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Abstract:  A simulation program to determine the oil replenishment in the rolling path for a radial ball bearing has been 

realized by the authors. Based on the previous oil replenishment models for a ball race contact, the authors simulated the 

replenishment phenomena for three oil viscosities applied to a 6206 ball-race contact. Was evidenced the variation of the oil 

replenishment profiles both as function of the time and as function of the oil viscosity. 
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1. INTRODUCTION   
 

In oil lubricated ball bearings, the time between two successive passes of the balls on a point from the inner or 

outer race is depending on the ball bearing speed and on the bearing geometry. When a ball passes on a point 

from the race, the oil is ejected in the lateral sides and the replenishment of the track is governed, generally by 

the surface tension, the oil viscosity and the time. At normal rotational speed, in the time between two successive 

balls passes on the race, the oil replenishment of the track can assure the necessary oil layer to realize an EHD 

lubricant film in a ball-race contact, according to the existing formulas [1,2]. By increasing the speed, the time 

between two successive balls becomes smaller and the oil quantity obtained by replenishment is not sufficient to 

realize normal EHD film thickness and starvation phenomena appears[1, 2, 3]. 

Chiu [3] elaborated a sophisticated model for the oil replenishment of a track between a ball and a plane surface. 

Experimental results by optical interferometer confirmed his theoretical model. 

Olaru [1,2] extended the theoretical oil replenishment model for a track realized between a ball and a ball 

bearing race. For small quantities of the lubricant in the lateral sides, the theoretical model developed by Olaru 

can be approximated by the Chiu’s replenishment model. 

In his PhD thesis, Olaru [2] applied this model for a 7206C angular contact ball bearing operating at high speed. 

Later, Olaru and Gafitanu [1] published the theoretical model and experimental results applied to 7206 C angular 

contact ball bearing. Both Chiu and Olaru used an approximation formula to obtain the variation of the oil layer 

in the center of the ball-race contact as function of  the parameter t
2

T



, where t is the time between two 

successive passing of the balls, T is the oil surface tension and   is the oil viscosity. 

In the present paper, the authors realized a simulating program to follow the flow mechanism in the oil 

replenishment process. Was used the Chiu’s model and obtained various replenishment profiles as function of 

the oil viscosity, lateral oil quality and time for the 6206 ball-outer race contact.   

 

 

2. THEORETICAL MODEL 

 

In Figure 1 is presented the geometrical parameters of the oil track realized by a ball in the outer race at initial 

time t =0. 

In Figure 1 following geometrical parameters are used: R is the race radius, bR  is the ball radius, h  is the oil 

layer on lateral of the ball-race contact, 0h  is the EHD central film thickness and 2a is the width of the race. By 

using a coordinate system (xOz) as is indicated in Figure 1, following equation can be written for the race curve: 
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The oil shape generated by the ball at the time t =0 is given by the function g(x,0) defined by following equation: 
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The width of the oil track 2 *a  is a function of the lateral oil layer defined by equation: 
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   Figure 1: The geometrical elements and the oil layer in the ball-race contact 

 

The flow of the oil in the two directions x and z is governed by following differential equations [1]: 
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and the continuity equation for incompressible fluid: 
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The  Eqs. (4), (5) and (6) were solved in [1, 2] and the analytical relations for  the two components of the oil 

speeds xv , zv  and the variation of the oil pressure p have been obtained with the following limiting and initial 

conditions: 

 On the race surface f(x), the two components of the oil speed xv  and zv are  null, xv  = zv  = 0; 

 On the free oil surface g(x, t) the tangential stresses xz are null and the pressure is given by Laplace 

equation: 
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Where T is the surface tension of the oil. 

 For t = 0  
2

)0,(2
)0,(
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The variation of the oil shape g(x,t) as function of the x and time (t) is obtained according to equation [1,2]: 
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Eq.(8) was solved by Olaru[1,2] and for small lateral oil layers leads to the Chiu’s equation [3]: 
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)(G  is the Fourier transform of the function g(x,0) given by the equation: 
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Chiu established from  Eq. (9) a linear dependence for the variation of the oil rebounding thickness in the center 

of the contact g(0,t) and the time: 

t
2η

T
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Where C is a dimensionless parameter depending only of the lateral oil layers, h [3]. 

The same linear dependence has been applied by Olaru [1,2] to evaluate the lubrication rebounding layer in 

7206C high speed ball bearings considering the values of h  as the oil lateral meniscuses in a ball-race contact. 

 

 

3. SIMULATION OF THE OIL FLOW IN A BALL-RACE CONTACT 

 

The analytical function of the oil layer at the time t=0 given by Eq.(2) has been used to simulated the 

replenishment process given by Eq.(9). 

