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Abstract: Vibrations of heterogeneous curved beams have recently been investigated [1, 2, 3]. The thesis and papers cited deal
with, among others, the issue what effect the central load has on the vibration of pinned-pinned and fixed-fixed curved beams made of
heterogeneous material. To find numerical solution, the authors determine the Green function matrices for pre-loaded beams. Then
they reduce the eigenvalue problems, which yield the eigenfrequencies as a function of the load, to eigenvalue problems governed by
a system of Fredholm integral equations. A similar investigation for elastically restrained heterogeneous curved beams is provided in
this article. The end-restraints are modeled by linear volute springs.

Keywords: Curved beams, functionally graded materials (FGM), rotational restraint, natural frequency as a function of the load, Green
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1. INTRODUCTION

Curved beams are widely used in engineering applications – let us consider, for instance, arch bridges or roof structures.
Research concerning the mechanical behavior of such structural elements began in the 19th century. The free vibrations
of curved beams have been under extensive investigation – see, e.g.: [4, 5] for more details.

Considering the vibrations of pre-loaded circular beams, the number of the available articles is much less than for the
free vibrations. Wasserman [6], for example, investigates the load-frequency relationship for spring supported inextensible
arches. The load can be dead or follower. Here, similarly as in [7], the Galerkin method was presented as an effective
way to get solutions. Chidamparam and Leissa [7] investigate the vibrations of pinned-pinned and fixed-fixed prestressed
homogeneous circular arches under distributed loads. The extensibility of the centerline is taken into account. We intend
to contribute to the literature by improving the mechanical model, extending it for heterogeneous materials and using a
numerical technique based on the Green function matrix.

2. KINEMATICAL ASSUMPTIONS & GOVERNING EQUATIONS

Figure 1. (a) Coordinate system (b) 1D model of the curved beam

We have developed a 1D beam model to investigate the vibratory problem. The curvilinear coordinate system (ξ =
s, η, ζ) is attached to the (E−weighted) centerline as shown in Figure 1. The radius of curvature R is constant there and,
moreover, the cross-section geometry and material distribution are uniform. However, the material composition and thus
the material parameters can vary over the cross-sectional coordinates η, ζ as long as axis ζ is a symmetry axis both for the
geometry and for the material distribution. Therefore, it is possible to model homogeneous, functionally graded (FG) and
even multi-layered beams, considering each material component to be linearly elastic and isotropic.
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The centerline intersects the shown cross-section at C, whose location can be found by fulfilling the definition that the
E-weighted first moment of the cross-section with respect to the axis η is zero there:

Qeη =

∫
A

E(η, ζ) ζ dA = 0 . (1)

We consider the validity of the Euler-Bernoulli beam theory for the investigations, i.e., the cross-sections rotate as if
they were rigid bodies and remain perpendicular to the deformed centerline. Let uo, wo and ϑ be the tangential, radial
displacement coordinates and the semi-vertex angle of the beam. Since the radius is constant the coordinate line s and
the angle coordinate ϕ are related to each other by s = Rϕ. The axial strain εoξ and the rigid body rotation ψoη on the
centerline can be expressed [1] in terms of the displacements as

εoξ =
duo
ds

+
wo
R
, ψoη =

uo
R
− dwo

ds
. (2)

The principle of virtual work for the beam shown in Figure 1 (b) yields equilibrium equations

dN

ds
+

1

R

[
dM

ds
−
(
N +

M

R

)
ψoη

]
+ ft = 0 ,

d

ds

[
dM

ds
−
(
N +

M

R

)
ψoη

]
− N

R
+ fn = 0 (3a)

which should be fulfilled by the axial force N and the bending moment M . Here ft and fn denote the intensity of the
distributed loads in the tangential and normal directions (f = ftet + fnen).

