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PREFACE TO THE PRESENT EDITION 
 
The present book titled, Electromagnetics: General theory of the electromagnetic 

field. Classical and relativistic approaches, is an extended form of the previous two 
editions of the books titled Electromagnetics: General theory of the electromagnetic field. 

The new book, at the difference of the previous ones, contains four new appendices, 
devoted to several topics, as follows: a. A study on the divergence of tensors related to 
the curvature of the space-time continuum; b. The energy-momentum tensor of the 
electromagnetic field in the theory of relativity; c. The Sagnac effect in The General 
theory of relativity; d. A new approach to the calculation of the magnetic field strength of 
a solenoid and to the introduction of magnetic quantities. 

In this book, apart from some improvements, new results have been included, some of 
them belonging to the author. These last ones have been presented at the ICAEM 
International Conference of Applied and Engineering Mathematics, held in London the 
last four years (2008-2011). The book will appear in both forms electronic and print. 

The volume has been built in order to avoid the reader to resort to books of 
mathematics, all mathematical developments being included in the book.  

The purpose of this book has been to present in a legible manner some important 
subjects of the concerned topics. At the same time, the text has been so prepared that a 
reader not interested in the Special Theory of Relativity and General Theory of Relativity 
could read it, avoiding the text connected with the relativistic treatment. 

The book is devoted to all readers interested in these topics. 
 
 

PREFACE TO THE FIRST EDITION 
 

In the present work the physical fundamentals of electromagnetic phenomena are 
studied having in view their technical applications. 

The book contains the general theory of the electromagnetic field necessary for the 
study of the principal applications in the following domains: Electrostatics, 
Electrokinetics, Electrodynamics and Magnetostatics. 

The general theory contains the introduction (i.e., the definition) of fundamental 
concepts among which: field and substance, electric charge, electric current, state 
quantities of electric and magnetic fields, as well as the study of laws and energy of the 
electromagnetic field.  

The general theory is presented in four chapters. Further, three appendices are added. 
For practical applications, the consideration of electromagnetic phenomena at a 

macroscopic scale is of special interest. However, in many applications, it is necessary to 
know the phenomena at a microscopic scale. 

At the same time, it is useful to have in view that the physical model is, in many cases, 
relatively simple in the case of a microscopic study. For this reason, in this work, the 
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following procedure has been used: The various quantities and phenomena have been first 
examined at a microscopic scale, and then, by calculating the average values, the passage 
to macroscopic quantities describing the phenomena has been accomplished. 

Concerning the presentation of the general laws, there are, in principle, two 
possibilities:  

a. The introduction of these laws directly, as a generalization of experimental facts; 
b. The derivation of these laws starting from the Coulomb law and the Special Theory 

of Relativity.  
The Special Theory of Relativity has been used because it permits the derivation of the 

equations of the theory of electromagnetic field starting from a small number of general 
equations.  

Appendix 3, which contains the main formulae of the Special Theory of Relativity, 
and the derivation of certain relations between forces, given by the author, facilitates to 
follow the calculations of Chapters 2 and 3. 

Also, some relatively recent considerations on the theory of relativity have been 
mentioned in Introduction. 

The text has been elaborated so that all references to the special theory of relativity 
may be omitted; however, in this case, the number of basic general equations that are not 
derived from more general relations is greater. 

The study of the mentioned domains, namely Electrostatics, Electrokinetics, 
Electrodynamics, Magnetostatics, can be carried out by using the general laws of 
electromagnetic field for these various cases. Certain important problems concerning the 
mentioned domains are analysed in the present work. 

A more detailed study of the mentioned domains can be found in several works 
devoted to these subjects, including the works of the author, mentioned in Bibliography. 

The system of units used in this work is the International System of Units (SI) and all 
formulae are written in this rationalized system. 

This work differs to some extent from many other usual textbooks and works by the 
attention paid to certain subjects like the passage from the microscopic theory to the 
macroscopic one, the way of using the Special Theory of Relativity, and the simplicity of 
the presentation. 

Certain parts of this work, especially those related to the Theory of Relativity, 
represent the content of the lectures of an extra-course given by the author at the 
Université Bordeaux 1 (France) in the summer semester of 2001. 

The author thanks especially Doctors of Physics: Jean-Claude GIANDUZZO, Head of 
the Centre of Electrical and Electronic Resources, and Jacques CURÉLY, both from the 
Université Bordeaux 1 (France), for their support for the presentation of these lectures 
and for their valuable comments. 

At the same time, the author wishes to thank Professor Florin Teodor TĂNĂSESCU, 
from the Polytechnica University of Bucharest, secretary general of the Academy of 
Technical Sciences in Romania, for his valuable support and suggestions. 

 

Finally, the author should like to gratefully thank Dr. Phys. Jacques CURÉLY, from the 
Université Bordeaux 1, for the attention paid to the review of the manuscript and for his 
valuable comments and suggestions. 

 
Andrei NICOLAIDE 
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a  – vector (p. 205). 
A  − linear current density, also called linear current sheet (p. 72). 
A  – vector potential (magnetic) in the reference frame K  (p. 129, 153). 
A′  

 

– vector potential in the reference frame K ′ in motion relatively to the 
reference frame K  (p. 153). 

oA , 1A  – vector potentials in the reference frames oK  and 1K  (p. 268). 
B  − magnetic induction, also called magnetic flux density (p. 41, 108-110); 

magnetic induction in any reference frame K  (p. 151, 152). 
B′  

 

– magnetic induction in any reference frame K ′  in motion relatively to the 
reference frame K  (p. 152, 153). 

ji MB =  − intrinsic magnetic induction (p. 78). 

2,1 nn BB  − normal components at two points, very near, situated on both sides of the 
separation surface of two media, in the same reference frame (p. 160). 

PoB  – magnetic induction at point P  in the reference frame oK  (p. 114). 

21, BB  – vector quantities at two points, very near, situated on both sides of the 
separation surface of two media, in the same reference frame (p. 160). 

c  – velocity of light in empty space, i.e., in vacuo (p. 102). 
qC  – 

 

curve with an electric charge distribution (p. 48). 

ld  − line element (p. 32). 
Sd  – surface element (p. 35, 214). 
vd  – volume element (p. 48). 

od v , 1d v  – volume element in the reference frame oK  and 1K , respectively, (p.103). 
D  − electric displacement (p. 41), also called electric flux density (p. 92) and 

electric induction (p. 123), in any reference frame K  (p. 152). 
D′  

 

– electric displacement in any reference frame K ′  in motion relatively to 
the reference frame K  (p. 152). 

2,1 nn DD  − normal components at two points, very near, situated on both sides of the 
separation surface of two media, in the same reference frame (p. 156, 157). 

oD  
 

– electric displacement in the reference frame oK  (p. 108). 

