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stract : In an effort to study the nonlinear viscoelastic behavior of neat and carbon fiber-reinforced Polyether-
erketone (PEEK) and epoxy resin, creep tests were perfomed on [904]s and [+454]s laminates as well as on neat 

sin specimens. The laminates [904]s and [+454]s are used to study the time dependent transverse and shear 
operties, respectively. Series of 10-hour isothermal tensile creep tests were conducted on each laminate at four 

peratures (up to 140°C for the epoxy system and up to 120°C for the PEEK system) and different stress levels.  An 
alytical procedure based on the Mori-Tanaka's mean field theory but extended into viscoelastic domain is used to 
count for the time dependent overall response of the composite body. Directed toward this, Schapery's nonlinear 
nstitutive equation is input into the analysis which makes the proposed method capable of accounting for time 
pendent behavior of the polymeric matrix. The nonlinearity factors in the Schapery's formulation axe found based 
 the creep tests performed at different stress levels and test temperatures. The stress and temperature dependence 
 the nonlinearity factors was evaluated.using a numerical procedure based on least squares techniques. The 
sults for the pure resin and 90 degree specimens show good agreement between experiment and the predicted 
ta. For the 45 degree specimen, the above correlation is less impressive, nevertheless the general trend in the 
rves of the predicted data closely match those generated by experiment. The accuracy of the results will be more 
proved if the gradual change of the fiber orientation specially at high values of temperature and stress is 
counted for in the analysis. 

 
 

 INTRODUCTION  

he effective viscoelastic behavior of a two phase composite body is dependent upon the 
lastic/viscoelastic properties of the constituent materials. A number of approaches are presented in 
e literature for the prediction of the bounds on elastic/viscoelastic parameters of multi (two) phase 

omposites [1-6]. Most of the works which have been done to estimate the bounds on the effective 
lastic/viscoelastic property of fiber reinforced composites, assume both of the phases to possess 
otropic material behavior. Little work has been presented in the literature for those cases where for 
stance the reinforcing phase has anisotropic or transversely isotropic properties. An example of this 

ould be a graphite/epoxy composite where the matrix material is considered to be isotropic but the 
bers show anisotropic behavior. 

he problem considered for the computation of the elastic/viscoelastic moduli is that of parallel fibers 
hich are long enough so that end effects can be neglected. The material may be represented by a 

ylindrical specimen whose cross section is very large in comparison to fiber cross section. The 
ngitudinal axes of the specimen coincides with the fiber direction and since the end effects are 

eglected, the fibers may be assumed to run continuously through the entire length of the specimen. 

 is also assumed that the specimen is statistically both homogeneous and transversely isotropic. The 
roblem to be considered is that of predicting the bounds on elastic/- viscoelastic properties of such a 
ecimen in terms of its geometry and the elastic/viscoelastic moduli of its constituents. 
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2. THEORETICAL BACKGROUND 
 

In the following, an attempt will be made to estimate the characteristic parameters of a composite material 
using the Mori-Tanaka theory [7]. The method utilizes a cylindrical specimen containing elliptic cylindrical 
fibers in the matrix material. The fibers are considered to be transversely isotropic and elastic while the 
matrix is isotropic with viscoelastic properties. Two cases may be considered: one in which the fibers are 
monotonically aligned and uniformly dispersed which results in an orthotropic composite specimen while in 
the second case the fibers are randomly-oriented elliptic cylinders. For the latter case, the resulting 
composite is transversely isotropic. The shape of the elliptic fibers is characterized by the ratio α  = t/w as 
shown in Figure 1. For a composite containing circular fibers, as in the current study, the cross sectional 
aspect ratio α  is equal to 1. 

 

 

Figure 1: . Schematic representation of a composite with monotonically aligned 
elliptic cylindrical fibers 

 
The solution of the problem is based on Eshelby's [8] approach for an ellipsoidal inclusion in conjunction with the 
Mori-Tanaka's [7] mean-field theory for which the results are obtained by Zhao and Weng [9]. 
It should be pointed out that in [9], the two constituents are considered to have isotropic properties. In the 
present investigation however, the fibers possess anisotropic material behavior. This is the author's contribution 
to the development of the theory to evaluate the effective moduli of a fiber reinforced composite. It is 
interesting to note that through this theory it is possible to obtain all the effective moduli which are 
required to characterize an orthotropic composite (in particular a transversely isotropic composite). In 
summery, using the foregoing approach, the compliance matrix of a viscoelastic body can be 
determined which allows one to investigate the time dependent response - here in form of creep curves. 
 