Recalling Hooke’s law [8], the relation between the strains and inner forces become

N =
Ieη
R2

εoξ −
M

R
, M = −Ieη

(
d2wo
ds2

+
wo
R2

)
, N +

M

R
=
Ieη
R2

εoξ , where (4)

Ae =

∫
A

E(η, ζ)dA , Ieη =

∫
A

E(η, ζ)ζ2dA , m =
AeR

2

Ieη
− 1 (5)

Ae is the E-weighted area of the cross-section, Ieη is the E-weighted moment of inertia with respect to the bending axis
while m is a geometry-heterogeneity parameter – the effect of the material distribution is incorporated into the model
through the latter one. For simplicity reasons, we introduce dimensionless displacements and a notational convention for
the derivatives taken with respect to the angle coordinate:

Uo =
uo
R
, Wo =

wo
R

; (. . .)(n) =
dn(. . .)

dϕn
, n ∈ Z . (6)

If we plug equations (2) and (4) into (3) and perform some manipulations – these are detailed in [1] – we get:[
0 0
0 1

] [
Uo
Wo

](4)
+

[
−m 0

0 2−mεoξ

] [
Uo
Wo

](2)
+

+

[
0 −m
m 0

] [
Uo
Wo

](1)
+

[
0 0
0 1 +m (1− εoξ)

] [
Uo
Wo

]
=
R3

Ieη

[
ft
fn

]
. (7)

Within the framework of the linear theory, we can freely neglect the effect of the deformations on the equilibrium (i.e.,
εoξ = 0).

In the sequel, the increments (which occur because of the vibratory nature of the problem) in the typical quantities
are identified by a subscript b. Each physical quantity can be given in a form similar to the total tangential displacement
which is equal to the sum uo + uob. Here uo is the static displacement caused by the pre-load, and uob is the dynamic
displacement increment.

It turns out that the increments in the axial strain and in the rotation have a similar structure to equations (2):

εmb = εoξ b + ψoηψoη b ' εoξ b, , ψoη b =
uob
R
− dwob

ds
, εoξ b =

duob
ds

+
wob
R

. (8)

The principle of virtual work for the increments yields the equilibrium equations – see [1] for details 1:

d

ds

(
Nb +

Mb

R

)
− 1

R

(
N +

M

R

)
ψoη b + ftb = 0 , (9a)

d2Mb

ds2
− Nb

R
− d

ds

[(
N +

M

R

)
ψoη b +

(
Nb +

Mb

R

)
ψoη

]
+ fnb = 0, (9b)

where ftb and fnb are forces of inertia:

ftb = −ρaA
∂2uob
∂t2

, fnb = −ρaA
∂2wob
∂t2

, (10)

1Thesis [1] is downloadable from the url address http://www.siphd.uni-miskolc.hu/ertekezesek/2015/KissLaszloPeter_phd.pdf
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in which A as the area of the cross-section and ρa as the average density on the cross-section. The increments of the inner
forces can be given in terms of the displacement increments via Hooke’s law:

Nb =
Ieη
R2

mεoξ b −
Mb

R
, Mb = −Ieη

(
d2wob
ds2

+
wob
R2

)
, Nb +

Mb

R
=
Ieη
R2

mεoξ b . (11a)

Substituting (8) and (11) into (9), we get the equilibrium equations in the following form:[
0 0
0 1

] [
Uob
Wob

](4)
+

[
−m 0

0 2−mεoξ

] [
Uob
Wob

](2)
+

+

[
0 −m
m 0

] [
Uob
Wob

](1)
+

[
0 0
0 1 +m (1− εoξ)

] [
Uob
Wob

]
=
R3

Ieη

[
ftb
fnb

]
. (12)

As regards the details we refer the reader to [1]. For harmonic vibrations the amplitudes Ûob and Ŵob should satisfy the
following differential equations:[

0 0
0 1

] [
Ûob
Ŵob

](4)
+

[
−m 0

0 2−mεoξ

] [
Ûob
Ŵob

](2)
+

+

[
0 −m
m 0

] [
Ûob
Ŵob

](1)
+

[
0 0
0 1 +m (1− εoξ)

] [
Ûob
Ŵob

]
= λ

[
Ûob
Ŵob

]
; λ = ρaA

R3

Ieη
α2 , (13)

where λ and α denote the eigenvalues and eigenfrequencies. The left side of (13) can be rewritten as

K [y (ϕ) , εoξ] =
4

Py(4) +
2

Py(2) +
1

Py(1) +
0

Py(0), yT=
[
Ûob | Ŵob

]
. (14)

Let r(ϕ) be a dimensionless load: rT = [r1 | r2]. The differential equation

K [y (ϕ) , εoξ] = r (15)

describes the behavior of the pre-loaded beam if the beam is subjected to a further load r given here in a dimensionless
form.

