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Abstract: In this paper is discussed a half of automobile suspension with nonlinear springs for which the elastic force is
given by a quadratic function with respect to the elongation. Assuming that both linear elastic and nonlinear elastic elements
are compressed one obtains the equilibrium positions for such a suspension and one discusses the stability of these
equilibriums. Finally, a numerical application is presented and the diagrams of stability function of the coefficient of the
nonlinear force are plotted.
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1. INTRODUCTION

Let be the system in Fig. 1 (the schema of half of an automobile), formed by two equal masses m; and a mass
m, . The nonlinear springs (denoted by %, €, ) give an elastic force

F, =k12+8122 (1)
where z is the elongation.
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Figure 1: The system. Figure 2: Isolation of the rigid bodies.
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The system moves in a vertical plane, the rotation of the bar of mass m, (denoted by ¢ ) being considered
sufficiently small to may admit the approximations sin@ = ¢, cos¢=1. Let us suppose that both the nonlinear

and the linear springs are contracted. Determine: the positions of equilibrium; their stability as function of the
parameter €, assuming that k;, k,, m;, m, are known. Numerical application: m, =50kg, m, =750kg,

[=2m, ky =20000Nm™", k, =10° Nm™", J = [m2(21)2 ]/12 =1000 kgm?, g =9.8065ms ~.

2. EQUILIBRIA

The equations of equilibrium read
2 2
€1Xjo +kixpo _kz(xso +1o, _xlo)_mlg =0, &x3 +kxy _kz(xm —lo, _x20)_m1g =0,

(2)
kz(x30 +1o, —x10)+k2(x30 —lg, _xzo)_ng =0, kzl(x3o —lo, —x20)+k21(x30 +1o, —xlo): 0.
where the index 0 corresponds to the position of equilibrium. The above equations may be put in the form
81)‘120 + (kl +k, )xlo —kyx30 —kylog =mg, (3)
&30 + (ky + ey o — ks + hylpg =myg “4)
—ky Xy —kyXag +2ky x50 =my g Q)
X109 — X0 — 219y =0. (6)
From the relation (6), one obtains
X10 ~ X290
= —_—— , 7
Do N (7
which, replaced in the relations (3) and (4), leads to
k
gpxiy + (k) + ke, 10 — ey —72("10 —xy0)=mg, (®
k
glxgo + (kl +k, )xzo —kax30 + 72 (xlO — X0 ) =mg. ©)
From (5), we get
myg | Xj0 T Xy
Xyg = —= + ——=2
0 on T 2 (10)
Subtracting the relations (8) and (9), term by term, it follows that sl(xlzo —xfo )+ k (xlo —Xzo): 0, wherefrom it
results
x10=x20 or xlo +x20=——1. (11)

€

If x,q=x,y, then from (7) one obtains ¢, =0, so that from (10) one gets x3, =’Z¢kg+x10 =%+x20. If
2 2

. k k .
Xjg+%y =—k /g , then we may write xw:—g—l—xzo, xzoz_g_l_xlo- The relation (10) leads to

1 1

X309 = mg _k_ , while from (7) one obtains ¢, = Hio +L , ® L . The equation (8) takes now the
2k,  2g I 2lg [ 2
form
kik m
31x120+(k1—kz)xlo—ﬁ—(mﬁr—z)g:o, (12)
2g, 2
while the equation (10) becomes
kik m
81x§o+(k1_kz)xzo_#_[mﬁr_zjgzo- (13)
2g, 2
As a matter of fact, the equations (12) and (13) are the same. The discriminant of these equations is
2, .2
A=k + k3 +4de, [ml +%j g and the condition A >0 leads to the inequality g, > —ﬂ. The sum of
4(m1 + nézjg
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the roots of the equation (12) (of the equation (13) too) is S = kky # _k , which means that the position of
€ €
equilibrium (if it exists) is given by
ky —ky —~A key =k A
Xjo =X == O Xg=Xp=—"_— .

2g, 2¢,

As x;0>0, x>0 (the springs are compressed), from x,, +x,, ==k, /¢, it results & <O0. It results, from the

(14)

first equality (14), that k, = A , wherefrom k7 +k2 + 481(m1 +%j o=k, ie.

K
HETTTT N (15)
4(m1 + mz] g
2
which verifies the inequalities (xxiii) and € <0 too. It results the position of equilibrium
ky
Xjp =Xy =—">0,

0= Y20 =75 (16)

g, being given by (15). For the second equation (14), one obtains %, :—JZ , which is absurd. Let us remark
that (16) is a particular case of the first relation (11), hence at equilibrium x;, = X, .