21, DD  – vector quantities at two points, very near, situated on both sides of the 
separation surface of two media, in the same reference frame (p. 156). 

e  − electric charge of electron in absolute value (p. 38). 
e  – electromotive tension or electromotive force (p. 55). 
E  − electric field strength, also called electric field intensity (p. 53);  

electric field strength, macroscopic value (p. 50); 
electric field strength in any reference frame K  (p. 151, 153). 

E ′  
 

– electric field strength in any reference frame K ′  in motion relatively to 
the reference frame K  (p. 151, 153). 

cE  − Coulombian component of the electric field strength (p. 53). 
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iE  − impressed component of the electric field strength (p. 53). 

iE  − electric field strength produced at any point by a point-like electric charge 
with the ordinal number i  (p. 86). 

lE  − electric field strength in the large sense (p. 52). 

macroE  − macroscopic value of the electric field strength (p. 50). 
( )t,micro rE

 
– microscopic value of the electric field strength at a point at any moment  

(p. 50). 

microE  − microscopic value of the electric field strength (p. 50). 

nE  − non-Coulombian electric field strength (p. 53). 

oE  
 

− electric field strength at a point at rest in the reference frame oK   
(p. 97, 107). 

xEo , yEo , 

zEo  

 

– component of the electric field strength at a point, along the oo xO , 

oo yO , oo zO  axes, in the reference frame oK  (p. 107). 

rE  − induced electric field strength component (rotational, solenoidal or curl 
component) (p. 53). 

21, tt EE  − tangential components at two points, very near, situated on both sides of 
the separation surface of two media, in the same reference frame (p. 159). 

0E  – electric field intensity produced by external causes (p. 65). 

1E  − electric field strength at a point at rest in the reference frame 1K  (p. 98). 

21, EE  – electric field strengths at two points, very near, situated on both sides of 
the separation surface, in the same reference frame (p. 158). 

xE1 , yE1 , 

zE1  

 

– component of the electric field strength at a point, along the 11xO , 11 yO , 

11zO  axes, in the reference frame 1K  (p. 106). 

21E  − electric field strength at any point 2 produced by a point-like charge with 
index 1 (p. 86). 

F  − force in general, and force acting upon a point-like electric charge (p. 49). 

elF  – force of electric nature acting on a point-like charge (p. 52). 

EF  – force acting upon an electrically polarized small body (p. 68). 

iF  − force acting upon any point-like electric charge q , and due to a point-like 
electric charge iq  (p. 86). 

magF  – force of magnetic nature acting upon a moving point-like electric charge 
(p. 110). 

el-nonF  – force of non-electric nature acting on a point-like charge (p. 52). 
 

oF  
 

– force exerted upon a point-like charge q, at rest in the reference frame oK  
(p. 97). 

xFo , yFo , 

zFo  

 

– components of the force along the oo xO , oo yO , oo zO  axes, of the force 
exerted upon a point-like charge q, at rest in the reference frame oK   
(p. 106). 

1F  
 

– force exerted upon a point-like charge q, at rest in the reference frame 1K  
(p. 98). 
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xF1 , yF1 , 

zF1  

 

– components of the force along the 11xO , 11 yO , 11zO  axes, exerted upon 
a point-like charge q, at rest in the reference frame 1K  (p. 106). 

21F  – force acting upon point-like charge 2 due to point-like charge 1 (p. 86). 
( )rG  − vector function of a vector field (p. 32, 235). 
G  – vector  (p. 32); electromagnetic momentum of the electromagnetic field  

(p. 200). 
pG  − potential component of a vector function (p. 52). 

rG  − solenoidal component of a vector function (p. 52). 
h  – height (oriented) (p. 62); oriented straight-line segment (p. 65). 

hh =d  − distance oriented from the negative charge towards the positive charge of a 
dipole (p. 58). 

H  − magnetic field strength, also called magnetic field intensity 
(p. 41, 108, 141). 

PoH  – magnetic field strength at point P  in the reference frame oK  (p. 114). 

pH  − potential (non-curl or irrotational) component of the magnetic field 
strength (p. 144). 

rH  – curl (rotational or solenoidal) component of the magnetic field strength  
(p. 144). 

21, tt HH  − tangential components at two points, very near, situated on both sides of 
the separation surface of two media, in the same reference frame (p. 163). 

21, HH  – magnetic field strengths at two points, very near, situated on both sides of 
the separation surface, in the same reference frame (p. 162). 

kji ,,  – unit vectors along the axes of a three-orthogonal system of co-ordinates. 
i  – intensity of electric current, strength of electric current (p. 68). 

Amperi  − intensity of an Amperian (molecular) current (p. 77). 

Mi  − macroscopic intensity of the Amperian electric current (p. 77). 

magi  − intensity of magnetic current (p. 134). 

Pi  – intensity of polarization electric current (p. 74). 

Σi  – intensity of an electric current leaving a closed surface (p. 80). 
J  – vector of the macroscopic conduction electric current density (p. 69, 70); 

density of conduction electric current in any reference frame K   
(p. 152, 153). 

J ′  
 

– density of conduction electric current in any reference frame K ′  in 
motion relatively to the reference frame K  (p. 152, 153). 

AJ  − macroscopic density of the Amperian electric current (p. 79). 

convJ  – convection electric current density (p. 142). 

eJ  − density of the resultant electric current produced by the electric free and 
bound charges in motion (p. 139). 

lJ  − density of the electric current in the large sense (p. 142). 

macroJ  − vector of the macroscopic electric current density (p. 70). 

microJ  – vector of the microscopic electric current density (p. 70). 

21 , nn JJ  − normal components at two points, very near, situated on both sides of the 
separation surface of two media, in the same reference frame (p. 164). 
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PJ  − vector of macroscopic density of the electric polarization current (p. 73). 

sJ  − linear current density of a current sheet, also called linear current sheet  
(p. 72, 163). 

21, JJ  – vector quantities at two points, very near, situated on both sides of the 
separation surface of two media, in the same reference frame (p. 164). 

oK  − inertial reference frame considered as original system (p. 97). The original 
reference frame and the quantities expressed in this frame are indicated by 
the suffix “o”, in order to avoid any confusion with the suffix “0” of 0ε  
and 0μ . 

1K  − inertial reference frame in motion relatively to oK  (p. 98). 
L  – Lagrange function of an electric point-like charge moving in the 

electromagnetic field (p. 185). 
m  – mass (inertial) of a material point in motion relatively to any reference 

frame K  (p. 184, 249). 
m  − magnetic moment of a body (p. 41). 

em  − mass of electron (p. 38). 

jm   – Coulombian magnetic moment (p. 78). 

pm  − mass of positron (p. 38). 