The free vibrations (εoξ = 0) of heterogeneous circular beams are governed by the differential equations[
0 0
0 1

] [
Ûob
Ŵob

](4)
+

[
−m 0
0 2

] [
Ûob
Ŵob

](2)
+

[
0 −m
m 0

] [
Ûob
Ŵob

](1)
+

[
0 0
0 m+ 1

] [
Ûob
Ŵob

]
= λ

[
Ûob
Ŵob

]
.

(16)

For rotationally restrained beams differential equations (13), (15) and (16) are associated with the following boundary
conditions:

Ûob

∣∣∣
ϕ=±ϑ

= 0, Ŵob

∣∣∣
ϕ=±ϑ

= 0, Ŵ
(2)
ob ±KγŴ

(1)
ob

∣∣∣
ϕ=±ϑ

= 0 (17)

where Kγ = kγR/Ieη is a dimensionless spring constant given in terms of kγ the spring constant. Equations (13), (17)
[(14) and (17)] determine an eigenvalue problem. The i-th eigenfrequency αi depends on the heterogeneity parameters m
and ρa; and also on the magnitude and the direction of the concentrated force Pζ . The effect of the latter one is accounted
through the axial strain it causes: εoξ = εoξ(P,m, ϑ). Here P is a dimensionless load: P = PζR

2ϑ/(2Ieη).

3. NUMERICAL SOLUTION ALGORITHM

The definition and the most important properties of the Green function matrix can be found in [4, 1]. Solution to the
inhomogeneous boundary value problem (15), (17) is sought in the form

y(ϕ) =

∫ ϑ

−ϑ
G(ϕ,ψ)r(ψ)dψ , G(ϕ,ψ) =

[
G11(ϕ,ψ) G12(ϕ,ψ)
G21(ϕ,ψ) G22(ϕ,ψ)

]
, (18)

where G is the Green function matrix and ϕ,ψ are angle coordinates.
If we write λy for r in (18), the eigenvalue problem (13), (17) is replaced by a homogeneous integral equation system:

y(ϕ) = λ

∫ ϑ

−ϑ
G(ϕ,ψ)y(ψ)dψ . (19)

Numerical solution to such problems can be sought e.g., by quadrature methods [9]. Consider the integral formula

J(φ) =

∫ ϑ

−ϑ
φ(ψ) dψ ≡

n∑
j=0

wjφ(ψj), ψj ∈ [−ϑ, ϑ] , (20)
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where ψj(ϕ) is a vector and wj are the known weights. Having utilized the latter equation, we obtain from (19) that
n∑
j=0

wjG(ϕ,ψj)ỹ(ψj) = κ̃ỹ(ϕ) κ̃ = 1/λ̃ ∈ [−ϑ, ϑ] (21)

is the solution, which yields an approximate eigenvalue λ̃ = 1/κ̃ and the corresponding approximate eigenfunction ỹ(ϕ).
After setting ϕ to ψi (i = 0, 1, 2, . . . , n), we have

n∑
j=0

wjG(ψi, ψj)ỹ(ψj) = κ̃ỹ(ψi) κ̃ = 1/λ̃ ψi, ψj ∈ [−ϑ, ϑ] , or GDỸ = κ̃Ỹ , (22)

where G = [G(ψi, ψj)] for self-adjoint problems, while D = diag(w0, . . . , w0| . . . |wn, . . . , wn) and ỸT =
[ỹT (ψ0)|ỹT (ψ1)| . . . |ỹT (ψn)]. After solving the generalized algebraic eigenvalue problem (22), we have the approx-
imate eigenvalues λ̃r and eigenvectors Yr, while the corresponding eigenfunction is obtained via substituting into (21):

ỹr(ϕ) = λ̃r

n∑
j=0

wjG(ϕ,ψj)ỹr(ψj) r = 0, 1, 2, . . . , n . (23)

Divide the interval [−ϑ, ϑ] into equidistant subintervals of length h and apply the integration formula to each subinterval.
By repeating the line of thought leading to (23), the algebraic eigenvalue problem obtained has the same structure as (23).