3. EQUATIONS OF MOTION

Using the schema in Fig. 1, these equations read
. 2 . 2
mXx, = kz(x3 +lp—x )—klxl —gx{ +mg, mx, = kz(x3 —lp— xz)— kyx, —gx; +myg,

. . (17)
. . . . . € k +k
Denoting x; =§&;, x, =&, x3=&;, =&, x,=8&, 5, =&, 13=&;, ¢=&;, am:_m_l, an=- lm 2,
1 1
kol ki +k k k1 k k 2k
a3 =2, ayy ==, a20=_8_1’ apn=- 125 LAy ==, Gy ===, ay =, Ay =, A=,
m, m, m, m m m m, m, m,
kyl kyl 2,1
Ay =—=—, Qg =——=, dyg =— ,
a= 4 7 44 7
one obtains the system
€ =85, 8 =8, 8 =87, &4 =8, & :aloélz+a11§1+a13§3+a14§4+ga (18)

: 5 ) )
€6 =308 + a8, +ax383+ay€u + 8, &7 = a31§ +apk, a5+ g, &g =ay &) +au; +auty.

4. STABILITY OF THE POSITIONS OF EQUILIBRIUM

Denoting by fk(c‘;l,...,ig), k=l,_8, the expressions of the right member of the relations (18) and by

Ju =00 /%€, , k1= 1,_8 , their partial derivatives, it results the characteristic equation

-~ 0 0 0 1 0 O
0 -~ 0 0 0 1
0 0 -A 0 0 O
0 0 0 -A 0 O

. . . =0, (19)
Jsi 0 Js3 jsa =X O

0 Joo Jos Jea O —2
Jn Jn Jjz 00 0 A
Jst Je2 0 Jjgu 00 0 A

S O O = O

0
0
0
1
0
0
0

wherefrom
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. 2 . .
Js1— K 0 Js3 Js4
. 2 . .
N Joa |

J Jn =N 0 @0
Js1 Js2 0 Jga—N
One obtains the algebraic equation of eighth degree in A
BrA+B +CV+D=0, 21
where
Amm o o] B = jerJ73 + JeaJsa + J13J3a — Jeaz2 — Je3im2
siTJe2 " i T s L
+UsiJea T JsiJ73 t Jsisa — Js3J71 T Jsads o
C=—Jerjr3lsa *+ JeaJrzisa + JesJratsa = JsiJerJr3 = JsiJertsa = Jsiimsisa + Jsijeatsz 22)
T Us1Je3J2 T JssJe2 1t Js371)sa T Jsadeadst T JsaJ73)81 5
D = jsijerrsisa = JsiJeadr3lsz = JsiJesJraisa + Js3Jeada1isa = JssJeatr2s1
= Js3JexJ11sa — JsaJe2 1381 — Jsadesinise + Jsate3 12 s1 -
The equation (21), with the notation u = A?, may be written in the form
u*+ A’ + Bu* +Cu+D =0 (23)

and, for the position of equilibrium be stable, it is necessary and sufficient that all the roots of the equation (23)
be negative and distinct (see Discussion). It may occur following situations: the roots are distinct; a root is
double; a root is triple; a root is of an order of multiplicity equal to four; two roots are double.

In the case of distinct roots making « > —u in the equation (24), one obtains u — Au + Bu®> ~Cu+D =0 and,
from Descartes’s theorem, one deduces the necessary condition of existence of four negative roots 4 >0, B>0,
C>0, D>0. We construct the Sturm sequence associated to the polynomial

fu)=u*+ A4u® + Bu® + Cu+D. (24)

34 B o .
We choose fy(u)=u®+Au’ + Bu> +Cu+D, f,=u’ +Tu2 o +%. Dividing f, by f,, one obtains the

8B-34° , 6C—-A4B 16D—-AC
u”+ u+
16 8 16
opposite case, R, would have a degree at most equal to 1 (like the polynomial f, in the Sturm sequence) and

remainder R, = . One obtains that is necessary that 88—34% =0 in the

would result only four terms in the Sturm sequence ( f,, f;, f, and f; (the last being a constant)), so that in
the sequence fo(—oo), f1(— ®), f, (— ), fi(- oo) we would have at most three variations of sign. It would
result that the equation (23) has at most three negative roots, which is not convenient. As a conclusion, it results
the necessary condition 8B—3A4% # 0. Writing now R, = —ayu’ —Bhu —v, , we may choose the following term
By _2(6C-4B) vy 16D-AC

of Sturm’s sequence in the form u)=u®+Bu+7y,, where = .
1 falu)=u 4By, b= T s W s

o . . B 3
Dividing now f; to f,, one obtains the remainder R;=-fju—v5, where 13%:72_5“‘32(2‘4_52}

