output 

fluxes in the rectification column 
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Because the entropy production 0≥σ  

the reversible estimate of the heat 

consumption of the column is 0
++ ≥ qq . 

Any estimate of σσ ≤* caused by the 

given intensities of the processes and finite 

values of mass- and heat-transfer 

coefficients gives, after substitution into 

expression 4, a value of minimal heat 

consumption more realistic than +
0q . It 

gives not only its dependence on the 

parameters of the external fluxes but on the 

kinetics of the processes inside the column 

as well. 
 

2.2.  Estimate of the Reversible 

Efficiency. 
  

Let us give a more detailed form of the 

reversible estimate just obtained. Assume 

that (1) the pressures in the fluxes Fg , 

Dg , and Bg  are the same and equal to p ; 

(2) the mixtures can be described as ideal 
solutions. 

Thus their enthalpies and entropies depend 

on parameters as: 
 

( ) ( )∑
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here R is the universal gas constant. The 

increments of the enthalpy and entropy due 
to the change of the flux temperatures can 

be expressed in terms of the heat capacities 

Cpi(T) at the constant pressure p. Thus: 

( ) ( ) ( )∫=−=∆
2
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,, 12

T

T
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( ) ( ) ( )∫ 
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,, 12

T

T
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iii dTT
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If the temperature of the phase transition 

0iT  lies in the interval [T1, T2], then the 

terms 00000 , iiiii TQsQh == δδ   should 

be added to the right-hand sides of eqs 5. 

Here 0iQ is the latent heat of phase 

transition of 1 mol of ith component. 

Taking all this into account and expressing 

Fg  in terms of Dg  and Bg , we get the 

following reversible estimate for heat 

consumption in the rectification process 
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If the component i is transferred from the 

vapor into the liquid then the heat of 

evaporation 00 >iQ . If it is transferred 

from liquid to vapor, then 00 <iQ . The 

functions Du and Du are equal zero if the 

temperature of the phase transition does 

not fall in either of the intervals [ TD,TF] 

and [ TB,TF] correspondingly. Otherwise it 

is equal to 1. 
 

3. Minimal Irreversibility of Mass 

Transfer 
 

3.1. One-way Mass Transfer. 

  
Assume that the system consists of two 

fluxes (Figure 3) and the objective 

(desired) component is transferred from 

one flux to the other. We also assume that 
the temperatures of both fluxes are the 

same in every section of the system. The 

problem of finding the regime of this 
process with minimal irreversibilities takes 

the form  

 

( )
( )

( ) ( )( ) min,,
,

,
2211

0
21

21 →−= ∫ dlTcTc
ccT

ccgL

µµσ  (7) 

 
subject to constraints 

 

  ( ) Ndlccg
L

=∫0 21 ,  (8) 
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21
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ll

l

GG

ccgdldG
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  ( ) dldGdlcGd l //, 11 =  (10) 

 

where ( )lGl is the total rate of the first 

flux; ( )lci  , ( )Tcii ,µ  i = 1, 2 are 

concentrations of the objective component 

and its chemical potential in the ith flux; 

( )21,ccT  is the temperature of the fluxes; 

N  is the total amount of transferred 

material, L  is the length of the contact 

surface, l  is the coordinate along this 

surface, and ( )21,ccg  is the flux density of 

the mass flow from the first flux to the 

second (per unit length). Condition 10 

expresses the fact that there is transfer of 
the objective component only between two 

fluxes. From (9) and (10) it follows that: 

 

  
( )

( ) 101

21
11

0

,,
1

cc

ccg
G

c

dl

dc

l

=

−
−=

 (11) 

 

If ( )lc2  is given, then eqs 9 and 11 and 

the boundary conditions (for instance, 

( )lc1  and ( )lG1 ) define ( )lcl  and ( )lGl . 

Thus we can consider the concentration 

( )lc2  as a control variable of the problem. 