It is also possible to consider the integral equations (19) as if they were boundary integral equations and apply isopara-
metric approximation on the subintervals (elements). If this is the case, one can approximate the eigenfunction on the e-th
element (the e-th subinterval which is mapped onto the interval γ ∈ [−1, 1] and is denoted by Le) by

e
y = N1(γ)

e
y1 + N2(γ)

e
y2 + N3(γ)

e
y3 , (24)

where quadratic local approximation is assumed: Ni = diag(Ni), N1 = 0.5γ(γ − 1), N2 = 1 − γ2, N3 = 0.5γ(γ +

1),
e
yi is the value of the eigenfunction y(ϕ) at the left endpoint, the midpoint and the right endpoint of the element,

respectively. Upon substitution of approximation (24) into (19), we have

ỹ(ϕ) = λ̃

nbe∑
e=1

∫
Le

G(x, γ)[N1(η)|N2(γ)|N3(γ)]dγ
[
e
y1|

e
y2|

e
y3

]T
, (25)

in which, nbe is the number of elements. Using equation (25) as a point of departure, and repeating the line of thought
leading to (22), we get again an algebraic eigenvalue problem.

4. THE GREEN FUNCTION MATRICES

Based on theses [4, 1], the Green function can be given in the form

G(ϕ,ψ)︸ ︷︷ ︸
(2×2)

=

4∑
j=1

Yj(ϕ) [Aj(ψ)±Bj(ψ)] , (26)

where (a) the sign is [positive](negative) if [ϕ ≤ ψ](ϕ ≥ ψ); (b) the matrices Aj and Bj have the following structure

Aj =

 j

A11

j

A12
j

A21

j

A22

 =
[
Aj1 Aj2

]
, Bj =

 j

B11

j

B12
j

B21

j

B22

 =
[
Bj1 Bj2

]
j = 1, . . . , 4; (27)

(c) the coefficients in Bj are independent of the boundary conditions. The columns in the matrices Yi are solutions to the
homogeneous differential equations K [y (ϕ) , εoξ] = 0. If εoξ < 0 (the concentrated force is compressive), then

Y1 =

[
cosϕ 0
sinϕ 0

]
, Y2 =

[
− sinϕ 0

cosϕ 0

]
, Y3 =

[
cosχϕ Mϕ
χ sinχϕ −1

]
, Y4 =

[
− sinχϕ 1
χ cosχϕ 0

]
. (28)

However, Y3 and Y4 are different when mεoξ > 1:

Y3 =

[
coshχϕ Mϕ
−χ sinhχϕ −1

]
, Y4 =

[
sinhχϕ 1
−χ coshχϕ 0

]
, M =

m+ 1

m(1 + εoξ)
. (29)

Consequently we should deal with these two loading cases separately.
The Green functions matrix if εoξ < 0. Let us now introduce the following notational conventions

a =
1

B1i, b =
2

B1i, c =
3

B1i, d =
3

B2i, e =
4

B1i, f =
4

B2i . (30)
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It follows from the structure of the solutions Y`, (` = 1, . . . , 4) that
1

B2i =
2

B2i =
1

A2i =
2

A2i = 0. The systems of
equations for the unknowns a, . . . , f can be set up by fulfilling the continuity and discontinuity conditions the Green
function matrix [4, 1] should meet if ϕ = ψ. Therefore, if i = 1, we have

cosψ − sinψ cos (χψ) Mψ − sin (χψ) 1
sinψ cosψ χ sin (χψ) −1 χ cos (χψ) 0
− sinψ − cosψ −χ sin (χψ) M −χ cos (χψ) 0

cosψ − sinψ χ2 cos (χψ) 0 −χ2 sin (χψ) 0
− sinψ − cosψ −χ3 sin (χψ) 0 −χ3 cos (χψ) 0
− cosψ sinψ −χ4 cos (χψ) 0 χ4 sin (χψ) 0




a
b
c
d
e
f

 =


0
0
1

2m
0
0
0

 , (31)

from where we get the constants as

a =
1

B11 =
χ2

(1− χ2) (1−M)m

sinψ

2
, b =

2

B11 =
χ2

(1− χ2) (1−M)m

cosψ

2
,

c =
3

B11 = − χ2

(1− χ2) (1−M)m

sinχψ

2χ3
, d =

3

B21 = − 1

2 (1−M)m
,

e =
4

B11 = − 1

χ (1− χ2) (1−M)m

cosχψ

2
, f =

4

B21 =
1

2
M ψ

m (1−M)
.