0m  − magnetic moment of an Amperian current, also called Amperian magnetic 
moment (p. 78). 

0m  – mass of a material point at rest (rest mass) in the considered reference 
frame oK  (p. 249). 

1m  – mass of a material point at rest in the reference frame 1K  (p. 249). 
M  − magnetization (p. 78); magnetization in any reference frame K  (p. 152). 

M ′  
 

– magnetization in any reference frame K ′  in motion relatively to the 
reference frame K  (p. 152). 

jM  − magnetic polarization (p. 78). 

jpM  – permanent magnetic polarization (p. 79). 

jtM  – temporary magnetic polarization (p. 79). 

pM  − permanent magnetization (p. 79). 

tM  – temporary magnetization (p. 79). 
n  – normal unit vector to a surface (p. 35, 214). 

cn  − number of charge carriers per unit of volume (p. 69). 

kn  
 

– number of charge carriers of a certain type, indicated by the suffix k , 
per unit of volume (p. 70). 

pn  − volume concentration of dipoles (p. 62). 

0n  − concentration of Amperian currents (per unit of volume) (p. 77). 

12n  − unit vector of the normal to the separation surface, oriented from the 
medium 1 towards the medium 2 (p. 64, 156, 157). 

p  − electric moment of a neutral system (p. 41); electric moment of a polarized 
dielectric body (p. 58, 59). 

dp  − electric moment of an electric dipole (p. 58). 
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ip  − electric moment of a multipole (p. 61). 
 

mkp  – momentum (quantity of motion) of a material point in motion with the 
velocity u  relatively to the reference frame K , expressed in the same 
reference frame, corresponding to the co-ordinate kx  (p. 185). 

sp  − electric moment of a neutral system of point-like electric charges (p. 57). 
P  − Any flux density vector (p. 35). 
P  − electric polarization (p. 61); 

electric polarization in any reference frame K  (p. 152). 
P ′  

 

– electric polarization in any reference frame K ′  in motion relatively to the 
reference frame K  (p. 152). 

JP  – electromagnetic energy converted into heat in a body carrying electric 
current (p. 196). 

oP  – electric polarization vector in the reference frame oK  (p. 120, 121). 

pP  − permanent electric polarization vector (p. 62). 

tP  − temporary electric polarization vector (p. 62). 
q  – electric charge, also called quantity of electricity (p. 41, 47, 49); 

charge of an electric charge carrier (p. 69). 
dq  – bound electric charge of an electric dipole (positive charge) (p. 58). 

boundiq  − bound electric charge with the ordinal number i  of any distribution of a 
neutral system (p. 56, 58). 

lq  − electric charge contained by a body in the case of a line distribution n 
(p. 48). 

Σpq  
 

– polarization electric charge within the closed surface Σ  (p. 63). 

Sq  – electric charge contained by a body in the case of a surface distribution  
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INTRODUCTION

1. CONTENT OF ELECTROMAGNETICS 

In this work, the foundations of Electromagnetics, including theory and applications 
are treated. It is useful to note that Electromagnetics and Electromagnetism can be 
considered synonyms. 

The theory of electromagnetism includes the introduction (i.e., the definition) of 
several fundamental concepts among which: Field and substance, electric charge, electric 
current, state quantities of electric and magnetic fields. Also, it contains the study of 
forces acting upon electric charge carriers in motion, laws and energy of electromagnetic 
field. The applications concern the corresponding topics. 

2. THE THEORIES USED IN THE STUDY OF 
ELECTROMAGNETISM 

We recall that the Electromagnetism is a branch of Physics in which the 
electromagnetic phenomena are studied. It contains the study of physical bases and of the 
propagation of electromagnetic field. This work refers to physical bases only.  

The principal domains of electromagnetism are the following ones: Electrostatics, 
Electrokinetics, Magnetostatics and Electrodynamics. These domains are very useful for 
the study of macroscopic phenomena and in practical applications. 

The study of the domains above can be carried out by using the general laws of 
electromagnetism in these various cases. Certain important problems of the mentioned 
domains are analysed in the present work. A more detailed study of the mentioned 
domains can be found in several works devoted to these subjects, including the works of 
the author, mentioned in Bibliography. 

In the study of electromagnetism, the following theories are utilized: Theory of 

electromagnetic field (Theory of Maxwell), Theory of electrons (Theory of Lorentz), 
Theory of relativity and Quantum Mechanics.

The theory of Maxwell is the macroscopic theory of electromagnetic phenomena. In 
the framework of this theory, relationships between the quantities that characterize the 
electric and magnetic state of the substance are given in the form of a set of differential 
equations. The theory refers to media at rest. An extension of this theory to moving media 
was made by Heinrich HERTZ.

The Theory of electrons is the microscopic theory of electromagnetic phenomena,
which admits the existence of certain elementary charged particles, called electrons. The 
electron is characterized by its electric charge, mass, and magnetic moment. In the 
framework of this theory, the ponderomotive forces of the electromagnetic field are 
exclusively determined from the forces exerted upon particles and expressed by the 
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Lorentz formula. The electromagnetic field equations are obtained by applying the 
Maxwell equations for empty space (i.e., vacuum) at microscopic scale.  

The theory of electrons can be presented in either quantum or non-quantum form, 
respectively. The non-quantum form of the theory of electrons has also two forms, 
namely: non-relativistic and relativistic one. In the framework of the non-relativistic form, 
the existence of a privileged reference frame is assumed. This reference frame is at rest 
with respect to the group of fixed stars and is referred to as Lorentz inertial reference 

frame. The theory of electrons refers to media at rest as well as to moving media. 
The non-quantum theory of electrons cannot be put in accordance with some 

properties of elementary particles and the utilisation of Quantum Mechanics then 
becomes necessary. 

Finally we shall recall that the fundamental physical interactions or forces, in nature, 
are of the following four types: Electromagnetic, Weak, Heavy and Gravitational. 

3. SHORT HISTORICAL SURVEY 

In this Section, certain data of the history of the development of the knowledge of 
electromagnetic phenomena will be presented. The first knowledge about electric and 
magnetic phenomena refers to natural magnetism and to electrification by friction. 
Magnet and magnetism are so termed because the loadstone (iron ore) µ  (magnes) 
was originally found in the Thessalian Magnesia. 

Also, in Antiquity the electrification by friction of amber, called in Ancient Greek 
µ  (kehrimpari, read kechrimpari) or  (elektron, read ilektron), was 

known. This manner of electrification was described by THALES of Millet (640 ~ 547 
BC).

