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Abstract. The design of a vehicle suspension system starts with very few input data. Simple models
are used during initial simulations in order to ensure the wanted compromise between the comfort
and dynamic performance qualities, at different vehicle speeds and loads. That stage leads to the
setup on model of the needed suspension parameters, principally the stiffness of suspension spring
and tire and the damping coefficient.

In an algorithmic way, this paper summarizes actual design recommendations existing in the
field of vehicle suspensions. Based on the procedure in this article, a computer program was
implemented in the MDesign software.

Introduction

The main functions of the vehicle’s suspension system are: fo cushion the shocks transmitted
from the ground to the bodywork; to dampen the oscillations of the body and wheels; to control and
limit the relative wheel-body positions, in order to optimize the wheel-ground interactions and to
protect the parts that connect the rolling system with the drivetrain and body.

The functions of a passive suspension are realized by elastic elements, shock absorbers and
guiding mechanisms. The cushioning function is done by the elastic elements (suspension springs,
tires, anti-roll bars and bushings), able to store the energy of the mechanical shocks (induced by the
ground unevenness) and to release that later, in a longer time interval. This way, the forces
transmitted to the body and, consequently, its accelerations will be smaller.

The damping function of a passive suspension is realized mainly by the shock absorbers and, in
a smaller measure, by the fires and bushings. These dampers generate frictional forces opposing to
the relative body-wheels movements, consuming so the kinetic energy of the mechanical system
and leading to the decrease of the oscillations amplitude.

The aim of this work is to give the main directions to be followed during the earliest design
stages of passive suspensions, or, in other words, to indicate the main steps needed to be done when
the design starts from scratch.

The main characteristics of a real suspension (firstly the stiffness of the spring and the damping
coefficient of the shock absorber) will be adopted with respect to the results obtained after the
simulation based on mathematical models.

Quarter-Car Model of Suspension

To understand the world, the humans imagined models. The models are representations,
simplifications, abstractions, conceptualization and interpretations of reality (dictionary definition
of model: “theoretic or material system which can be used to indirectly study the properties and
transformations of another more complex system, that presents analogies with the first system”).
The simulation is the process of models creation and logical manipulation in order to decide how
the real world works.



The study of the low-frequency vertical oscillations can be realized with simple models,
considering the vehicle as a system consisting in more undeformable bodies connected by massless
springs and dampers [1], [2], [3].

Based on the principle that the best model is a simple one ensuring good results, the most often
adopted model for the study of vehicle’s ride behavior and quality is the so-called “quarter-car
model” or “vehicle-corner model” [1], [2], [4], [3], [5], [6], [7]. This includes only two elements
with concentrated inertial properties: one for a wheel and the other for the part of the body
supported by that wheel. Because, generally, the up-and-down movement presents most interest,
only the mass properties of those inertial elements will be considered (neglecting the moments of
inertia involved in rotations) and only one DoF, the vertical translation, will be taken into account
for each body (one renounce to the other five DoF).

The result is the model presented in Fig. 1, with a sprung mass (the vehicle body) and an
unsprung mass (the wheel). The body is linked to the wheel through massless spring and damper,
while the tire (represented here as a spring-damper combination) makes the connection between the
wheel and the ground. This model is suited for frequencies up to 30 — 50 Hz, that are over the
natural frequency of the unsprung mass.
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Fig. 1. Ride “quartet-car model” with two DoFs (vertical translation of wheel and body)

The excitation of the system is the force induced by the irregularities of the ground (road)
surface. Thus, zr is the elevation of the surface profile (considered as function of the distance
traveled by the vehicle) and z represents the vertical velocity of the tire at the ground contact point
(which is the slope of the profile multiplied by the forward speed of the vehicle).

The reference system is usually adopted in two variants: having a single origin (displacement
z=0) for ground, wheel and body or having separate origins for the ground and masses. In that
second case (Fig. 1), the positions z;=0 will correspond to the equilibrium positions, that must be
previously calculated. This way, the gravitational forces of wheel and body will not appear
explicitly in the movement equation.

By applying the Newton's second law to the sprung and unsprung masses, the system’s equations
of motion can be obtained:

mg- Zg = Fis + Fo - Ws ¢y
mw - Zw = Fir - (Fs + o) - Wiv
in the case of the absolute coordinate system, respectively
mg-Zg = s+ o (2)
mw - Zw = Fr - (/5 + D)
in the case of the relative coordinate systems, with origins at the static equilibrium positions.
Here, the indices w, B, s, p and t stand respectively for wheel, body, spring, damper and tire; so,
my and mp are the lumped masses of the wheel and body; Ww and Wp are the weights of the wheel

and body; F is a force produced by spring or damper or tire. From the comparative study of the
equations (1) and (2) it results:

F=Fs- W and Fr=Fr- Wi - We = Fir - Wi, 3)



where Wi, = Ww + Wiy is the total weight of the vehicle “quarter”.