(32)

If i = 2, then


cosψ − sinψ cos (χψ) Mψ − sin (χψ) 1
sinψ cosψ χ sin (χψ) −1 χ cos (χψ) 0
− sinψ − cosψ −χ sin (χψ) M −χ cos (χψ) 0

cosψ − sinψ χ2 cos (χψ) 0 −χ2 sin (χψ) 0
− sinψ − cosψ −χ3 sin (χψ) 0 −χ3 cos (χψ) 0
− cosψ sinψ −χ4 cos (χψ) 0 χ4 sin (χψ) 0




a
b
c
d
e
f

 =


0
0
0
0
0
− 1

2

 (33)

is the equation system, the solution of which assumes the form

a =
1

B12 =
1

2

cosψ

(1− χ2)
, b =

2

B12 = −1

2

sinψ

(1− χ2)
, c =

3

B12 = −1

2

cosχψ

(1− χ2)χ2
,

d =
3

B22 = 0 , e =
4

B12 =
1

2

sinχψ

(1− χ2)χ2
, f =

4

B22 =
1

2χ2
. (34)

Let α be an arbitrary column matrix of size (2× 1) The unknown scalars

1

A1i(ψ),
2

A1i(ψ),
3

A1i(ψ),
3

A2i(ψ),
4

A1i(ψ),
4

A2i(ψ) , i = 1, 2;ψ ∈ [−ϑ, ϑ]

in the matrices Aj can be determined from the condition that the product G(ϕ,ψ)α should satisfy the boundary conditions
(17). This leads to the equation system


cosϑ sinϑ cosχϑ −Mϑ sinχϑ 1
cosϑ − sinϑ cosχϑ Mϑ − sinχϑ 1
− sinϑ cosϑ −χ sinχϑ −1 χ cosχϑ 0
sinϑ cosϑ χ sinχϑ −1 χ cosχϑ 0

sinϑ−Kγ cosϑ − cosϑ−Kγ sinϑ χ3 sinχϑ−Kγχ2 cosχϑ 0 −χ3 cosχϑ−Kγχ2 sinχϑ 0
Kγ cosϑ− sinϑ − cosϑ−Kγ sinϑ Kγχ2 cosχϑ− χ3 sinχϑ 0 −χ3 cosχϑ−Kγχ2 sinχϑ 0





1

A1i
2

A1i
3

A1i
3

A2i
4

A1i
4

A2i


=

=


−a cosϑ− b sinϑ− c cosχϑ+ dMϑ− e sinχϑ− f
a cosϑ− b sinϑ+ c cosχϑ+ dMϑ− e sinχϑ+ f
a sinϑ− b cosϑ+ cχ sinχϑ+ d− eχ cosχϑ
a sinϑ+ b cosϑ+ cχ sinχϑ− d+ eχ cosχϑ

a (− sinϑ+Kγ cosϑ) + b (cosϑ+Kγ sinϑ) + c
(
−χ3 sinχϑ+ χ2 cosχϑ

)
+ e

(
χ3 cosχϑ+Kγχ2 sinχϑ

)
a (− sinϑ+Kγ cosϑ)− b (cosϑ+Kγ sinϑ) + c

(
−χ3 sinχϑ+ χ2 cosχϑ

)
− e

(
χ3 cosχϑ+Kγχ2 sinχϑ

)

 . (35)

The closed form solutions are presented in Appendix A.
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Calculation of the Green functions matrix if εoξ > 0 andmεoξ > 1. Similarly as above, we get the following equations
if i = 1 

cosψ − sinψ cosh (χψ) Mψ sinh (χψ) 1
sinψ cosψ −χ sinh (χψ) −1 −χ cosh (χψ) 0
− sinψ − cosψ χ sinh (χψ) M χ cosh (χψ) 0

cosψ − sinψ −χ2 cosh (χψ) 0 −χ2 sinh (χψ) 0
− sinψ − cosψ −χ3 sinh (χψ) 0 −χ3 cosh (χψ) 0
− cosψ sinψ −χ4 cosh (χψ) 0 −χ4 sinh (χψ) 0




a
b
c
d
e
f

 =


0
0
1

2m
0
0
0

 . (36)

The solutions are as follows

a =
1

B11 = − χ2

(1 + χ2) (1−M)m

sinψ

2
, b =

2

B11 = − χ2

(1 + χ2) (1−M)m

cosψ

2
,

c =
3

B11 = − 1

χ (1 + χ2) (1−M)m

sinhχψ

2
, d =

3

B21 = − 1

2 (1−M)m
,

e =
4

B11 =
1

χ (1 + χ2) (1−M)m

coshχψ

2
, f =

4

B21 =
1

2 (1−M)m
Mψ .