The development of electromagnetism was related to a great extent to the discovery of 
the law of the force exerted between two point-like bodies, charged with electricity (i.e., 
having electric charge). The establishment of this law had several stages due to the 
research of Benjamin FRANKLIN (1706 – 1790), Joseph PRIESTLEY (1733 – 1804), John 
ROBISON (1739 – 1805), Henry CAVENDISH (1731 – 1810) and Charles-Augustin de 
COULOMB (1736 – 1806). Coulomb performed experiments by two different methods. 

In the first method, he used a torsion balance and measured the angle proportional to 
the force exerted between electrified bodies. 

In the second method, he used an apparatus with an oscillating device and determined 
the number of oscillations that depends on the force exerted between the electrified 
bodies; the results were published in 1785. 

With respect to the previous experiments, he established the results more directly and 
also mentioned that the force is directly proportional to the product of the quantities of 
electricity (electric charges) of the two electrified bodies. 

He established with a high precision that the force exerted between two electrified 
point-like bodies is inversely proportional to the square of the distance between them. 

Carl Friedrich GAUSS (1777 – 1855) established important formulae in Electrostatics 
and Magnetostatics. 

Hans Christian OERSTED (1777 – 1851) experimentally remarked the action exerted 
by an electrical conductor carrying an electric current, on a magnetic needle. This 
experiment was determined by the remark that the magnetic needle of a compass makes 
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oscillations during a storm. The result was published in 1820. This result has been of a 
great importance, because it has allowed the establishment of the relation between two 
classes of phenomena, previously independently treated. 

At the same time, in the year 1820, Jean-Baptiste BIOT (1774 – 1862), Félix SAVART

(1791 – 1841) and Pierre-Simon de LAPLACE (1749 – 1827) established the relation 
expressing the interaction between an element of electric current and a magnetic pole. 

Continuing this research, André-Marie AMPÈRE (1775 – 1836) established the same 
year 1820, that forces are exerted between two conductors carrying electric currents. He 
also introduced the difference between electric potentials (potential difference, voltage, 
electric tension) and electric current. He showed that a permanent magnet in the form of a 
bar is equivalent to a coil carrying an electric current. It is worth noting that at present the 
Ampère conception lies at the base of the theory of magnetism. 

Georg Simon OHM (1789 – 1854) established in 1826 the relationship between electric 
tension (voltage) and the intensity of the electric current. 

Two very important discoveries lie on the ground of the theory of electromagnetic 
field.

The first one is the fundamental discovery made by Michael FARADAY (1791 – 1867) 
and consists in the fact that a magnetic field varying with time induces (i.e., produces) an 
electric field, what he experimentally established. A historical survey of the research 
carried out by several scientists on this subject can be found in literature [13], [25]. 

The second one belongs to James Clerk MAXWELL (1831 – 1879). Maxwell 
established in a theoretical way that, conversely, an electric field varying with time 
induces (i.e., produces) a magnetic field. Therefore, the electric fields varying with time 
have the same effect as the conduction currents concerning the production of the 
magnetic fields. Hence, the variation with time of the electric field may be considered as 
corresponding to an electric current, called by Maxwell displacement current.

To the previous two components of the electric current (i.e., conduction current and 
displacement current) it is to be added a third component namely the convection current.
It is produced by the motion of electrified bodies with respect to a reference system. This 
component was studied by several scientists, among which Henry ROWLAND (1848 – 
1901) and N. VASILESCU KARPEN (1870 – 1964). 

At the same time, Faraday introduced the concept of line of force, in order to visualize 
the magnetic field and subsequently the electric field. 

Faraday thought the seat of electric phenomena as going on a medium, whereas 
previously, mathematicians thought the same phenomena as being produced by centres of 
forces acting at a distance. The conception of Faraday allowed him to replace the concept 
of action at distance by the concept of a local interaction between electrified bodies and a 
field of forces, what has had a great importance for the subsequent development of the 
theory of electromagnetic field. 

After six years of experimental researches, Faraday discovered in the year 1831 the 
phenomenon of electromagnetic induction mentioned above. In the first experiment, he 
utilized a soft iron ring having the cross section diameter of about 2.22 cm and the 
exterior diameter of about 15.24 cm. On this ring, there were wound two coils of 
insulated copper wires. The ends (terminals) of the first coil could be connected with an 
electric battery (of cells). The ends of the second coil were connected each other by a 
copper wire placed in the neighbourhood of a magnetic needle. When connecting or 
breaking the connection of the first coil with the battery, he remarked oscillations of the 
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magnetic needle that then ceased. This experiment led Faraday to the conclusion that the 
second coil carried during this time interval “an electricity wave”. Hence, the 
phenomenon of electromagnetic induction by transformation was discovered. 

In another experiment, he utilised a coil of wound wire forming a helix cylinder. 
When displacing, inside the coil, a permanent magnet in the form of a bar of about 1.905 
cm in diameter, and of about 21.590 cm in length, he remarked that the needle of a 
galvanometer, connected with the ends of the coil, moved in different directions 
depending on the direction in which the permanent magnet had been displaced. Hence, 
the phenomenon of electromagnetic induction by the relative motion of a conductor with 
respect to the field lines produced by the permanent magnet was discovered. Therefore, 
the law of electromagnetic induction is also called the Faraday law.

The mathematical expression of the electromagnetic induction law was subsequently 
established by Maxwell. 

Also, in 1831, Faraday invented the first direct current generator composed of a 
copper plate that could rotate between magnetic poles, and the external electrical circuit 
was connected between the centre and the rim of the plate. In 1851, he described a 
machine consisting of a rotating wire rectangle with an attached commutator, this being 
the prototype from which derived the direct current machines with commutator. 

The self-induction phenomenon was discovered by Joseph HENRY (1797 – 1878) in 
the year 1832. 

The conversion into heat of the energy due to electric currents flowing through 
conducting wires is called electro-heating effect. 

James Prescott JOULE (1818 – 1889) carried out experimental research on the heat 
generated by electric currents. He established the relation expressing that the heat 
produced by electro-heating effect, in a given time, is proportional to the square of the 
current, and his results were published in 1840. 

Heinrich Friedrich Emil LENZ (1804 – 1865) made investigations on the variation of 
the resistance of a conducting wire carrying an electric current and showed that the 
resistance increases with temperature, these results were reported in 1833. Afterwards, he 
performed research on the electro-heating effect. 

He also established the statement that an electric current produced by the 
electromagnetic induction phenomenon, in any circuit, flows in a direction such that the 
effect of that current opposes the cause that produced the current. This statement is 
known as the Lenz rule. 

Emil WARBURG (1846 – 1931) and John Henry POYNTING (1852 – 1914) established 
useful relations referring to the transformation and propagation of electromagnetic 
energy. 

The study of electromagnetic field for the case of moving bodies was developed in the 
researches of Heinrich HERTZ (1857 – 1894), Hendrik Antoon LORENTZ (1853 – 1928), 
Hermann MINKOWSKI (1864 – 1909), Albert EINSTEIN (1879 – 1955). 