For the understanding of the subsequent analysis, the Mori-Tanaka's theory [7] will be briefly 
reviewed. Let us first consider a fiber-reinforced composite in which transversely isotropic fibers are 
uniformly distributed in the matrix material. Here a representative volume element (RVE) of the 
composite and one of a comparison material (CM) made only of the matrix material are introduced. 
Let both of the above RVE's be subjected to the same boundary traction σ . Let us further denote the 
elastic coefficients matrix of CM by Cm. 
For the real composite however, under the same σ , the mean strain in the matrix differs from that in 
the CM. Let ε~  represent the difference of the two mean values of strain. The mean value of the stress 
in the CM is σ . On the other hand, in the matrix of the composite, there exists a different mean stress 
σ~ . As a result, the following observations can be made: 
In CM, due to the mean strain field ε ° and the mean stress field σ , the stress-strain relation becomes: 

0εσ mC=                                                                                              (1) 
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In the matrix constituent of RVE of the composite, the mean strain and stress fields are 

εεε += 0m and σσσ ~+=m respectively. The stress-strain relation is therefore written in the 
following form: 

)(~ 0 εεσσσ +=+= m
m C                          (2)

       
In the fiber of RVE of the composite, the mean strain field differs from that in matrix through an 

additional  term ptε  and hence ptptmf εεεεεε ++=+= ~0 .  In the same manner, the mean 

stress field is different from that in matrix by an additional term ptσ  and therefore 
ptf σσσσ ++= ~ . The stress-strain relation becomes: 

 

)~(~ 0 pt
f

ptf C εεεσσσσ ++=++=           (3) 

It should be pointed out here that is to represent the matrix of the elastic coefficients of the fiber. fC
Using Eshelby's equivalence principle [8], one may write the average stress in fiber in terms of the elastic 

coefficients of the matrix  by introducing the term mC ∗ε  in the average strain field, i,e. 

)~()~(~ 00 ∗−++=++=++= εεεεεεεσσσσ pt
m

pt
f

ptf CC      (4) 

where the following relation holds: 
∗= εε Ppt              (5) 

 
The four-rank tensor P is Eshelby's transformation tensor and has the symmetry property Pikjl = Pjikl 
= Pijtk.  The components of the above tensor for the cylindrical fiber with an elliptical cross section 
are given in the Appendix. The average stress for the whole composite can be written as 
 

pt
f

pt
fmfmf

m
pt

fmmff

vvvvvv

vvvv

σσσσσσ

σσσσσσσσ

++=++++=

++++=+=
~~)()(

)~()~(
    (6a) 

 
which reduces to: 
 

pt
fv σσ −=~            (6b) 

Following a similar procedure one can obtain 
 

∗∗∗∗ −−=−−=−−= εεεεεε )()()( IPvPvv ff
pt

f     (7) 

where I is the unit tensor. 

Substitution of this last relation into (4) yields: 

( )[ ] ( )[ ]∗∗∗∗∗ −+−−=+−− εεεεεεε PIPvCPIPvC fmff
00    (8a) 

 

which can be simplified to: 

( )( ) ( )( )[ ] ( ) 00 =−++−−++−− ∗ εε mffmff CCIPIPvCPIPvC   (8b) 

 

This last relation can be written in an alternative form as 
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( )[ ] ( ) 0)( 0 =−+−−+ ∗ εε mfmmfmf CCIPvCIvPvC     (8c) 

 

or 

( ) ( )[ ] ( ) 00 =−++−+− ∗ εε mfmmffmfm CCCCCvPCCv    (8d) 

 

and finally as: 

( )( )[ ] ( ) 00 =−+++− ∗ εε mfmfmmf CCCIvPvCC      (8e) 

 

From the above equation, one may write the relation between ∗ε  and 0ε  in the following form: (see 
Appendix) 
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For the shear components of the strain, following relations can be written [9]: 

( )
( )( )

0
12

1212,12

,12
12 2

εε
mfmmf

mf

GvPvGG
GG

++−

−
=∗       (10) 

 

( )
( )( )

0
23

2323,23

,23
23 2

εε
mfmmf

mf

GvPvGG
GG

++−

−
=∗       (11) 

 

( )
( )( )

0
31

3131,31

,31
31 2

εε
mfmmf

mf

GvPvGG
GG

++−

−
=∗       (12) 

 
Let us now apply the foregoing method to evaluate the elastic/viscoelastic parameters of 
the entire composite when it is considered as an orthotropic body. As a particular case of 
the above approach, the transversely isotropic composite investigated in the present study 
will be considered.  