(37)

If i = 2 
cosψ − sinψ cosh (χψ) Mψ sinh (χψ) 1
sinψ cosψ −χ sinh (χψ) −1 −χ cosh (χψ) 0
− sinψ − cosψ χ sinh (χψ) M χ cosh (χψ) 0

cosψ − sinψ −χ2 cosh (χψ) 0 −χ2 sinh (χψ) 0
− sinψ − cosψ −χ3 sinh (χψ) 0 −χ3 cosh (χψ) 0
− cosψ sinψ −χ4 cosh (χψ) 0 −χ4 sinh (χψ) 0




a
b
c
d
e
f

 =


0
0
0
0
0
− 1

2

 (38)

is the equation system to be solved – compare it to (33) – and the solutions we have obtained are:

a =
1

B12 =
1

2

cosψ

(1 + χ2)
, b =

2

B12 = −1

2

sinψ

(1 + χ2)
, c =

3

B12 =
1

2

coshχψ

(1 + χ2)χ2

d =
3

B22 = 0 , e =
4

B12 = −1

2

sinhχψ

χ2 (1 + χ2)
, f =

4

B22 = − 1

2χ2
.

(39)

By repeating the steps that resulted in (35) we obtain the following equation system for
1

A1i, . . . ,
4

A2i:



cosϑ sinϑ coshχϑ −Mϑ − sinhχϑ 1

cosϑ − sinϑ coshχϑ Mϑ sinhχϑ 1

− sinϑ cosϑ χ sinhχϑ −1 −χ coshχϑ 0

sinϑ cosϑ −χ sinhχϑ −1 −χ coshχϑ 0

sinϑ−Kγ cosϑ − cosϑ−Kγ sinϑ χ3 sinhχϑ+Kγχ2 coshχϑ 0 −χ3 coshχϑ−Kγχ2 sinhχϑ 0

Kγ cosϑ− sinϑ − cosϑ−Kγ sinϑ −χ3 sinhχϑ−Kγχ2 coshχϑ 0 −χ3 coshχϑ−Kγχ2 sinhχϑ 0





1
A11
2
A11
3
A11
3
A21
4
A11
4
A21


=

=



−a cosϑ− b sinϑ− c coshχϑ+ dMϑ+ e sinhχϑ− f
a cosϑ− b sinϑ+ c coshχϑ+ dMϑ+ e sinhχϑ+ f

a sinϑ− b cosϑ− cχ sinhχϑ+ d+ eχ coshχϑ

a sinϑ+ b cosϑ− cχ sinhχϑ− d− eχ coshχϑ

a (− sinϑ+Kγ cosϑ) + b (cosϑ+Kγ sinϑ)− c
(
χ3 sinhχϑ+Kγχ2 coshχϑ

)
+ e
(
χ3 coshχϑ+Kγχ2 sinhχϑ

)
a (− sinϑ+Kγ cosϑ)− b (cosϑ+Kγ sinϑ)− c

(
χ3 sinhχϑ+Kγχ2 coshχϑ

)
− e
(
χ3 coshχϑ+Kγχ2 sinhχϑ

)


The closed form solutions are presented in Appendix B.

Assume thatKγ → 0. Then the limit limKγ→0 G(ϕ,ψ) yields the Green function matrix for pre-loaded pinned-pinned
beams [3]. When Kγ → ∞, the limit limKγ→∞G(ϕ,ψ) results in the Green function matrix for pre-loaded fixed-fixed
beams [2].

5. COMPUTATIONAL RESULTS

In this section we shall present the most important result of the computations only. Let εoξ crit be the axial strain that
belongs to the load Pζ = Pcrit where Pcrit is the critical load that causes the stability loss of the beam. Further let αi be
the i-th eigenfrequency of the loaded beam, while the eigenfrequencies that belong to the free vibrations (then the beam
is unloaded) are denoted by αi free.

