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Abstract: It is well-known that the mechanical behaviour of shallow arches is strongly nonlinear. Geometrically linear 
models overestimate the critical (buckling) load and are unable to describe the post-buckling behaviour. In recent years, 
numerous new findings were published in this topic. We hereby intend to contribute by presenting and evaluating a new 
mechanical model for the case when pinned-pinned arches, made of functionally graded material, are subject to an arbitrary 
concentrated radial dead load. 
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1. INTRODUCTION 
 
Arches (or curved beams) have an important role in many engineering structures, e.g., in roof structures or in 
bridges. Research on the mechanical behaviour of these structural elements began in the 19 th century -- see [1] 
by Love. The most important results achieved before the sixties of the last century are presented in [2] by 
Timoshenko and Gere. Based on a geometrically nonlinear analytical model, solutions for homogeneous, 
uniform shallow arches subjected to a vertical load at the crown point are provided in [3,4] by Bradford et al. 
Recent results for non-uniform members can be found e.g., in [5,6] by Jin et al. Using equilibrium approach, 
Bradford et al. have also tackled the issue when a homogeneous pinned-fixed arch is subject to arbitrary radial 
(dead) load [7]. After reviewing the open literature, we have found that the nonlinear planar stability of 
functionally graded (FG) pinned-pinned circular arches under arbitrary concentrated radial load is still an open 
issue. In this paper we assume that the radius of curvature is constant and the Young modulus depends on the 
cross sectional coordinates only. We aim to derive and evaluate a refined, geometrically nonlinear Euler-
Bernoulli beam model to reveal the effect of the load position on the behaviour of the structural element. 
 

2. MECHANICAL MODEL 
 

           
Figure 1: (a) The coordinate system, (b) The centerline with the external load and supports 

 
Figure 1a shows a portion of the arch considered; the orthogonal curvilinear coordinate system )(  - 

0  on the ( E -weighted) centerline with radius o  and the unit vectors  ee ,  and e . The cross-section 

of the arch is symmetric with respect to the axis  . The point in which the centerline intersects the cross-section 

is denoted by C . Its position on the cross-section follows from the condition 
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where eQ  is the E -weighted first moment with respect to the axis  . The Young modulus satisfies the relation 

),(E),(E  . The arc coordinate s  is measured from the crown point while o/s   is the angle 

coordinate. The displacement vector at an arbitrary point on the cross-section takes the form  
,ds/dw/u,)u(w ooooooooo   eeeuu                      (2) 

where   eeu ooo wu  and  eo  are the displacement and rotation on the centerline. It can be shown 

that the axial strain is  
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Here o  and m  are the linear and nonlinear axial strains on the centerline while o  is the change of curvature. 

We assume that   ),(E  is the Hooke law. We will apply the following two notational conventions in the 

forthcoming:  
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Making use of the Hooke law we get the bending moment and the axial force as  
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here eA  and eI  are the E -weighted area and the E -weighted moment of inertia: 
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It can be checked by applying the kinematic equations that  
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where the subscript b  denotes the increment of the various physical quantities between the pre-buckling and 

post-buckling states. It can also be shown that  
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3. PRE- AND POST-BUCKLING EQUILIBRIUM EQUATIONS 
 
Figure 1b shows the centerline of the arch in the initial configuration. The loading consists of a concentrated 
radial dead force )(P  . The central angle of the beam is 2 . For the pre-buckling state equation  


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                         (9) 
is the principle of virtual work from where we can get the equilibrium equations  
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Let us substitute relation (5)2 for the force N  into (10)1. What remains is     .0/AA oome
)1(

me    Since 

the product  om  is quadratic in the displacements it can be neglected. Therefore we arrive at the equation  
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Manipulations on (10)2 are not detailed, only the final form is presented:  
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This equation can be compared to that published by Bradford et al. in their series of articles -- see, e.g., equation 
(14) in [3]. The cited authors have dropped the underlined terms. The principle of virtual work in the buckled 
equilibrium state assumes the form  
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Here the asterisk symbol denotes the sum of the change between the initial and the pre-buckling configuration 
(not remarked specifically) and the increment to the post-buckling equilibrium state (denoted by b ) -- e.g., 



21 

�

mbmm  . Eq. (13) coincides formally with (9). After some manipulations (the details are again omitted) it 

can be shown that the arbitrariness of the virtual quantities yield the following post-buckling equilibrium 
equations:  
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The structure of equilibrium equation (14)1 is very similar to that of (10)1 except that the last term in (14)1 does 
not appear in the pre-buckling relation. However, it can be neglected since this product is quadratic in the 
increments. Therefore, repeating the same line of thought resulting in (10)1 but now for the increments it follows 
that  
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Manipulations on equilibrium equation (14)2 are more complicated and are neglected. The final form is relation 
(16). Compared to the model of Bradford et al. it is more accurate via the presence of the underlined terms -- see 
equation (39) in [3].  
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4. SOLUTION TO THE PRE-BUCKLING STATE 

 
The pre-buckling equilibrium is governed by equations (11) and (12). Due to the discontinuity in the shear force 
at  , the solutions are sought separately on the left (  ; ) and right ( ; ) sides as 
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The integration constants ii B,A  can be determined by utilizing the boundary, continuity and discontinuity 

conditions gathered in Table 1. 
 

