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Abstract: In this paper is discussed a half of automobile suspension with nonlinear springs for which the elastic force is
given by a quadratic function with respect to the elongation. Assuming that both linear elastic and nonlinear elastic elements
are compressed one obtains the equilibrium positions for such a suspension and one discusses the stability of these
equilibriums. Finally, a numerical application is presented and the diagrams of stability function of the coefficient of the
nonlinear force are plotted.
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1. INTRODUCTION

Let be the system in Fig. 1 (the schema of half of an automobile), formed by two equal masses 1m and a mass

2m . The nonlinear springs (denoted by 1k , 1 ) give an elastic force
2

11 zzkFe  (1)
where z is the elongation.

k 11,

2k

1k 1,

2k

m1g m g1

gm2



l l

1x
x2

3x

0
101 x10 + 1k x

)- x10l+(xk 2 30
)-

201
0x20x +k1 

20xl-(x30

gm1

1k



2m g

g1m

Figure 1: The system. Figure 2: Isolation of the rigid bodies.
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The system moves in a vertical plane, the rotation of the bar of mass 2m (denoted by  ) being considered
sufficiently small to may admit the approximations sin , 1cos  . Let us suppose that both the nonlinear
and the linear springs are contracted. Determine: the positions of equilibrium; their stability as function of the
parameter 1 , assuming that 1k , 2k , 1m , 2m are known. Numerical application: kg501 m , kg7502 m ,

m2l , 1
2 Nm20000 k , 15

1 Nm10 k ,    22
2 kgm1000122  lmJ , 2ms8065.9 g .

2. EQUILIBRIA

The equations of equilibrium read
  01100302101

2
101  gmxlxkxkx ,   01200302201

2
201  gmxlxkxkx ,

    02200302100302  gmxlxkxlxk ,     0100302200302  xlxlkxlxlk .
(2)

where the index 0 corresponds to the position of equilibrium. The above equations may be put in the form
  gmlkxkxkkx 1023021021

2
101  , (3)

  gmlkxkxkkx 1023022021
2
201  , (4)

gmxkxkxk 2302202102 2  , (5)
02 02010  lxx . (6)

From the relation (6), one obtains

l
xx

2
2010

0


 , (7)

which, replaced in the relations (3) and (4), leads to

    gmxxkxkxkkx 12010
2

3021021
2
101 2

 , (8)

    gmxxkxkxkkx 12010
2

3022021
2
201 2

 . (9)

From (5), we get

22
2010

2

2
30

xx
k
gmx 
 . (10)

Subtracting the relations (8) and (9), term by term, it follows that     020101
2
20

2
101  xxkxx , wherefrom it

results

2010 xx  or
1

1
2010 


kxx . (11)

If 2010 xx  , then from (7) one obtains 00  , so that from (10) one gets 20
2

2
10

2

2
30 22

x
k
gmx

k
gmx  . If

112010  kxx , then we may write 20
1

1
10 xkx 


 , 10

1

1
20 xkx 


 . The relation (10) leads to

1

1

2

2
30 22 


k

k
gmx , while from (7) one obtains

1

110
0 2 


l
k

l
x ,

1

120
0 2 


l
k

l
x . The equation (8) takes now the

form

  0
22

2
1

1

21
1021

2
101 






 


 gmmkkxkkx , (12)

while the equation (10) becomes

  0
22

2
1

1

21
2021

2
201 






 


 gmmkkxkkx . (13)

As a matter of fact, the equations (12) and (13) are the same. The discriminant of these equations is

gmmkk 





 

2
4 2

11
2
2

2
1 and the condition 0 leads to the inequality

gmm

kk







 




2
4 2

1

2
2

2
1

1 . The sum of
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the roots of the equation (12) (of the equation (13) too) is
1

1

1

21








kkkS , which means that the position of

equilibrium (if it exists) is given by

1

12
2010 2




kkxx or
1

12
2010 2




kkxx . (14)

As 010 x , 020 x (the springs are compressed), from 112010  kxx it results 01  . It results, from the

first equality (14), that 2k , wherefrom 2
2

2
11

2
2

2
1 2

4 kgmmkk 





  , i.e.

gmm

k







 



2
4 2

1

2
1

1 ,
(15)

which verifies the inequalities (xxiii) and 01  too. It results the position of equilibrium

0
2 1

1
2010 




kxx , (16)

1 being given by (15). For the second equation (14), one obtains 2k , which is absurd. Let us remark
that (16) is a particular case of the first relation (11), hence at equilibrium 2010 xx  .