Figure 2 represents the quotient α2
1/α

2
1 free against the quotient |εoξ/εoξ crit| both for a negative and for a positive

Pζ . We remark that this time the subscript 1 always refers to the lowest eigenfrequency (for small ϑ the order of the
eigenfrequencies will change [4]). The frequencies under [compression] <tension> [decrease] <increase> almost linearly
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and independently of m, ϑ and Kγ given that m >∼ 10 000 and ϑ̄ >∼ 1. These relationships can be approximated with
a very good accuracy by the linear functions

α2
1

α2
1 free

= 1.000− 0.9840
|εoξ|
εoξ crit

, if εoξ < 0 , (40)

α2
1

α2
1 free

= 1.000 + 0.9860
|εoξ|
εoξ crit

, if εoξ > 0. (41)

Note that these results are almost the same as those valid for pinned-pinned or fixed-fixed curved beams.

Figure 2. Results for the two loading cases of elastically restrained curved beams [2]

6. CONCLUDING REMARKS

We have presented a new model to clarify the vibratory behavior of circular beams pre-loaded by central load (a verti-
cal force at the crown point). The model is based on the Euler-Bernoulli beam theory and is applicable for heterogeneous
materials. The beam-end supports are rotationally restrained pins, which are modeled by linear volute springs having the
same spring constant. The effect of the pre-load is incorporated into the model via the strain it causes. An eigenvalue
problem was established by using the principle of virtual work. This eigenvalue problem was transformed to an eigen-
value problem governed by Fredholm integral equations. The Green function matrix is given in a closed form both for
compressive load and for tensile load. A numerical algorithm is proposed for the solution. Though some computational
results are provided, further computations are needed to refine the results and to clarify how the higher eigenfrequencies
depend on the load.

Acknowledgements by the second author: This research was supported by the National Research, Development and
Innovation Office - NKFIH, K115701 and by the Zénó Terplán Program.

APPENDIX A. SOLUTIONS FOR
1

A1i, . . . ,
4

A2i IF εoξ < 0

Let us introduce the following constants:
D1=− sinχϑ sinϑ + (sinχϑ)K cosϑ + χ

2
sinχϑ sinϑ−Kχ cosχϑ sinϑ = −

(
1− χ2

)
sinϑ sinχϑ + Kγ (cosϑ sinχϑ− χ sinϑ cosχϑ) , (42)

and
D2=cosϑ sinχϑ− χ3 sinϑ cosχϑ−Mχϑ

(
1− χ2

)
cosϑ cosχϑ + Kγ

[(
1− χ2

)
sinϑ sinχϑ +Mχϑ (χ cosϑ sinχϑ− sinϑ cosχϑ)

]
. (43)

Making use of the constants introduced the solutions sought can be given in the following forms:
1
A1i =

1
A1in/D1,

1
A1in = b

(
1− χ2

)
cosϑ sinχϑ + dχ

2
sinχϑ + Kγ

[
b (sinϑ sinχϑ + χ cosϑ cosχϑ)− d cosχϑ + eχ

2
]
, (44a)

2
A1i =

2
A1in/D2,

2
A1in = aχ

3
cosϑ cosχϑ− aMχϑ

(
1− χ2

)
sinϑ cosχϑ + a sinϑ sinχϑ + cχ

3
+ fχ

3
cosχϑ+

Kγ
[
aMχϑ (χ sinϑ sinχϑ + cosϑ cosχϑ)− a

(
1− χ2

)
cosϑ sinχϑ + cMχ

3
ϑ + fχ

2
sinχϑ

]
, (44b)

3
A1i =

3
A1in/χD1,

3
A1in = −d sinϑ + eχ

(
1− χ2

)
sinϑ cosχϑ−Kγ [b + eχ (χ sinχϑ sinϑ + cosϑ cosχϑ)− d cosϑ] , (44c)

3
A2i =

3
A2in/D2,

3
A2in = −χ

(
1− χ2

)
(a cosχϑ + c cosϑ + f cosϑ cosχϑ) +

+ Kγ
[
−a

(
1− χ2

)
sinχϑ− cχ

(
1− χ2

)
sinϑ− fχ (sinϑ cosχϑ− χ cosϑ sinχϑ)

]
, (44d)
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4
A1i = −

4
A1in/D2,

4
A1in = a + cMϑχ

(
1− χ2

)
cosϑ sinχϑ + c

(
χ
3
sinϑ sinχϑ + cosχϑ cosϑ

)
+ f cosϑ+

+ Kγ
[
aMϑ + cMϑχ (χ cosϑ cosχϑ + sinϑ sinχϑ) + c

(
1− χ2

)
sinϑ cosχϑ + f sinϑ

]
, (44e)