Lorentz developed the theory of electrons which allowed the explanation of many 
electromagnetic phenomena; he also established the relation for the transformation of co-
ordinates and of time, when passing from a reference frame to another, from the condition 
that the form of Maxwell equations remain unchanged. 
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Einstein developed the Special Theory of Relativity published in 1905, and the 
General Theory of Relativity formulated in the year 1916, a presentation of which can be 
found in [27]. 

The Special Theory of Relativity, is also referred to by one of the following 
denominations: Theory of Special Relativity, Restricted Theory of Relativity, Theory of 

Restricted Relativity. In the framework of the Special Theory of Relativity, Einstein 
obtained the Lorentz transformation relations, without utilizing the Maxwell equations. 

Utilizing the theory of relativity, it has been possible to express the equations of the 
electromagnetic field in a general form for the case of moving bodies. The Theory of 
Relativity implies to assume a constant velocity of light in empty-space with respect to 
any reference frame. This assumption leads to a local time at the points taken in various 
reference systems. 

An interesting interpretation of the Lorentz theory was given by Henri POINCARÉ

(1854 – 1912), [39]. In this interpretation, he stated that when considering a body in 
motion, any perturbation propagates more rapidly along the direction of motion than 
along the cross direction and the wave surfaces would be no more spheres but ellipsoids. 
These considerations have been analysed by Édouard GUILLAUME but their development 
has not been continued [39]. 

It is interesting to be noted that Einstein and Poincaré obtained the same formula for 
the composition of velocities but with quite different derivations. The derivation of 
Einstein starts from relations of Mechanics and the postulates of the Special Theory of 
Relativity, whereas the derivation of Poincaré starts from the transformation relations of 
Lorentz.

After the special theory of relativity became known, it has been possible to derive the 
Maxwell equations starting from the Coulomb formula and the transformation relation of 
forces when passing from an inertial reference frame to another one. 

Several mathematical explanations of the special theory of relativity can be found in 
literature, among which a derivation starting from the four-dimensional structure assumed 
for the universe [37]. 

The theory of relativity has been based on the postulate mentioned above, according to 
which the velocity of light in empty-space is constant with respect to any reference frame. 
This postulate was based on the experiments first carried out by Michelson in 1881, and 
repeated with improved accuracy by Michelson and Morley in 1887. These experiments 
concern the propagation of a monochromatic light, emitted from a source on the Earth, 
taking into account the revolution motion of the Earth around the Sun. For this purpose, 
an apparatus containing an interferometer was used. 

From the mentioned experiments, it follows that the velocity of light on the Earth is 
not affected by the orbital motion of the Earth around the Sun. 

Later, the above postulate was checked by several direct experiments. An example is 
mentioned in [18, p. 4] and refers to the experiment performed in 1964 by Alväger, 
Farley, Kjellman and Wallin. They determined the velocity of photons arisen from the 

decay of o - mesons. It is recalled that from the decay of each of these mesons, two 
photons arise. The velocity of the mesons above was found, using the equations of the 
Special Theory of Relativity, to be very close to the velocity of light. The velocity of the 
photons obtained as mentioned above was found to be very close to that of the mentioned 
mesons, except a very small deviation. Therefore, the velocity of photons was not added 
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to the velocity of mesons and, hence, the velocity of light was not surpassed. Thus, the 
mentioned postulate was verified in this case. 

Despite the success of the theory of relativity it cannot be considered to be a complete 
one. Indeed, there are electrodynamic phenomena that cannot be satisfactorily explained 
by the known theories, the theory of relativity included. Further, an example of such a 
phenomenon will be given namely the experiment of G. Sagnac [28]-[31]. For a long time 
this phenomenon has been mentioned in literature, e.g., by Lucien FABRE [38], although 
not enough analysed. 

The experiment carried out by Georges SAGNAC (1869 – 1928) in 1913, [31], is a very 
curious one. The experiment consists in achieving the interference of two light beams 
travelling in inverse directions along the same way. The light source, the interferometer 
and the reflecting mirrors which ensure the desired paths (ways) for the beams (namely 
approximately a circular trajectory), photographic plate, hence the set of apparatus is 
placed on a disc, outside which nothing related with the experiment occurs. 

The light beams travelling around the same way but in opposite directions are 
reflected from the interferometer to a photographic plate. The disc can rotate with any 
angular velocity .

We recall that the ether (aether), mentioned below, is the denomination of a certain 
substance assumed by certain scientists to fill all space (between particles of air and other 
substances) through which electromagnetic waves and light may be transmitted. However, 
according to several researches, among which the experiment of Albert A. MICHELSON

and Edward W. MORLEY, the concept of ether appears as being non-consistent. 
Sagnac obtained that the time for a light beam to travel around a way parallel to the 

disc surface differed, according to whether the travelling direction was with or against the 
rotation sense of the disc. Hence, the light beams had different velocities with respect to a 
reference frame fixed to the disc. The result, referred to as Sagnac effect, seems to be not 
in concordance with the Theory of Relativity. Indeed, the phenomenon appears, as if 
ether would exist at rest, independently of the existing motion [38, p. 111, 248-251]. This 
result determined many thorough analyses, one of the most recent and interesting being 
carried out in papers [34]-[36].

In these papers, A.G. KELLY made a thorough analysis examining the arguments for 
and against the theory of relativity by considering the Sagnac effect. His analysis is based 
on the most important studies and reports concerning this effect. His main remarks are the 
following ones: 

1º Many experiments performed with a high precision, including laser light, have 
confirmed with a good accuracy the results of the Sagnac experiment. It can be mentioned 
a very precise experiment carried out by investigators using laser-light in a piping system 
filled with a helium-neon gas [35, p. 7]. In fact, the Sagnac effect proves that light does 
not travel with the same velocity in both directions relative to the interferometer on a 
spinning disc [35, p. 10]. 

2º According to the internationally agreed method of synchronizing clocks on Earth, 
using electromagnetic signals, the following three effects are considered [35, p. 10, 16]: 

a. Correction calculated according to the special theory of relativity. 
b. Correction calculated for the difference of the gravitational potential, according to 

the general theory of relativity. 
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c. Correction for the rotation of the Earth about its axis. The last correction 
corresponds to the Sagnac effect (although it is not denominated as such). The last 
correction is necessary because light does not travel around the globe Eastward 
and Westward with the same velocity (i.e., in equal times). 

3º The measurements of high precision made by several investigators showed that the 
velocity of light on the Earth is not influenced by the rotation of the Earth around the Sun 
but it is influenced by the rotation of the Earth about its axis. 