3. EQUATIONS OF MOTION

Using the schema in Fig. 1, these equations read
  gmxxkxlxkxm 1

2
111113211  ,   gmxxkxlxkxm 1

2
212123221  ,

    gmxlxkxlxkxm 223213232  ,    232132 xlxlkxlxlkJ  .
(17)

Denoting 11 x , 22 x , 33 x , 4 , 51 x , 62 x , 73 x , 8 ,
1

1
10 m

a 
 ,

1

21
11 m

kka 
 ,

1

2
13 m

ka  ,
1

2
14 m

lka  ,
1

1
20 m

a 
 ,

1

21
22 m

kka 
 ,

1

2
23 m

ka  ,
1

2
24 m

lka  ,
2

2
31 m

ka  ,
2

2
32 m

ka  ,
2

2
33

2
m
ka  ,

J
lka 2

41  ,
J

lka 2
42  ,

J
lka

2
2

44
2
 ,

one obtains the system

51  , 62  , 73  , 84  , gaaaa  414313111
2
1105

 ,

gaaaa  424323222
2
2206

 , gaaa  3332321317
 , 4442421418  aaa .

(18)

4. STABILITY OF THE POSITIONS OF EQUILIBRIUM

Denoting by  81 ,,  kf , 8,1k , the expressions of the right member of the relations (18) and by

lkkl fj  , 8,1, lk , their partial derivatives, it results the characteristic equation

0

0000
0000
0000
0000
1000000
0100000
0010000
0001000

848281

737271

646362

545351














jjj
jjj

jjj
jjj

, (19)

wherefrom
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0

0
0

0
0

2
848281

2
737271

6463
2

62

5453
2

51









jjj
jjj

jjj
jjj

. (20)

One obtains the algebraic equation of eighth degree in 
02468  DCBA , (21)

where

74736251 jjjjA  ,
,81547153845173516251

72638264847384627362

jjjjjjjjjj
jjjjjjjjjjB




,817354816254847153716253726351

826451847351846251736251847263827364847362

jjjjjjjjjjjjjjj
jjjjjjjjjjjjjjjjjjjjjC




.81726354827163548173625484716253

8172645382716453847263518273645184736251

jjjjjjjjjjjjjjjj
jjjjjjjjjjjjjjjjjjjjD




(22)

The equation (21), with the notation 2u , may be written in the form
0234  DCuBuAuu (23)

and, for the position of equilibrium be stable, it is necessary and sufficient that all the roots of the equation (23)
be negative and distinct (see Discussion). It may occur following situations: the roots are distinct; a root is
double; a root is triple; a root is of an order of multiplicity equal to four; two roots are double.
In the case of distinct roots making uu  in the equation (24), one obtains 0234  DCuBuAuu and,
from Descartes’s theorem, one deduces the necessary condition of existence of four negative roots 0A , 0B ,

0C , 0D . We construct the Sturm sequence associated to the polynomial
  DCuBuAuuuf  234 . (24)

We choose   DCuBuAuuuf  234
0 ,

424
3 23

1
CuBuAuf  . Dividing 0f by 1f , one obtains the

remainder
16

16
8

6
16

38 2
2

2
ACDuABCuABR 







 . One obtains that is necessary that 038 2  AB ; in the

opposite case, 2R would have a degree at most equal to 1 (like the polynomial 2f in the Sturm sequence) and
would result only four terms in the Sturm sequence ( 0f , 1f , 2f and 3f (the last being a constant)), so that in
the sequence  0f ,  1f ,  2f ,  3f we would have at most three variations of sign. It would
result that the equation (23) has at most three negative roots, which is not convenient. As a conclusion, it results
the necessary condition 038 2  AB . Writing now 22

2
22  uuR , we may choose the following term

of Sturm’s sequence in the form   22
2

2  uuuf , where  
2

2

2
2 38

62
AB
ABC







 , 2

2

2
2 38

16
AB
ACD







 .