4
A2i = −

4
A2in/χD1,

4
A2in = χb

(
1− χ2

)
sinχϑ− dMϑχ

(
1− χ2

)
sinϑ sinχϑ + dχ

3
cosϑ sinχϑ− d sinϑ cosχϑ + eχ

(
1− χ2

)
sinϑ−

− Kγ
[
b
(
1− χ2

)
cosχϑ− d

(
1− χ2

)
cosϑ cosχϑ + dMϑχ (χ sinϑ cosχϑ− cosϑ sinχϑ) + eχ

(
1− χ2

)
cosϑ

]
. (44f)

APPENDIX B. SOLUTIONS FOR
1

A1i, . . . ,
4

A2i IF εoξ > 0 AND mεoξ > 1.

Let
D1 =

(
χ
2
+ 1

)
sinϑ sinhχϑ + Kγ (χ sinϑ coshχϑ− cosϑ sinhχϑ) (45)

and

D2 = − cosϑ sinhχϑ−χ3 sinϑ coshχϑ+Mϑχ
(
χ
2
+ 1

)
cosϑ coshχϑ+Kγ

[
−
(
χ
2
+ 1

)
sinϑ sinhχϑ +Mϑχ (χ cosϑ sinhχϑ + sinϑ coshχϑ)

]
.

(46)

With the two constants introduced
1
A1i =

1
A1in/D1,

1
A1in = b

(
χ
2
+ 1

)
cosϑ sinhχϑ− dχ2 sinhχϑ + Kγ

[
b (sinϑ sinhχϑ + χ cosϑ coshχϑ)− dχ coshχϑ− eχ2

]
, (47a)

2
A1i =

2
A1in/D2,

2
A1in = −a sinϑ sinhχϑ + aχ

3
cosϑ coshχϑ + aMϑχ

(
χ
2
+ 1

)
sinϑ coshχϑ + fχ

3
coshχϑ + cχ

3
+

+ Kγ
[
aMϑχ (χ sinϑ sinhχϑ− cosϑ coshχϑ) + cχ

3
Mϑ + a

(
χ
2
+ 1

)
cosϑ sinhχϑ + fχ

2
sinhχϑ

]
, (47b)

3
A1i =

3
A1in/χD1,

3
A1in = d sinϑ + eχ

(
χ
2
+ 1

)
sinϑ coshχϑ + Kγ [b + eχ (χ sinϑ sinhχϑ− cosϑ coshχϑ)− d cosϑ] , (47c)

3
A2i =

3
A2in/D2,

3
A2in = aχ

(
χ
2
+ 1

)
coshχϑ + cχ

(
χ
2
+ 1

)
cosϑ + fχ

(
χ
2
+ 1

)
cosϑ coshχϑ+

+ Kγ
[
a
(
χ
2
+ 1

)
sinhχϑ + cχ

(
χ
2
+ 1

)
sinϑ + fχ (χ cosϑ sinhχϑ + sinϑ coshχϑ)

]
, (47d)

4
A1i =

4
A1in/D2,

4
A1in = −a− cχ3 sinϑ sinhχϑ− c cosϑ coshχϑ + cMϑχ

(
χ
2
+ 1

)
cosϑ sinhχϑ− f cosϑ+

Kγ

[
−aMϑ− c

(
χ
2
+ 1

)
sinϑ coshχϑ + cMϑχ (χ cosϑ coshχϑ + sinϑ sinhχϑ)− f sinϑ

]
, (47e)

4
A2i =

4
A2in/χD1,

4
A2in = −bχ

(
χ
2
+ 1

)
sinhχϑ+dMϑχ

(
χ
2
+ 1

)
sinϑ sinhχϑ+d

(
χ
3
cosϑ sinhχϑ− sinϑ coshχϑ

)
−eχ

(
χ
2
+ 1

)
sinϑ+

+ Kγ
[
−b
(
χ
2
+ 1

)
coshχϑ + d

(
χ
2
+ 1

)
cosϑ coshχϑ + dMϑχ (χ sinϑ coshχϑ− cosϑ sinhχϑ) + eχ

(
χ
2
+ 1

)
cosϑ

]
. (47f)

are the solutions sought.
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