Table 1: Pre-buckling boundary and (dis)continuity conditions 
 
 
 
 
 
 
 
 
 

 
At the supports the displacement and the bending moment are zero. At   the typical fields are continuous except 
the shear force. The jump in the shear force has a magnitude P . Altogether, there are eight equations for eight 

unknowns. After solution, with the normal displacement in hand, the rotation can be calculated as 
)1(

o
)1(

ooo WWU   . Here we have assumed that the tangential displacement has negligible effect on the 

rotation field due to the shallowness. Since the axial strain is constant on the centerline, we can calculate it as its 
mathematical average: 
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o  P  being the dimensionless load. The integration constants  321 I,I,I   can be given in closed-

form. 
 
5. SOLUTIONS TO THE POST-BUCKLING STATE 
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After substituting the solution to the pre-buckling displacement into the right side of equation (16), for the left 
( l ) and right ( r ) sides we get that  
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     (21) 
Given that mb  is constant, it can be averaged as  
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It is possible that 0mb  =constant, then we have to solve equation (21) and if 0mb   we get the 

homogeneous equation  
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which follows from (21). It is also important to mention that after buckling every physical quantity is continuous 
through the interval   ;  because there is no increment in the loading. The general solutions of equations 

(20)-(21) take the form 
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with Rii D,C , while the displacement satisfying relation (23) is sought in the form  
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Considering 0mb    (bifurcation buckling), after substituting solution (26) into the boundary conditions (BCs) 

in Table 2, we arrive at a homogeneous system of linear equations for which nontrivial solution exists if the 
determinant of the coefficient matrix is zero:  
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is the lowest (critical) strain. If we now substitute this solution back to the equation system we can check that 
0EEE 421  . Consequently, it follows from the general solution (26) that the shape of the beam is 

antisymmetric when 0mb    since  
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However, when 0 , bifurcation buckling can not occur since the radial displacement increments are 
orthogonal to the pre-buckling displacements [7]. Therefore  
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because this displacement increment is unsymmetrical along the arch.  
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Table 2: Post-buckling boundary and continuity conditions 
 
 
 
 
 
 
 
 

 
When the strain increment is nonzero (snap-through buckling), substitution of the related solutions into the 
boundary conditions of Table 2 yields an inhomogeneous system of equations, which can be solved in closed-

form. With obW , the rotation increment is  )1(
obbo W    if we again neglect the effect of the tangential 

displacement on the angle of rotation. Now equation (22) can be rewritten as  
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If we now substitute all the previously determined kinematical quantities into the above equation, perform the 
integration and simplify by the increment mb , we get  
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Here each of the constants iJ  can be expressed in closed-form. 

 
6. COMPUTATIONAL RESULTS 
 
We can find the critical load for bifurcation buckling when we plug the critical strain (28) into Eq. (19). For 
snap-through buckling, we have to solve nonlinear equations (19) and (32) simultaneously for the two 
unknowns: the critical strain and critical load. When the load is a central one ( 0 ), results of the current 
model coincide with those published in [8]. 
 

 
 

Figure 2: Critical dimensionless load in terms of the semi-vertex angle 
 

Numerical results are provided for 310m  . As can be seen from Figure 2, when 0 , for a short while snap-
through buckling is dominant with symmetric (sym) buckled shape, but from 55.0 , bifurcation buckling 
occurs first with antisymmetric (asym) shape. A small perturbation in the position of the external load makes the 
buckling load decrease sensibly if 5.0  (yellow and orange curves). So we may say that the structural element 
is sensitive to small loading imperfections. Further, when  3.0  or 6.0 , for smaller central angles the 
critical load is greater than originally ( 0 ). If we move the position of the external load even closer to either 
end-support, the load carrying capabilities are much better than in the original setup. 
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Figure 3: The effect of the external load position on the buckling load 
 
In Figure 3, we investigate how the position of the concentrated load affects the critical load for some selected 

geometries. Here 2m  is the modified slenderness of the arch. When 1.6  the buckling load 
continuously increases as we move the external load away from the crown point. Interestingly, for all other 
geometries, at first, the load carrying capability shows (an occasionally) considerable decrease but after that, if 
  is sufficiently great, there is an increase up to a multiple times of the initial load. 
 

Table 3: Finite element verifications 
 
 
 
 
 
 
 
 
Validations were also carried out using Abaqus CAE 13 with B21 beam elements and the Riks step on 
geometrically nonlinear models. The cross-section of the arch was uniform, square with a typical dimension of 
10 mm. The material was linearly elastic with E=200,000 MPa. Numerical results are shown in Table 3. The 
correlations confirm the validity of our model. 
 
7. CONCLUDING REMARKS 
 
For pinned-pinned functionally graded arches, we have set up and evaluated a geometrically nonlinear model for 
in-plane stability investigations provided that the arch is subjected to an arbitrary concentrated radial force. We 
remark that our kinematical model is more accurate than that presented in [3,4]. We have found that the position 
of the external force has significant effect on the buckling load. The critical load either continuously increases 
with the load position angle   or first decreases, and then shows an increase. Certain geometries seem to be 
sensitive to small loading imperfections. 
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