4 4
16D-AC B 2(6C—AB){3 2(6C—AB)} . v .
-——+ —A—-———1#0. We choose f;(u)=u+vy,, with y; =— . By dividin,
88-34 2 8B-34> |4 8B-34° flu)=urs T e /2
by f;, it results the remainder R, =y, —y3(B2 - y3) and the polynomial f, (u): y3([32 -3 )—y2 , which must be
nonzero (the roots are distinct!), wherefrom one obtains the condition

Yy = < + yz[zA - sz . Similar considerations lead to the condition f5#0, wherefrom

_i"‘}’z[iA_Bz] _§+Y2(3A_sz
I T [ 1,20, 25)
“Dapo Ay || v DB S A

Y2 2+Bz 4 2 275 TPy

One may construct following table.
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Table 1: Table of the variations of sign in the Sturm sequence.

u fo fl fz f3 f4 Wy

—0 + - + - sgnf, | 3or4
0,1,2

+ + > 1

0 sgny, sgnys sgn f or 3

The only possibility to have four negative distinct roots is that Wg(-c0)=4 and Wg(0)=0, wherefrom there
result the conditions f, >0, y, >0, y;>0.
If the polynomial f (u) given by (24) has a double root, let be u , then u is a root for the derivative f '(u) too,

i.e.

ut+ Ai® +Bu? +Cu+ D=0, 4> +34u* +2Bu+C=0. (26)
The relations (26) multiplied by 4 and —u , respectively, summed, lead to

A’ +2Bu* +3Cu+4D=0. @7
We multiply now the second relation (26) by 4, the relation (27) by —4 and make the sum, obtaining

(342 -8B+ (24B-12C)i + AC-16D = 0. (28)

Summing the relation (27), multiplied by (8B—3A2), with the relation (28), multiplied by Au , one gets the
relation

(482 + 42B-34C)a> +(6BC—24°C—44D)i + D3.4> ~8B)=0. (29)
Multiplying the expressions (28) and (29) by (4B2 —A’B- 3AC) and (8B -34* ), respectively, and summing the
results thus obtained, one gets

(8AB3 —24°B* -284°BC+36A4C* —324BD—64*C+ 12A3D)7

+44B*C— A’BC-34°C* ~128B>D +644>BD+484CD-94*D =0

wherefrom it results u , with the condition

44B — A’B? —144’BC +18A4C? —16ABD -3A4*C+64°D #0. (31)
We construct now Horner’s schema.

(30)

Table 2: Horner’s schema for a double root.

1 A B C D
u 1 A+u W+ Au+B | Wi +Aut+Bu+C 0
u 1 A+2u | 3t +24u+B 0

The other roots result from u? + (4 + 2L7)u +3u? + 24 + B=0 which must have two negative roots, distinct and
differing from @, wherefrom result the conditions A =(4+2u) - 4(352 + 240+ B)> 0, A+2u>0,

A+2i) A

3’ +24u+B>0, _( > #u . Writing the relation (31) in the form FEu +E, =0, the notations

being obvious, one also obtains the condition ?2 >0.
1

In the case of a triple root, let us denote this root by u ; then, it must verify the conditions

'+ A’ +Bu* +Cu+D=0, 44> +34u’ +2Bu +C=0, 6u’+34u +B=0, (32)
Multiplying the second relation (32) by 3, the third one by — 27 and summing, one obtains the equation

34u” +4Bu +3C=0. (33)
Summing now the last relation (32), multiplied by 4, to the relation (33), multiplied by -2, it results
6C— AB

VEIRY: <0, 34% -8B # 0. We construct now Horner’s schema.

(342 -8BJi + 4B-6C =0, wherefrom 7 =

Table 3: Horner’s schema for a triple root.
1 A B C D

A+ u’+ A +B u’+ A’ +Biu +C 0
1 A+2u 3u’+24u +B 0

S =
—_
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A+3u 0

=)
—_

One obtains thus the last root u” =-4—3u <0.

In the case of the root of order of multiplicity equal to four, let be u this root. It will verify the relations
U+ Aw’ +Bu’ +Cu+D=0, 4u’+34u’+2Bu+C=0, 6u’+34u+B=0, 4u+A=0, wherefrom
— 4 2 3 4
L7=—£<O;itresults u+ﬁ :u4+Au3+Bu2+Cu+D,wherefrom Bzi,CzA—,DzA—.

4 4 8 16 256

In the case of two double roots, let be #<0 and # <0 the two double roots. One may write
w + 4w’ + Bt +Cu+D=(u-u V(- f, wherefom A=—20a+ii), B=(+u), C=—2uulu+u),
D= (L_tﬁ)z , A>0, B>0, C>0, D>0. It results that # and u are solutions of the equation

A . Al (o = oA ,
2 +Ez+\/5=0, ie. zj, =—Zi5 A2 -16VD , obtaining thus a new condition E> D . Denoting now

2
ﬁ:—;+%\/142—16\/5, ﬁ:—%—%\/#—m\/ﬁ, it results ﬁ+§:—§, i =D, (ﬁ+§)z=AT=B,

—duu(ii+i)= 4D =C.