Eq.(9) has been numerical solved by a computer program for various oil viscosity as function of x and time t 

applied to the outer ball-race contact for  6206 radial ball bearing. The following geometrical parameters are 

used: ball diameter Db = 9.525 mm, race radius R = 0.54Db and race width 2a = 7 mm. The simulation was 

realized for a lateral oil layer mm1h   and the surface tension for oil was T = 0.03 Nm.  

In Figure 2 are presented the two functions f(x) and g(x,0) to be evidenced the interstices between the ball and 

the race. The elastic contact between the ball and race was neglected and it was considered that in the center of 

the race is a given film thickness 0h  between ball and race, having the following value: h0 = 0.001mm. 
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    Figure 2: The layer of the oil on the race surface at initial time, t = 0 

 

To integrate the Eq. (9) was necessary to establish the acceptable limit instead of infinite. Were tested various 

limits until to the values obtained from Eq. (9) for the initial time t = 0 corresponds to the initial layer of the oil  

g(x,0) given by Eq. (2). In Figure 3 can be observed a very good agreement between the two functions g(x,0) 

determined both by Eq. (2) and Eq.(9).  
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Figure 3: The correspondence between the values of the functions g(x,0) determined by the two Eqs.: (2) and (9)  

 

 

3.1 Influence of the time in the oil flow model 

 

To evidence the variation of the oil replenishment layers as function of the time, some simulation were realized 

with an oil having the dynamic viscosity η = 0.02 Pas for three values of the time: 0.001 seconds, 0.002 seconds 

and 0.01 seconds. The profiles of the replenishment oil layers are presented in Figure 4. 
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Figure 4: Variation of the oil replenishment layers for t = 0.001 seconds, t = 0.002 seconds and t = 0.01 seconds 

for an oil with dynamic viscosity η = 0.02 Pas 

 

Comments 

(i) It can be observed that by increasing of the time, the replenishment layer increases in thickness that suggests a 

good simulation of the real phenomena. 
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(ii) For the 6206 ball bearing, the time between two passings of a ball on the outer race is given by the following 

Eq.[4]: 
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where  n is the rotational speed of the inner race ( rot/min), dm is the average diameter of the bearing and z is the 

number of the balls. For a standard 6206 ball bearing dm= 46 mm  and  z = 8. By considering the limit speed of 

this ball bearing lubricated by oil (n limit = 13,000 rot/min [5]), the time between two successive balls at this limit 

speed is about t = 0.0015 seconds. According to the Figure 4, at this very short time the replenishment oil layer 

is too thin to assure a good lubrication and the starvation phenomena can occurs. According to the SKF 

lubrication recommendation [5] for this rotational speed, the recommended viscosity is of  0.008 Pas. Also, for a 

rotational speed of the inner race of 1500 rot/min, the time between two successive balls is 0.01 and thick oil 

layer was developed at this time (See Figure 4). 

 

 

3.2 Influence of the oil viscosity in the oil flow model 

 

To evidence the influence of the oil viscosity on the replenishment layers three oil viscosities were used to 

simulate the oil flow: η = 0.02 Pas, η = 0.05 Pas, η = 0.1 Pas. 

The profiles of the replenishment oil layers for a given time t = 0.01 seconds and for the three above mentioned 

viscosities are presented in Figure 5. 
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Figure 5: Variation of the oil replenishment layers for oil dynamic viscosities of η = 0.02 Pas, η = 0.05 Pas,  

    η = 0.1 Pas and for the time t = 0.01 seconds 

  

It can be observed that by increasing of the oil viscosity the replenishment layer decreases in thickness for the 

same simulated time. This behavior of the oil flow is in good correlation with the real phenomena. 

The oil film thickness Δh in the center of the ball – race contact can be determined by the following equation: 

 

 f(0) - t)g(0, = h                                                                                (14) 

 

Variations of the oil film thickness Δh as function of the time for the three oil viscosities are presented in the 

Figure 6. 

In Figure 6-a can be observed that by decreasing of the viscosity the oil film thickness increases. At a very short 

time for all three viscosities it can be observed that the negative values of Δh appears as result of  cavitations 

phenomenon as is presented in Figure 6-b. 

The cavitations phenomena are developed for a very short time depending of the oil viscosity. The cavitations 

have been evidenced also by Chiu [3] in a ball- plane contact for a very short duration following the contact. 
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Figure 6: Variation of the oil film thickness Δh in the center of the ball – race contact for three oil viscosities: 

0.02 Pas, 0.05 Pas, 0.1 Pas 

 
 

4. CONCLUSIONS 
 

A simulation program to evidence the oil replenishment process in a radial ball bearing race has been developed 

by the authors. 

The simulation was realized by using the simplified Chiu’s model applied to 6206 ball-outer race contact.   

Various replenishment profiles as function of the time and oil viscosity for a given lateral oil layer have been 

obtained. 

The simulated results evidenced a real behavior of the oil flow from the lateral sides to the center of the race for 

following oil viscosities: 0.02 Pas, 0.05 Pas and 0.1 Pas.  
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