Dividing now 1f to 2f , one obtains the remainder 333  uR , where 





  2223 4

3
2

AB ,







  223 4

3
4

AC . Similar considerations lead to the condition 03  , wherefrom

    0
38

62
4
3

38
62

238
16

222 
















AB
ABCA

AB
ABCB

AB
ACD . We choose   33  uuf , with

3

3
3 

 . By dividing 2f

by 3f , it results the remainder  32324 R and the polynomial     23234 uf , which must be
nonzero (the roots are distinct!), wherefrom one obtains the condition

0

4
3

2

4
3

4

4
3

2

4
3

4
2

222

22

2

222

22


























 







 








 







 

AB

AC

AB

AC

. (25)

One may construct following table.
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Table 1: Table of the variations of sign in the Sturm sequence.
u 0f 1f 2f 3f 4f SW

 + – + – 4sgn f 3 or 4

0 + + 2sgn  3sgn  4sgn f 0, 1, 2
or 3

The only possibility to have four negative distinct roots is that   4SW and   00 SW , wherefrom there
result the conditions 04 f , 02  , 03  .
If the polynomial  uf given by (24) has a double root, let be u , then u is a root for the derivative  uf  too,
i.e.

0234  DuCuBuAu , 0234 23  CuBuAu . (26)
The relations (26) multiplied by 4 and u , respectively, summed, lead to

0432 23  DuCuBuA . (27)
We multiply now the second relation (26) by A , the relation (27) by 4 and make the sum, obtaining
    01612283 22  DACuCABuBA . (28)

Summing the relation (27), multiplied by  238 AB  , with the relation (28), multiplied by uA , one gets the
relation
      08342634 22222  BADuADCABCuACBAB . (29)

Multiplying the expressions (28) and (29) by  ACBAB 34 22  and  238 AB  , respectively, and summing the
results thus obtained, one gets

 
09486412834

12632362828
4222232

3422233





DAACDBDADBCABCACAB

uDACAABDACBCABAAB
(30)

wherefrom it results u , with the condition
0631618144 3422233  DACAABDACBCABAAB . (31)

We construct now Horner’s schema.

Table 2: Horner’s schema for a double root.
1 A B C D

u 1 uA  BuAu 2 CuBuAu  23 0
u 1 uA 2 BuAu  23 2 0

The other roots result from   0232 22  BuAuuuAu which must have two negative roots, distinct and

differing from u , wherefrom result the conditions     02342 22  BuAuuA , 02  uA ,

023 2  BuAu ,   uuA



2

2 . Writing the relation (31) in the form 021  EuE , the notations

being obvious, one also obtains the condition 0
1

2 
E
E .

In the case of a triple root, let us denote this root by u ; then, it must verify the conditions
0234  DuCuBuAu , 0234 23  CuBuAu , 036 2  BuAu , (32)

Multiplying the second relation (32) by 3, the third one by u2 and summing, one obtains the equation
0343 2  CuBuA . (33)

Summing now the last relation (32), multiplied by A , to the relation (33), multiplied by 2 , it results

  0683 2  CABuBA , wherefrom 0
83

6
2 




BA

ABCu , 083 2  BA . We construct now Horner’s schema.

Table 3: Horner’s schema for a triple root.
1 A B C D

u 1 uA BuAu 2 CuBuAu  23 0
u 1 uA 2 BuAu  23 2 0
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u 1 uA 3 0

One obtains thus the last root 03*  uAu .
In the case of the root of order of multiplicity equal to four, let be u this root. It will verify the relations

0234  DuCuBuAu , 0234 23  CuBuAu , 036 2  BuAu , 04  Au , wherefrom

0
4


Au ; it results DCuBuAuuAu 





  234

4

4
, wherefrom

8
3 2AB  ,

16

3AC  ,
256

4AD  .