5. DISCUSSION

Let u=a+if, a#0, B#0 be a root of the equation (23), which will be written in the trigonometric form
3 o .. 6 3 0 0

u= |ﬁ|(c0s6+isin 0), wherefrom A=u2 = |ﬁ|(cosz+isin5j or A=u?= |L7|{cos(5+nj+isin(3+nﬂ .

Let us remark that, irrespective of the value of 0, wet get either cos(6/2)> 0, or cos(8/2+m)>0, hence the
equation (21) will have at least a root with positive real part, i.e. the position of equilibrium is unstable. Let us

consider now that a root of the equation (23) is of the form w =i, p=#0, ie. 17:|B|(cosg+isingj or
1 1
17:|B| cos3—n+isin3—7t . We deduce A=u?-= |B| cos~+isin> | or A=u?= |B| cos3—n+isin3—TE or
2 2 4 4 4 4

1
A=u?= |B|(cos%t+isin%[j, hence at least a root of the characteristic equation (21) has its real part

positive, so that the equilibrium is unstable.The case oo =0, B =0 leads to the root u =0, wherefrom it results

that A =0 is a double root of the characteristic equation (21). The linear approximation of the motion around the
position of equilibrium will contain a term of the form Kr¢, where K is a constant, hence the equilibrium is
unstable too. Thus, the only possibility of stability of equilibrium is that described by the fact that all the roots of
the equation (23) are negative. If such a root # <0 is double, then for the characteristic equation, one obtains the

double roots A, = i1,|17| , Ay = —i1l|17| . Each such root leads, in the linear approximation of the motion around the

position of equilibrium, to terms of the form Kl1,|l/7| sin(nt/ 2); the equilibrium is unstable too. Hence, it results

that the equilibrium is stable (in fact, simply stable) if and only if the four roots of the equation (23) are negative
and distinct.

6. NUMERICAL COMPUTATION

One obtains the values a;, =—2400, a;=400, a,,=53333, ay, =-2400, a,; =400, a,, =—53.333,

4y =26.667, a3, =26.667, ay;=-53.333, a, =40, a,=-40, a, =-160, aw:—;—é, am:—;—é,
j51=—%—2400, sy =400, s, =53.333, j62=—8'2§_2 —2400:—85—‘21—2400, o3 =400, jou =—53.333,
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J71 =26.667, j;5, =26.667, j,;;3=-53.333, j5; =40, jg, =—40, jg, =—160. The stability diagrams are
plotted in Figs. 3, 4 and 5. One has to consider two branches for g <0. The first branch is given by

ky —k, +\/k12 +k2 +4al(m1 +W;2]g ky —k, —\/kf +i2 +481(m1 +”;2jg

S = 2g, 2g,
They exist only if the expression under the radical is positive. The two branches start from the same point for
which the expression under the radical vanishes. The first branch may lead, for values of ¢, sufficiently close to

and the second one by &, =

zero, to negative roots &, fact which is not in concordance with the hypothesis that all the springs are

compressed. The branch contains simply stable positions of equilibrium and is presented in Fig. 3. The second
branch leads to solutions valid for any &, <0. Moreover, these solutions define simply stable positions of

equilibrium. For ¢ — 0, one obtains &;, — o . This branch is presented in Fig. 4. If g, >0, then we have to

ky—k, +\/k12 +2 +481(m1 +”;2]g

2g;

for ¢ -0 too. It is presented in Fig. 5. If g =0, then one obtains the linear case described by

ny
m+—=|g
gon  2)
1 3
general case is much more complicated and to draw it one must take into considerations all the possibilities of
compression or expansion of the springs. Moreover, because the function which describes the elastic force in the
nonlinear springs is not an odd function, the situations to be studied cannot be obtained one of the other by

simply changes of sign. The diagrams which are presented are only parts of the stability diagram of the
considered mechanical system.

consider only one branch, described by &, = . This branch leads to & — o

, which is a simply stable position of equilibrium. Obviously, the stability diagram in the
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Figure 3: The first branch of stability described by &,;; for ¢, <0.
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Figure 4: a) The second branch of stability described by &;, for g, <0; b) detail of this branch.
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Figure 5: a) Branch of stability described by &; for g, > 0; b) detail of this branch.
7. CONCLUSIONS

In this paper we analyzed the dynamics of a half of automobile with quadratic nonlinear springs. We determined
the equilibrium positions and we studied the stability of them in the case of all compressed springs. For the
particular numerical application we also draw the stability charts.
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