4º Some authors, among which A.G. Kelly, have considered that the Sagnac effect 
could not be explained by the Theory of Relativity. This opinion has been justified, 
because the modification of the light velocity in the Sagnac effect is much greater than 

any relativistic effect, by a factor of the order of magnitude 710 [34, p. 8], [35, p. 14]. 
However, as we have proved, and also described in Appendix 9 of this book, the relations 
obtained using the relationships of the General Theory of Relativity are in good 
agreement with the results shown by the Sagnac effect. 

5º Tests were carried out in order to determine the effect corresponding to the General 
Theory of Relativity on the time indicated by airborne clocks relative to a standard clock 
system fixed on the Earth. The clocks had to be carried Eastward, and Westward, 
respectively by aeroplane in both cases approximately at the same latitude. Atomic clocks 
with caesium were used. The results have not been conclusive because the clocks had not 
sufficient stability required by the experiment [36, p. 5]. 

According to paper [35, p. 22], the light moves on the Earth together with the 
gravitational field of the Earth. 

Kelly has shown the importance of modifying the Theory of Relativity in order to 
avoid the mentioned discrepancies with respect to experiments. 

Other remarks concerning the difficulties in using the Theory of Relativity can be 
found in paper [20]. 

Despite the difficulties encountered in utilizing the Theory of Relativity for explaining 
certain phenomena it can be considered as a very convenient mathematical and physical 
procedure for calculating the electromagnetic field state quantities in the case of moving 
bodies charged with electricity. Also, the Theory of Relativity proved a higher accuracy 
than any other known theory. 

We should add that the derivation of the Maxwell equations starting from the 
Coulomb law, was performed by Leigh PAGE (1882 – 1952) in 1912, and developed 
subsequently by certain authors in several works, among which the following references 
(treatises and textbooks) of the Bibliography [6], [11], [13], [18], [23], [25]. 

Classical Mechanics and classical Electrodynamics when applied for the explanation 
of phenomena produced at atomic scale lead to results which are in contradiction with the 
experimental results. So, for the study of phenomena at atomic scale, the Quantum 
Mechanics also called Undulatory Mechanics has to be used. The bases of these 
Mechanics were built up by Louis-Victor-Pierre-Raymond de BROGLIE (1892 – 1987) in 
1924 and Erwin SCHRÖDINGER (1887 – 1961) in 1926. It is recalled that in Quantum 
Mechanics, the notion of trajectory of a particle does not exist. This circumstance is 
expressed by the non-determination principle (incertitude principle) that was formulated 
by Werner HEISENBERG (1901 – 1976) in 1927 and is one of the fundamental principles 
of Quantum Mechanics. 
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It can be added that certain models proposed by R.L. VALLÉE [20], based on the 
analysis of trapped electromagnetic waves and some principles, allowed the find of 
certain results as by means of Quantum Mechanics. 

It is to be noted that Quantum Mechanics is very useful for both theoretical and 
practical purposes. Indeed, most of the phenomena that occur in semiconductors and 
magnetic materials may be explained only by the use of this mechanics. Also, the 
achievement of new materials (semiconductors and magnetic materials) is related to 
Quantum Mechanics. 

4. THE SYSTEM OF UNITS OF MEASURE 

There are several systems of units that can be used in electromagnetism [42]-[47]. For 
practical purposes at the “Congrès International des Électriciens” held in Paris in 1881, 
the following units of measure have been adopted: ohm, volt, ampère, farad. 

Giovanni GIORGI (1871 – 1950) proposed in 1902 a system of units from which the 
International System of Units, SI (abbreviation from the French denomination Système 

International d’Unités), utilised at present, was derived. In 1935, the International 
Electrotechnical Commission (IEC or in French CEI - Commission Électrotechnique 
Internationale) recommended that preparation be made for the transition to the system of 
units suggested by Giorgi. In this system the basic units were the following: unit of length 
– the metre, unit of mass – the kilogram, unit of time – the second, magnetic permeability 
of free-space – µ0 . This proposal was not universally accepted and instead of the 
magnetic permeability, it was suggested that the fourth basic unit was to be the ampere. 
The corresponding system of units was denoted MKSA. The International System of 
Units denoted SI was adopted by the eleventh Conférence générale des Poids et Mesures 
(General Conference of Weights and Measures) in 1960. The base (basic, fundamental) 
units of this system are the following: metre, kilogram, second, ampere, kelvin (for 
thermodynamic temperature), mole (for amount of substance), candela (for luminous 
intensity). 

In respect to electrical quantities, the SI system differs from the MKSA system by the 
denomination of the unit of magnetic induction that is tesla (T) in the SI system and 
Wb/m2 in the MKSA system. 

It is useful to add the concept of rationalization. The rationalization of the equations of 
the electromagnetic field means the presentation of the main equations, i.e., the Maxwell 
equations, in a form not containing the factor 4 . In this way, certain symmetry in the 
equations connecting electric and magnetic quantities appears. In fact, the rationalization 
consists in adopting for 0  and 0µ  appropriate values in order to ensure the symmetry 
mentioned above. The SI system ensures the rationalization of the equations of the 
electromagnetic field, hence it is a rationalized system of units. 



1. GENERALITIES ON THE THEORY OF THE
ELECTROMAGNETIC FIELD AND ON THE
STRUCTURE OF SUBSTANCE

1.1. FIELD AND SUBSTANCE

Field and substance are fundamental forms strictly connected in which matter exists.
There are many varieties of fields. For the electromagnetic field, the following definition
can be used. The electromagnetic field is a different form of existence of the substance of
bodies, and exists in the regions of space in which ponderomotive actions (forces or
torques) of electromagnetic nature can act on the bodies. By ponderomotive actions of
electromagnetic nature we understand forces and torques exerted on bodies and which
have not a cause of mechanical or thermal nature.

The major part of the properties of the electromagnetic field is indirectly studied by
the effect that it produces (for instance, mechanical and thermal effects), because most of
the manifestation manners of the electromagnetic field are not directly accessible to the
human senses. Only the electromagnetic waves of certain wave-length within 0.4 µm and
0.76 µm are directly perceptible as light waves.

It has been established that the electric and magnetic phenomena are transmitted in
space at a finite velocity even in vacuo, from a body to another. It follows that, in space, a
physical system, termed field, exists and allows the transmission of ponderomotive
actions in space and time. This statement is in accordance with the principle of continuity
[38, p. 230, 231], [1, Vol. I, Arts. 7, 59, 60]; namely two distinct bodies can act to one
another only by an inter-medium. Thus, the action is exerted not at distance, but through a
medium. Therefore, all the laws could be expressed in a differential form between
infinitely close points. At the same time, according to the principle of causality, the laws
can contain only quantities that can be observed directly or indirectly.