Such one-way mass transfer occurs in the 

processes of absorption, adsorption, 

membrane separation, and drying. But the 
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temperatures of the fluxes are not always 
the same at every section of the system and 

mass transfer does not occur 

simultaneously with heat transfer. Let us 

use the concentration lc as a new 

independent variable instead of the 

distance 1. From (11) we get: 

 

( ) ( )21,1 ccgc

G
dcdl

l

l
l

−
=               (12) 

 

 
Condition 8 can be rewritten as  
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and equation 9 as 
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where ( )00 1
~

lll cGG −=  is the flux of inert 

components in the stream. The mass 

balance constraint on the objective 

component gives 
 

( ) ( )LcLGgcG llll =− ~
00  

 

and taking into account the dependence of 

lG on lc , we get 
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Substitution of (12) into (7) leads to the 

transformed problem 
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subject to the condition 
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The Lagrange function of this problem 
takes the form 
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Here is a Lagrange multiplier. The 

stationary condition of M  with respect to 

2c gives the condition of minimal entropy 

production of one-way mass transfer 

 

Fig. 3. Optimal (solid line) and real 

(dashed line) concentration’s profiles in 

the lower part of the rectification column 
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If the chemical potential is 

 

( ) ( ) 2,1,ln,0 =+= icRTTpc iii µµ   (18) 

 

then 222 / cRTc =∂∂µ  and condition 17 

takes the form 
 

  
2

22

1

gc

g
m

c

R









∂

∂
=−  (17a) 

 
This expression defines the optimal 

dependence ( )12 ,* cmc  up to constant m. 

Substitution of *
2c  into (16) gives the 

equation which defines *mm = . Finally, 

substitution of ( )1
*
2 *,cmc  into (15) gives 

the minimal entropy production *σ  and 

into (11) gives the differential equation for 

( )lcl  
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The solution of (19) gives the optimal 

profile of concentrations ( )lc*
1  and 

( ) ( )( )lcmclc *
1

*
2

*
2 *,= . 

 

5. Entropy Production in Irreversible 

Rectification  
 

We assume that the feed flux Fg  enters 

the rectification column in a section where 
the liquid composition and its temperature 

in the column are the same as those of the 

feed. The same is assumed for the fluxes 

L  and Bg . Thus our model here supposes 

no excess entropy production due to 

mixture of the fluxes. We assume also that 

the amounts of mass iN  and heat Q  

transferred inside the column are fixed: 

 

( ) ( ) ( ) ( ) kixgxLzxzLdznN
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k

FFikik

z

ii ,...,1,00
0

=+−== ∫  (62) 

 

( ) ( ) ( ) ( ) kihghLzhzLqdzQ
xx
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,...,1,00
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where L  is the flux of liquid inside 

column, xh  is the enthalpy of this flux, 

Fxh  is the enthalpy of the feed, and Fxg  is 

the flux of liquid feed. 

It is assumed that the kinetics of the heat 

and mass transfer is described by 
Onsanger’s equations 50 and 51 with 

constant coefficients. If the processes 

occur near equilibrium this is valid. As has 

been shown above, the minimum of σ  

corresponds to constant heat and mass 

fluxes along the length of column 
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The corresponding estimate of σ  is 
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The mass and energy balance for the 
column are: 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) FFxkvkvkxk hghLzhzVhVzhzL −=−−+ 0000  (67) 

 

where subscript x corresponds to the 

enthalpy of the liquid flux and v to the 
vapor flux: 

 

FvFxFFvFxF ggghhh +=+= ,  

 

Let us express the ( )kzL  in terms of 

( )0L  and substitute it into (66). We get 
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where c′ and c ′′ are vectors that depend on 

the parameters of feed and the fluxes of 
liquid and vapor in the lower and upper 

sections of column: 
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After minimization of *σ  with respect 

to ( )0L , we get 
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using the experimental data then we can 

calculate vectors c′ and c ′′  using the 

parameters of fluxes in the sections o and 

kz  and get the *σ . We can also obtain the 

estimation of the minimal heat 

consumption +q  using (4). 

 

6. Conclusions 

 

Beginning with the reversible limit of 
rectification, we have analyzed the 

conditions for minimal entropy production 

for rectifying systems constrained to 
operate at fixed rates or to yield fixed 

fluxes of product. The case of one-way 

mass transfer is analyzed. The next step in 

this line of study would naturally be the 
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application of these analyses to the design 
and optimization of new rectification 

processes, for purposes of making them as 

efficient as is practically possible. 
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