Special attention must be payed to this aspect, because else confusions may exist and wrong
results may be obtained.

The forces Fr, F's and Fp depend on displacements z, on velocities Z and, possibly, on time ¢.
Normally, these functions are (highly) unlinear. In these conditions, the solving of the equations
system (2) may represent a difficult task and can be realized in the general case only by
approximate numerical methods [3].

Exact solutions for the equations system (1) or (2) were obtained only for linear functions F. For
that reason, the assumption of linear equations systems is generally considered, in order to simplify
the study of vehicle vibrations [1].

To approximate the actual non-linear equations system with a linear one, the spring
characteristics (force vs. deflection) are approximated by a straight line in the range of operation,
while the damping, which contains both hydraulic and dry (Coulombian) friction components, will
be approximated with a viscous damping. More precisely, one considers that: the spring force Fy is
proportional with the spring deflection zw — zg; the damper force Fp is proportional with the relative
speed of the damper ends Zw — Zg; the tire force Fr has an elastic component, proportional to the
tire deflection zgr — zw, and a viscous friction component, proportional to the speed of the tire
deflection Zr — Zw.

With these explanations, the system of equations (2) takes the well-known shape [1], [2], [3], [5],
[6], [7]:

mg- Zp = ks-(zw - z8) + o (Zw - ZB) (4)
mw- Zw = kr (R - zZw) + cr'(Zr - Zw) - ks (2w - ZB) - »-(Zw — ZB)

where the constant values ks and kr are the stiffness coefficients of the model’s spring and tire,
whille ¢p and cr are the viscous damping coefficients of the model’s damper and tire.

It must be noted that the study of the oscillations based on simple models, including only lumped
masses (rigid bodies) and linear springs and dampers, can be made only for small amplitudes,
because only in this case a linear approximation with sufficient precision can be achieved for those
nonlinear elements. Also, it must be remembered that the tire-ground force is a contact force, which
means it is absolutely necessary that 17> 0 or Fr > -W, (if the tire leaves the ground, no force will
act on the tire tread).

Estimation of the Quarter-Car Model Parameters

In the predesign stage of the suspension, the number of known input data is very small.
Fortunately, few parameters are needed to solve the linear equation system (4).

A possibility for the initial approximation of the needed data it is presented further.

Knowing the mass my, sustained by the wheel, and adopting statistical proportions, the masses
my and mp can be approximated. Books as [1], [2], [S] or OEMs statistics as [8] indicate that the
mass of the wheel myw represents 10...15% of the total mass m (smaller percentages for cars with
non-driving wheels and independent suspensions and larger percentages for heavy vehicles with
driving and rigid axles).

In the same books it is also mentioned that the tire’s stiffness is about 10 times bigger (or more)
as the spring’s stiffness (kr = 10-ks), while the damping coefficient ratio of the tire and damper has
an inversed value (ct= 0.1-¢p). More than that, in some works (as [2] and [5]) it is indicated that the
tire’s damping is small and its influence can be neglected (cr = 0), mainly in the early stages of the
suspension design.

Taking the movement equation of the body in the system (1) and considering the vehicle at rest,
it results:

Fs=ks- dsst = Wo=mmp- g (5)

which permits to calculate the model’s spring stiffness ks if one knows the static deflection of the
spring dsg. In [2] it is recommended for cars a mean value dss=254 mm.



These method is in fact equivalent with the one in which the natural frequency of the body,

—®Bn _ 1 /ﬁ
fin = 2 2m~lmp’ (6)

it is adopted, because this also allows to calculate the model’s spring stiffness:
ks = i (21 fon)2. (7

For street cars, the recommended value of the natural frequency fg, (in the absence of damping)
is about 1...1.5 Hz [1], [2], [5]. This corresponds to the walking frequency, at which the humans
resist better in standing position. More stiff suspensions are used for race cars, and the natural
frequency can be in the range 2...2.5 Hz [5] or even can reach 3 Hz [9]. That means, if compared
with a street car, the springs of a race car may be 9 times stiffer!

Replacing ks/mp from the equations (5) in the equations (6) it results the relationship between the
static deflection of the spring ds and the natural frequency of the body fgn:

_ g
s = @rfpn)?’ ®)

The natural frequency of the wheel, also called wheel hop frequency, will be influenced both by
the stiffness of the spring and tire (ks and k), because the two springs are working in parallel:

—Qwn _ 1 /M
ﬁNn— 2m 2m my ) (9)

If one notes with ix=kr/ks the ratio of the tire and spring stiffness and with i,,=mw/mg the ratio of
wheel and body masses, then, using equations (6) and (9), the wheel hop frequency can be
calculated versus the body’s natural frequency:

1+ig

fvn = fn- (10)

For example, if ix=10 and i,,=1/9, then the wheel’s natural frequency will be 9.95 times bigger as
the body’s natural frequency.