In the study of the properties of bodies and generally of their substance, hence media
presented by various bodies, we can distinguish: a – homogeneous media and non-
homogeneous media; b – isotropic and anisotropic media.

Homogeneous medium shows the same properties at all points. Isotropic medium
shows the same properties along any direction.

To any field of physical nature characterized by scalar or vector quantities, there
corresponds a field with mathematical meaning, namely a field of scalars or vectors,
respectively. It means that, to any point of the physical field, there corresponds a scalar or
a vector. The physical field under consideration will be called scalar or vector field,
respectively.

The vectors may be of polar or axial types; thus there are polar vectors and axial
vectors. To any rotation motion of a body about an axis, a vector having the axis direction
is attributed for representing the angular rotation velocity of the body about the axis. In
this case, the vector designates the axis about which the rotation is accomplished. Such a
vector is called an axial vector. The case is similar for the vector representing the torque
acting on a body. To the gravitational force acting on a body, a vector is attributed for
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representing the force. Such a vector is called a polar vector. Starting, for instance, from
the expression of a torque it follows that a vector product bac  yields an axial vector
if each vector from the right-hand side is a polar vector. From the mathematical form of a
polar vector, it follows that its components, in a three-orthogonal rectilinear (Cartesian)
right-handed system of co-ordinates, change their sign if the positive direction of every
co-ordinate axis is inverted. From the mathematical form of the vector product, it follows
that its components, in a system of co-ordinates described above, do not change in sign if
the factors are polar vectors. Consequently, in a vector equation, all the terms must be
vectors of the same type.

The scalar function of a scalar field or the vector function of a vector field depends on
the position vector:

,zyx kjir (1.1)

and may be written r  and rG , respectively:

,,, zyxr
(1.2 a)

.zyx GGG kjirGG (1.2 b)

In the study of vector fields, the use of Vector Calculus is very convenient and will be
utilized further on.

It is worth noting that the terms of direction have to be used in many sentences.
Direction is the course taken by a moving person or thing. The word direction is used
especially for straight-line ways (paths), but it is not compulsory. A direction normally
shows two senses but the word sense will be considered to have the same meaning as
direction. Each of them can be used.

Certain concepts that often occur in a study of the electromagnetic field will be further
considered.

1.2. LINES OF FIELD.  TUBES OF LINES OF FIELD.
EQUIPOTENTIAL SURFACES.  FLUXES.

1.2.1. Lines of Field

A line of field also termed a line of force, is a curve that is tangent at any point to the
vector of the field strength at that point (Fig. 1.1). Hence, starting from any point of a
vector field, and adding up, from this point, along the direction of the field strength an
infinitely small straight-line segment, we obtain a next point, after the starting point, of
the line of field. Continuing in this manner, we shall obtain the curve representing the line
of field that passes through the given starting point.

In accordance with the definition given for the lines of field, it follows that the
element of a line of field is:

.dddd zyx kjil (1.3)
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Fig. 1.1. Explanation concerning the lines of field:
a – line of field; b – tube of field lines.

The element of a line of field and the field strength vector at the same point are homo-
parallel (i.e., parallel and of the same direction). It follows that in a three-orthogonal
rectilinear system of co-ordinates we have:

.
ddd

zyx G

z

G

y

G

x
(1.4)

In the case of a scalar field, by line of field we understand the line of field of the
vector field, the vector at any point being the gradient of the scalar field at the same point.

In the case of a vector field of the velocities of the particles of a fluid in motion, the
vector at any point being the instantaneous velocity of the particle of the moving fluid,
the field lines are called lines of current. In the case of a force field, they are called lines

of force (denomination also used in the case of any vector field).
We may imagine each line of field represented by a thread (thin cord, thin rope)

having at every point the direction (sense) of the field vector at that point. Moreover, the
lines can also be supposed to be elastic. Then, they can suggest the forces that could
appear in the considered field. As an example we may consider the lines of force between
two bodies charged with electricity of opposite sign. The lines of force can suggest the
attraction forces exerted between the two bodies.

Further on, we shall make some remarks concerning mathematical aspects.
The lines of field of a potential field with sources (i.e., the case of a field

caharacterized by the curl equal to zero and the divergence different from zero, at any
point) are open lines. These lines diverge from the positive sources of the field (i.e., the
points where the divergence is positive) and converge towards the negative sources of the
field (i.e., the points where the divergence is negative).

The lines of field of a curl solenoidal field (i.e., a field with the curl different from
zero and the divergence equal to zero, at any point) can be: a – lines of a relatively simple
form which are closed at finite distances or at infinity; b – lines of relatively complicated
form, which may be closed lines as well as open lines, as certain conditions are fulfilled
or not.

G

G

a b
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A case of type b given in literature [7] is that of the magnetic field lines corresponding
to the following configuration of two electric currents: One current flows along a
circumference, the other flows along a straight line perpendicular to the plane of the
circumference at its centre.

The lines of field are also termed flux lines.

1.2.2. Tubes of Field Lines

A tube of field lines is called a surface formed by a set of field lines (of a vector field)
which pass through all the points of a closed simply curve, and has the form of a tube.

The concept of tube of field lines has a geometrical meaning only in the case of the
field lines of type a.

1.2.3. Equipotential Surface

Equipotential surface is called a surface, in a scalar field, formed by the set of points
for which the field scalar has the same value.

For a given scalar field zyx ,, , it is possible to deduce a gradient vector as

zyxzyx ,,grad,,a , where the plus or minus sign has to be taken according to

the adopted convention. Therefore, the vector field zyx ,,a  derives from the potential

zyx ,,  of the scalar field. This is the case in which the concept of equipotential
surface is important.

In the case above, equipotential surface is thus the surface formed by the set of points
for which the potential has the same value:

.const,, zyx (1.5)

The equipotential surfaces serve to the study of a scalar field (e.g., the field of an
electrostatic potential) from the qualitative point of view, because it permits to follow the
directions along which the scalar function increases, decreases or remains constant. In
addition, from a quantitative point of view, it permits to appreciate the rate of variation of
the scalar field function.

The equipotential surfaces, as stated above, are surfaces on which the scalar potential
(from which the vector field derives) shows the same value at any point. In this situation,
the lines of the vector field are the orthogonal trajectories of the equipotential surfaces.
Let us give some examples according to the nature of the vector field: Surfaces of equal
electric potential (in electrostatic or in electrokinetic stationary fields); surfaces of equal
magnetic potential (in magnetostatic fields); surfaces of equal potential of velocity (in
fluids, in non-turbulent flow); surfaces of equal gravitational potential (in gravitational
fields). The equipotential surfaces are also called level surfaces.

