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Abstract: In an angular contact ball bearing the value of the angular speed of the ball and the angular position of the 

angular speed of the ball are usually determined by considering the control on the outer race or on the inner race, depending 

of the angular speed of the inner race and axial load. In a very low axial load there is a possibility that an oscillation to 

appear between the outer race control and inner race control. The authors developed an energetic methodology based on the 

analytical power losses in the both ball-races contacts as function of angular speed of the ball (ωb) and as function of 

angular position (β). Based on a computer program the values of the ωb and β have been determined by imposing that the 

total power loss generated by the friction in ball races contacts to have minimum value. For low axial load and low 

rotational speed,  pivoting motion on both contact ellipses have been obtained without any race control. 
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1. INTRODUCTION  
 

In the study of the cinematics and dynamics of an angular contact ball bearing, multiple models can be used to 

evaluate the angular speed of the bearings balls and cage [1], [2]. 

Therefore, for an angular contact ball bearing loaded with an axial force in which the outer raceway is rotating 

with an angular speed of ω0 and the inner raceway is fixed, the angular speed of the cage ωc will be given in the 

hypothesis of the pure rolling balls on the raceway by the simplified relation [1], [2]: 
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In the same hypothesis, the angular speed of the ball ωb can be determined by relation: 
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α - the contact angle; 

 db - diameter of the ball; 

 The average diameter  of the angular contact ball bearing  dm is determined  by relation: 
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where d  is inner race diameter and  D is outer race diameter.  

If the bearing is operating at a reduced or normal speed, relations (1) and (2) can be utilized for a first 

approximation. For a more realistic evaluation, especially for determining the power losses through friction on 

the contact ellipses, the hypothesis of the guidance of the balls on the raceway can be used [1]. Therefore, the 

vector position of the angular speed of the ball ωb on the axial direction of the bearing, marked with the angle β 

(Figure 1), can be determined with different relations based on the type of guidance.  

For guidance on the outer raceway: 
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For guidance on the inner raceway: 
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Figure 1:  Angular contact ball bearing axial loaded 

 

Equations (5) and (6) take into account that the bearing is operating at low and medium speeds and are based on 

the fact that the contact angle α exhibits a minimal change. To calculate the sliding speeds on the contact ellipse 

it is important to know the type of guidance and the value of the angle β. 

Based on the papers published by [1] and [3] there is a possibility to establish the type of guidance for bearing 

operating at high speed when the contact angle of the two raceways change substantially. For low and medium 

operating speeds there is uncertainty regarding the type of guidance. 

This paper proposes a model to calculate the angular speed of the ball (ωb) and the vectors position of the 

angular speed of the ball (β) utilizing the power losses throw sliding friction on the two contact ellipses (ball-

outer raceway and ball-inner raceway). 

Therefore, the sum of the power losses due to friction on the two contact ellipses expressed as function of the 

two unknown parameters ωb and β will be minimized and the real values for ωb and β  are determined. 

 

 

2. POWER LOSSES ON THE CONCACT ELLIPSES  
 

On a contact ellipse with the semi-axes a and b (Figure 2) the sliding speed is present in two directions: the 

speed vs on the rolling direction (OY) and the sliding speed vp caused by the pivoting motion of the ball (not 

represented in Figure 2). For the contact ellipse presented in Figure 2, the power loss for a slice of the ellipse 

generated by the sliding speed in rolling direction is calculated based on the formula [4], [5]: 

dFsvsdP            (7) 

where dFs is the elementary friction force and vs is the sliding speed in the Y direction. 

 

 
Figure 2: The sliding speed and the friction force on the contact ellipse [5] 

 

2.1 Estimation of the friction forces 

35



 

The friction force is defined by the following relation [4]: 
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The tangential tension present in the contact ellipse τ is given by the relation: 

2

1

2

2

2

2
1
















a

y

b

x
Hp          (9) 

where µ is the friction coefficient on contact ellipse considered as a constant value on all surface. 

According to the Huppert’s model [4], the contact pressure can be expressed in the following manner:   
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were b1 is the contact ellipse semi-axes of the slice (Figure 2), Hp  is the maximum Hertzian contact pressure in 

the centre of the contact ellipse, a and b are the semi-major and semi-minor axes of the ellipse. 

The semi-axes of the slice b1 can be determined by [4]: 
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The semi-major and semi-minor axes of the contact ellipse are determined based on the following formula [4]: 
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where E is Young’s modulus for the materials in contact, Q is the normal load, e,XiR  is the equivalent radius in 

the rolling direction determined by [4]: 
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and k  is the radius ratio: 
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e,YiR is  the transverse radius for a ball - race contact. 

 

2.2 Estimation of the sliding speeds on the outer and inner contact ellipses  
 

The sliding speeds for a point from the inner (vsi) and outer (vso) raceway ball-race contact ellipses are based on 

the following formula [1]: 
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where ne is the rotational speed of the outer race. 