For the derivation of the longitudinal Young's modulus  of an orthotropic body, the composite 11E

and the comparison material are subjected to a pure tension 11σ . Then, it follows that 
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111111 εσ E=  for the composite, and 

0
1111 εσ Em=  and 0

22
0
33

0
22 εεε mv−==  for the comparison material 

Making use of the relations presented earlier, the above relations can be written in the following form: 
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    (13) 

 

where the notation: ai = Ai/A has been used. 

It follows that: 

([ )]32111

0
1111

1
1

aavavE
E

mfm +−+
==

ε
ε

       (14) 

 

Similar expressions can be obtained for the elastic moduli in the other directions 

([ )]64522

0
2222

1
1

aavavE
E

mfm +−+
==

ε
ε

       (15)

     

and 

([ )]87933

0
3333

1
1

aavavE
E

mfm +−+
==

ε
ε

       (16) 

 

For the computation of the shear moduli, one may use the relations: 

0
1212121212 2;2 εσεσ mGG ==     (17) 

 

Recall that: 

∗+= 12
0

1212 εεε fv           (18) 
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which results in the following relation for the shear modulus  12G
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Following a procedure similar to that just presented, the expressions for the remaining shear moduli are 
obtained. These are 
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Finally, in order to determine the expressions for Poisson's ratio, one can use the relation: 

 

0
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0
33

0
221122 ; εεεεε mm vv −==−=     (23) 

 

Note that: 
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Also 

( ) 0
3365

0
22

0
11422

0
2222 1 εεεεεε avavavv ffff +++=+= ∗     (25) 

 

which can be written in a simplified form as: 
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Now, substitution of the above relation in that of the v\i yields 

( )
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vavvavav
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which can be rearranged to:      
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( )[ ]321

654
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v
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Similarly, it can be shown that 
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546
23 1 aavav

aavavv
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and 

( )[ ]
( )[ ]321

987
31 1 aavav

aavavv
v

mf

mfm

+−+

+−−
=         (30) 

 

Note that the proposed method is in contrast to those by which only the bounds on characteristic 
parameters of the material are obtained. Here, the engineering constants are uniquely evaluated as a 
result of which, an accurate prediction of the overall material response can be made. The procedure is 
original in that, the fibers are not isotropic but instead possess anisotropic or transversely isotropic 
behavior. The components of the compliance matrix are evaluated based on the computed values of the 
engineering constants while time dependence is incorporated into the analysis by using Schapery's 
constitutive equation for nonlinear viscoelastic materials [10]. In this way, the viscoelastic response of 
the composite - here in form of creep curves - can be studied. 

 

3. RESULTS AND DISCUSSION 

In Figures 2 through 11, predictions made for the creep response of PEEK and epoxy resin together with 
those of the [90]4s and [±45]2s laminates are plotted. The response using the proposed theoretical 
technique agrees very well with the experimental data for the neat PEEK and epoxy specimens under 
the loading conditions indicated in Figures 2 and 3. 

Examination of the plots for the transverse strain 22ε  of the two composites (Figures 4 through 7) 
indicates that a very accurate prediction of the experimental results is possible by utilizing the proposed 
method even at relatively high temperature of 120°C. It can be seen from Figure 7 that the 
maximum deviation of the theoretical results from the experimental data is less than 8%. 

Attention should be drawn to the fact that the [±45]2s laminate configuration can be expected to 
operate at a higher creep rate than a [90]4s laminate. The agreement between experimental and 
predicted data for the former laminate is less impressive in terms of accuracy.  
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Nevertheless the general trend in the curves of the predicted data for the stress and temperature 
combinations presented closely match those generated by experiment (Figures 8 through 11). The 
"scissoring action" which occurs in the [±45]2s laminate can lead to intolerable large creep distortion 
values. For this reason, it is evident that some discrepancies may occur in the prediction of the results 
for the [±45]2s laminates investigated in the current study. By examining the proposed method, the 
reason for this discrepancy becomes evident. The value for the shear modulus G12 obtained through the 
proposed method is based on a fixed fiber orientation of 45° in the laminate. This is however not the 
case in the creep test of 45° specimens especially at high values of stresses and/or test temperatures where 
the fiber orientation of 45°changes with time thus causing error in the prediction of the results. This can be 
avoided if the gradual change of the fiber orientation is accounted for in the analysis. 