The last input data necessary to completely define the quarter-car model is the coefficient of
damping cp. This value can be estimated on the base of the damping ratio, defined as

B = e 1D

The damping ratio equal with the unit, {p = 1, it is named critical damping ratio. Smaller values
of the damping ratio, &p < 1, will still permit relative body-wheel oscillations, while bigger values,
¢p > 1, will cancel the oscillation (after excitation, the body will approach asymptotically the static
equilibrium position).

It should be mentioned that the suspension’s damping ratio (provided mainly by the shock
absorbers) is usually in the range of 0.2...0.4 for street passenger cars [1], [2], [5], while values of
0.8...0.9 are frequently found at the race cars [9].

Adopting such a value for the damping ratio, the coefficient of damping cp can be calculated
based on the equation (11) and now the “quarter-car” model is fully defined.

Starting for the system of movement equations (4), the transmissibility functions of the model
(which are also the transfer functions, because the mathematical model of the “quarter-car” is
linear) can be now written (as in [10] or [4]), calculated and graphically represented (as in the Figs.
2 and 3). Based on the transmissibility functions, the input data of the model can be changed so that
the ride behavior to correspond better to the requirements (comfort, road holding or a combination
of both).

The ground-body transmissibility of the accelerations (the ratio of the maximum acceleration of
the body and the maximum acceleration of the ground [2]) is given by the equation



k1k2+i kl cCw
X w*—[k1+ky(1+))|w2+k ky+i [k1c w —(1+)) c w3]

Tan(w) = (12)
where y = mw/mp is the ratio of the unsprung and sprung masses; k1=kr/mg, ka=ks/mp and c=cp/mp
are the tire stiffness, spring stiffness and damper coefficient divided by the body mass.

That function is often used to characterize the suspension, because it indicates how the ground
irregularities are felt into the vehicle body. Generally, for typical passenger cars the peak value of
this amplitude ratio is in the range of 1.5...3 (in Fig. 2 a ratio of 2.2 can be observed), while for
typical heavy trucks the peak value is dependent on the road and operating conditions, but in the
worst case may reach levels as high as 5 or 6 [2].

The ground-body transmissibility of the accelerations is very sensitive to the damping level and
so it can be controlled through a well-choose damping ratio s.

For a comfortable ride, the acceleration of the sprung mass must be kept to a minimum. Because
that, a reasonable way to optimize the suspension is to choose a value of damping ratio that, on the
ground-body accelerations transmissibility curve, generates a relative maximum (or at least a
stationary point) for different damping ratios at the frequency i % =+/2 - f3a [7]. On the 2 DoF
“quarter car” model, that leads to the optimal damping ratio for comfort:

_ L kr+2ks . kr+2kgs _ |ksmp [k7+2kg
&)opt— w5 /—kT =0.354 /—kT , or opt = / 2 / P (13)

where the influence of the tire’s stiffness &t is relatively small due to its value, which is bigger with
about one order of magnitude as the stiffness &t of the spring.
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Fig. 2. Plotted example of accelerations transmissibility functions for the “quartet-car model”;
all have the response at the body, while the excitations are from: ground irregularities (red);
wheel imbalance (blue); imbalance on the body (magenta)
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Fig. 3. Plotted example of tire deflection function (red) and suspension stroke function (blue)
as these result from the “quartet-car model”
Even this value of damping is effective in keeping the acceleration low in a wide frequency
range (exceeding the natural frequency of the wheel), that is not adopted always because the passive
suspension must to realize a compromise of the ride performances with the dynamical ones.



It will be mentioned here also that the peak value of the ground-body transmissibility must be
verified both for the loaded and unloaded vehicle, where the rear axle put the biggest problems due
to a larger change of the mass.

When damping is present, as it is the case of any vehicle suspension, the resonance occurs at the
true damped natural frequency

f= 30 TGt [ /T a9
where kech = kr - ks / (kr + ks) is the equivalent stiffness of the suspension (two springs in series).
Due to the relative small values of the damping ratio ¢p, the natural frequency with damping of the
street cars is a little bit bigger as the one without damping.

They are also of a big interest the tire deflection, zr-zw, and the suspension stroke, zw-zg [8].
Both can be characterized by the absolute values 7Tdger=|(zr-zw)/zr|=1-|zw/zr| and Tds=|(zw—
zg)/zr|~|zw/zr—2zp/zr| that indicate haw the amplitude of the road irregularities are producing tire
deflection and suspension stroke, Fig. 3. Bigger values as 1 will indicate amplification, while
smaller values will mean attenuation.

Conclusions

For the study of the motor-vehicle independent suspensions there are used simple dynamic and
mathematic models, mainly in the first stages of the design process. For the primary suspension set-
up, the 2 DoF “quartet-car model” is the most used, due to its good quality result-complexity ratio.

This article summarizes main aspects involved in the model simulation of vehicle suspension
behavior. Based on the algorithm presented here, a computer model was implemented in the
MDesign software [11], which may be used by automotive engineers or students to realize the
initial steps in the design of vehicle suspension.
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