The tangential speeds of a point from  the inner and outer race vi,o are determined by equations [1]: 
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where the angular speed on the inner and outer raceway, and parameters  xoiA ,    are, respectively: 
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where Rai,o are the radius of the deformed ball-race contact surfaces determined by relations [1]: 
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where fi,o are the ball- race conformities (usually fi,o= 0.515 – 0.525) [2] 

As are presented in equations (17) and (18) the sliding speeds are functions of the position on the contact ellipse 

(variable x). 

 

2.3 Evaluation of the power losses on contact ellipses on rolling direction 
 

The power loss on the inner and outer raceway in the rolling direction can be calculated using following 

equations [5]: 
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Thus, the total power loss on the rolling direction is expressed by:  

     bibob ,,neP,,neP,,neP          (25) 

 

2.4 Evaluation of the power losses on contact ellipses caused by pivoting motion 
 

Considering that on the two ball-race contact ellipses are developed pivoting motion, the pivoting torque on a 

ball-race contact ellipse is determined by following equation [1], [4]: 
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where µ is the friction coefficient which is considered constant on all the contact ellipse surface. 

The total power loss generated by sliding in pivoting motion on the two contact ellipses are given by equation: 
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The angular pivoting speeds ωso and ωsi are determined by the equations [1]: 
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2.5 Evaluation of the total power losses on contact ellipses  

 
The total power loss on the two contact ellipses generated by the ball motion is determined as a sum of the total 

power loss generated in the rolling direction and the total power loss generated by the pivoting motion: 

     bsbbTotal ,,neP,,neP,,neP          (30) 

 

 

3. SIMULATION OF THE TOTAL POWER LOSSES IN 7205 BALL BEARING 
 

The total power loss obtained with the equation (30) is a function of two parameters, ωb and β. For a given 

geometry, a given load and  speed, we can determine the values of ωb and β such that the total dissipated power 

by friction, given by the equation (30) to be minimal. A program has been developed to determine the minimum 

power on the 7205B angular contact ball bearing with the following characteristics: d= 25 mm;  D=52 mm; 

db=7,928 mm; fi=0,515;fe=0,522; Q=3,94 N; α= 25 degrees. 

For the friction coefficient, the limit value was considered μ=0.1 (limiting lubrication conditions to ensure a 

constant coefficient of friction). 

The calculations result in the values of the contact ellipse semi axes as being 
41096,1 oa m and 

4
o 105,0b  m.  

Figure 3 shows the graphs of the total power variation PTotal, according to the angle β, for 4 values of the angular 

velocity ωb:  97,8 rad/s; 98rad/s; 98,033rad/s; 98,2rad/s. 
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Figure 3: Total power losses as function of the contact angle β 

 

For a given speed of the bearing (ne=400 rpm) the minimum of the total power loss corresponds to a single point 

(where β is 0.4386). This value for angle β does not correspond to any value obtained by the race control. The 

angular value of ωb=98,033 is obtained using Equation 2. Passed a certain value of the angular position, namely 

98.033 rad/s, the contact angle β exhibits an oscillation that has two points of minimum power, which implies 

that the ball has guidance on the inner or outer raceway (Figure 3). 

For the value of β=0.4386 and ωb=98,033 rad/s, it was calculated that the total sliding speed values on the inner 

and outer contact ellipses, vi and vo are given by the following equations: 

 

      x,,ne,,ne,xv,,ne,xv bsibsibi          (31) 

      x,,ne,,ne,xv,,ne,xv bobobo          (32) 

 

Figures 4 and 5 presents the sliding speed distribution on inner and outer race respectively.  
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Figure 4: Sliding speed on the inner contact ellipse for ωb=98.033 rad/s and β=0.4386  
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Figure 5: Sliding speed on the outer contact ellipse for ωb =98.033 rad/s and β=0.4386 

 

As it can be seen from Figure 4 and Figure 5, there is a minimum value of the total power loss that doesn’t 

correspond to the theory of guidance on one of the raceways [1], [3]. Also, from the value of the  angle β the 

vector of the angular speed of the ball is not perpendicular on the contact line, that means existence of the 

pivoting motion on both outer and inner contact ellipses. In the high speed conditions, as result of centrifugal 

forces acting on the balls, the contact angle α decreases on outer race contact and increases on inner race contact 

and a raceway control of the ball can appears. 

 

4. CONCLUSION 

 

1. The paper presents a methodology for determining the kinematics parameters of the ball (ωb, β) based 

on the power dissipated by friction on the contact ellipses between the ball and the raceways. 

2. Starting from the classical relations given in the literature for the sliding speed on the contact ellipses in 

an angular contact ball bearing, the power losses for the sliding friction were calculated, both for the 

rolling direction and for the ball’s pivoting motion. A constant friction coefficient was considered for 

the two contact ellipses. 

3. The total power consumed by friction was considered to be a function of the two cinematic parameters 

of the ball, ωb and β, based on a program in Mathcad, the value of the angle β was determined at which 

the power dissipated by friction is minimal when the angular velocity of the ball varies around the value 

established in the literature. 

4. The results obtained for the 7205B bearing with a load on the ball of 3.94 N and a speed at the outer 

ring of 400 rpm indicate that the bearing works with pivotal movement on both contact ellipses without 

any guidance on any of the raceways. 

5. Simulation results are to be validated by experimental testing.  
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