          

Figure2.Comparison between experimental and theoretical prediction of creep strain s for neat PEEK 

resin subjected to =σ  26 MPa at 23° C. 

              

 

Figure3.Comparison between experimental and theoretical prediction of 

creep strain s for neat epoxy resin subjected to a — 8.6 MPa at 80° C. 
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Figure 4.  Comparison between experimental and theoretical prediction of creep strain 22ε  carbon/PEEK 

subjected to =22σ  36 MPa at 80° C. 

 

Figure 5.  Comparison between experimental and theoretical prediction of 

creep strain 22ε  for carbon/PEEK subjected to =22σ  47 MPa at 80° C. 
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Figure 6.  Comparison between experimental and theoretical prediction of 

creep strain 22ε for carbon/epoxy subjected to =22σ  30 MPa at 23° C. 

         

Figure 7.  Comparison between experimental and theoretical prediction of 

creep strain 22ε for carbon/epoxy subjected to =22σ  19 MPa at 120° C. 
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Figure 8.  Comparison between experimental and theoretical prediction of creep distortion 12γ  for 

carbon/PEEK subjected to =12τ 13 MPa at 80° C. 

      

Figure 9.  Comparison between experimental and theoretical prediction of creep distortion 12γ  for 

carbon/PEEK subjected to =12τ 6 MPa at 100° C. 
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Figure 10.  Comparison between experimental and theoretical prediction of creep distortion 12γ  for 

carbon/epoxy subjected to =12τ 29 MPa at 23° C. 

 

 

 

Figure 11.  Comparison between experimental and theoretical prediction of creep distortion 12γ  for 

carbon/epoxy subjected to =12τ 12 MPa at 120° C. 
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APPENDIX 

 
Eshelby's Transformation Tensor for an Elliptic Cylinder 

The components of the Estielby's  for the cylindrical fiber with an elliptical cross section are [11] ijklP
 
 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( )

( )

( ) ( )
( )⎥

⎦

⎤
⎢
⎣

⎡
−+

+
+

−
=

+
=

+
=

⎥
⎦

⎤
⎢
⎣

⎡
+
−

+
+−

=

+−
=

⎥
⎦

⎤
⎢
⎣

⎡
+
−

+
+−

=

+−
=

⎥
⎦

⎤
⎢
⎣

⎡
+
−

+
+
+

−
=

⎥
⎦

⎤
⎢
⎣

⎡
+
−

+
+
+

−
=

m
m

m

m

m

m

m

m

m

m

m

m

m

m

v
v

P

P

P

v
v

P

v
vP

v
v

P

v
vP

v
v

P

v
v

P

21
1
1

14
1

12

12
1

1
21

112

11

1
21

1
1

12
1

1
1

1

1
21

1
2

12

1
21

1
21

12
1

2

2

2323

1313

1212

23322

3311

22233

2211

23333

22222

α
α

α
α
α

αα
αα

α
α

αα

α

αα
αα

αα
α

 

 

and 

 

0;0;0 113311221111 === PPP        (A-2) 

 
where all other 0=ijklP .In all  the above equations, α  is the aspect ratio introduced 

earlier and  is the Poisson's ratio of the isotropic matrix. Note also that the axis 1 is mv
taken to be infinitely extended, axes 2 and 3 are along the thickness and along the width 
of the elliptic cylinder, respectively. When the fibers have circular cross section as in the 
present investigation, so that 1/ →= wtα , the components of the Pijki are simplified 
accordingly. 
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As described earlier, substitution of Eq.   (7) in Eq.   (4) yields the relation between the normal 
components of  and  .These relations are: (see Ref. [9]) 0
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where 
 

( )33112211211 PPvNNvM mf +++=  

( )3322222232 PPvNvM mf +++=  

( )3333223333 PPvNvM mf +++=  

( )3311221134 PPvNvM mf +++=  

( )332222221215 PPNvNNvM mf +++=       (A-4) 

( )3333223336 PPvNvM mf +++=  

( )22113311137 PPNvNvM mf +++=  

( )22223322138 PPNvNvM mf +++=  

( )22333333219 PPvNNvM mf +++=  
 
with the following expressions for 's in terms of the Lame's constants of the constituting phases iN
 

( ) ( )mfmf GGN λλ −−+= /211  

( ) ( )mfmm GN λλλ −+= /22        (A-5) 

( )mfmN λλλ −= /3  
 

Now, in order to arrive at the connection between  and , the M matrix written above is ∗
ijε

0
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inverted which in turn leads Eq. (9) rewritten here for convenienc: 
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