In the case of two double roots, let be 0u and 0u the two double roots. One may write

   22234 uuuuDCuBuAuu  , wherefrom  uuA  2 ,  2uuB  ,  uuuuC  2 ,

 2uuD  , 0A , 0B , 0C , 0D . It results that u and u are solutions of the equation

0
2

2  DzAz , i.e. DAAz 16
2
1

4
2

2,1  , obtaining thus a new condition DA


256

4
. Denoting now

DAAu 16
2
1

4
2  , DAAu 16

2
1

4
2  , it results

2
Auu  , Duu  ,   BAuu 

4

2
2 ,

  CDAuuuu  2 .

5. DISCUSSION

Let  iu , 0 , 0 be a root of the equation (23), which will be written in the trigonometric form

  sinicosuu , wherefrom 





 





2

sini
2

cos2
1

uu or 













 








 



2

sini
2

cos2
1

uu .

Let us remark that, irrespective of the value of  , wet get either   02cos  , or   02cos  , hence the
equation (21) will have at least a root with positive real part, i.e. the position of equilibrium is unstable. Let us

consider now that a root of the equation (23) is of the form  iu , 0 , i.e. 
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u , hence at least a root of the characteristic equation (21) has its real part

positive, so that the equilibrium is unstable.The case 0 , 0 leads to the root 0u , wherefrom it results
that 0 is a double root of the characteristic equation (21). The linear approximation of the motion around the
position of equilibrium will contain a term of the form Kt , where K is a constant, hence the equilibrium is
unstable too. Thus, the only possibility of stability of equilibrium is that described by the fact that all the roots of
the equation (23) are negative. If such a root 0u is double, then for the characteristic equation, one obtains the

double roots ui1  , ui2  . Each such root leads, in the linear approximation of the motion around the

position of equilibrium, to terms of the form  2sin tuKt  ; the equilibrium is unstable too. Hence, it results
that the equilibrium is stable (in fact, simply stable) if and only if the four roots of the equation (23) are negative
and distinct.

6. NUMERICAL COMPUTATION

One obtains the values 240011 a , 40013 a , 333.5314 a , 240022 a , 40023 a , 333.5324 a ,

667.2631 a , 667.2632 a , 333.5333 a , 4041 a , 4042 a , 16044 a ,
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667.2671 j , 667.2672 j , 333.5373 j , 4081 j , 4082 j , 16084 j . The stability diagrams are
plotted in Figs. 3, 4 and 5. One has to consider two branches for 01  . The first branch is given by
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and the second one by
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.

They exist only if the expression under the radical is positive. The two branches start from the same point for
which the expression under the radical vanishes. The first branch may lead, for values of 1 sufficiently close to
zero, to negative roots 11 , fact which is not in concordance with the hypothesis that all the springs are
compressed. The branch contains simply stable positions of equilibrium and is presented in Fig. 3. The second
branch leads to solutions valid for any 01  . Moreover, these solutions define simply stable positions of
equilibrium. For 01 , one obtains 12 . This branch is presented in Fig. 4. If 01  , then we have to

consider only one branch, described by
1
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. This branch leads to 1

for 01 too. It is presented in Fig. 5. If 01  , then one obtains the linear case described by

1

2
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1
2

k

gmm 

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

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 , which is a simply stable position of equilibrium. Obviously, the stability diagram in the

general case is much more complicated and to draw it one must take into considerations all the possibilities of
compression or expansion of the springs. Moreover, because the function which describes the elastic force in the
nonlinear springs is not an odd function, the situations to be studied cannot be obtained one of the other by
simply changes of sign. The diagrams which are presented are only parts of the stability diagram of the
considered mechanical system.
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Figure 3: The first branch of stability described by 11 for 01  .
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Figure 4: a) The second branch of stability described by 12 for 01  ; b) detail of this branch.
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Figure 5: a) Branch of stability described by 1 for 01  ; b) detail of this branch.

7. CONCLUSIONS

In this paper we analyzed the dynamics of a half of automobile with quadratic nonlinear springs. We determined
the equilibrium positions and we studied the stability of them in the case of all compressed springs. For the
particular numerical application we also draw the stability charts.
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