1.2.4. Flux

The concept of flux is generally used to characterize the transmission rate of a
conservative quantity (for instance a liquid) through a surface. The flux through (or on) a
surface is equal to the conservative quantity (e.g., quantity of fluid) that passes through
the surface per unit of time.
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Consequently, the flux is expressed by the surface-integral of a quantity also called
flux density, and characterizes the transmission rate of the quantity through the surface
under consideration. This quantity can be a conservative one. It may be a scalar or a
vector one. Let us give examples of scalar and vector conservative quantities. Examples
of scalar quantities: Mass, volume of incompressible fluids, energy. Examples of vector
quantities: Momentum (also called quantity of motion), electric field strength, electric
displacement (electric induction), magnetic induction. The flux of an incompressible
volume of liquid is termed flow rate.

Let us calculate the flux  of any conservative scalar quantity W  characterized by
the flux density vectors P , through a surface :

,dd SnPSP (1.6 a)

where the surface  may be an open or a closed one, according to the considered case,
and n  is the unit vector of the normal at any point of the surface.

Further on, the closed surfaces will be denoted by capital Greek letters, e.g., ,
whereas the open surfaces by capital Latin letters and sometimes with an index that
denotes the curve bounding the open surface, e.g., S , where  denotes the curve that
bounds the surface S.

If no mention is made, by a closed curve  we shall understand a simple closed curve.
If a point or a point-like body moving along a curve (also expressed around a curve,
especially if the curve is a closed one) always in the same direction, after having started
from any point of that curve, will arrive at the starting point passing only once through
each point of the curve, this curve will be considered as a simple closed curve.

Also, if no mention is made, by an open surface bounded by a closed curve we shall
understand a simply connected open surface (i.e., without holes).

Generally, in a field of vectors rG , the flux is called the surface-integral of the
component of the vector G  along the direction of the normal to the surface :

,dddd SGnGnGnSSG zzyyxxn SGGn (1.6 b)

where the unit vector of the oriented normal also referred to as the unit vector of the
positive normal, namely n  at any point of the surface is adopted as explained below. For
a closed surface, the positive normal is oriented outwards the surface. For an open surface
bounded by a simple closed curve, the positive direction of the normal is associated,
according to the right-handed screw rule, with the positive direction of travelling along
the curve, the latter being adopted arbitrarily. Although the adoption of the travelling
direction along the curve is arbitrary, however imprecision cannot appear, because in the
concerned equations, both directions simultaneously occur (direction of travelling along
the curve and direction of the normal to the surface bounded by the curve).

In Fig. 1.2, there are represented the directions that occur in the calculation of the flux
for three cases: Closed surface, open surface, manifold open surface (i.e., formed by
several sheets). Fig. 1.2 c concerns the calculation of the flux of a vector through an open



General Theory of the Electromagnetic Field36

Fig. 1.2. The reference directions to the calculation of fluxes for:
a – closed surface; b – open surface; c – manifold open surface.

surface bounded by a curve forming several near loops (the case of a helix). The surface
is a helical one.

We shall recall the generation of a helical surface. Consider a straight-line segment
having one end at any point on one axis with which the segment forms a constant angle.
Let the segment rotate about the axis, and simultaneously the point representing the end
above to move along the axis with segments proportional to the arc of rotation of the
segment. The curve described by each point of the segment will be a helix. The surface
described by the segment will be a helical surface.

In the case of the helical surface, it follows that this flux is, in fact, equal to the sum of
fluxes through every loop.

The flux corresponding to all loops is referred to as linked flux or flux-linkage. The
flux through a single sheet is referred to as flux-turn.

Each tube of field lines containing a flux equal to the unit may be associated with a
central line of field. This line may be referred to as unit field line or unit flux line. Then,
the flux through any surface will be equal to the number representing the algebraic sum
(i,e., taking into account the sense of the lines) of the unit field lines that pass through the
surface.

1.3. PHYSICAL QUANTITIES. LAWS AND THEOREMS.

The characterization of physical states and phenomena is achieved by means of
physical quantities. A detailed analysis referring to physical quantities has been made in

n
n

S

n

n

a b c

S
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several works [1], [8], [11], [21], [22]. Further on, some principal aspects will be
explained.

A kind of a physical quantity (in French, espèce de grandeurs physiques) is a class of
physical properties susceptible of quantitative determination. For defining the kind of a
physical quantity, it is necessary to know the measuring procedure and the unit of
measure. The choice of the unit of measure is arbitrary. As examples, the following three
kinds of quantities utilized in electromagnetism will be given: Electric charge, electric
field strength, magnetic field strength.

A kind of physical quantity characterizes a common property of the elements (objects)
of a set of physical objects. To identify a common property of a set of physical objects, it
is necessary that a relation of order should exist between these objects.

A measure procedure is a repeatable experimental operation, by which, to each
physical quantity it is possible to associate a mathematical quantity called value or
magnitude in respect to a physical quantity termed unit.

According to the manner of introducing, the kinds of physical quantities can be
divided into the following ones: Kinds of primitive quantities and kinds of secondary
(derived) quantities (in French, espèces de grandeurs primitives et espèces de grandeurs
secondaires ou dérivées), also termed primitive and secondary (derived) quantities,
respectively (in French, grandeurs primitives et, respectivement, grandeurs secondaires
ou dérivées). The kinds of secondary (derived) quantities can be defined by means of
other ones supposed as being known, hence introduced previously. The kinds of primitive
quantities have to be introduced directly, by experimental way, and described by the
measurement procedure, because they can no more be defined by means of quantities
introduced previously.

In electromagnetism, apart from the primitive quantities of mechanics (length, time,
mass, force), a series of new primitive quantities is necessary for characterizing from an
electromagnetic point of view the state of bodies and of the electromagnetic field.

A system of units contains fundamental and derived units (in French, unités
fondamentales ou de base et unités dérivées). The fundamental units have to be
determined directly, experimentally (e.g., the metre). The derived units are derived by
using the fundamental units (e.g., the square metre). The fundamental units must not be
those of the primitive quantities, but those of the quantities that frequently appear in
practice.

The laws express relations that are essentially necessary and repeatable between
phenomena. In physics, laws are called the relations that express the most general
knowledge on the phenomena of a research domain. They reflect the objective properties
(of phenomena) that cannot be deduced by logical analysis (in the framework of the
respective research field) from more general relations. The laws are established by the
generalization of a great number of experimental results. In the theory of the
electromagnetic field, there are general laws and material laws also called constitutive

laws. The material laws differ from the general ones by the fact that they contain in their
expression quantities specific to various materials, called material quantities.

The relations that can be deduced by logical analysis from other more general ones,
and finally from laws, are called theorems.

It is useful to mention that there are relations that, at the time at which they were
established, had law character but subsequently, after the progress of science, more
general relations were discovered and the first ones could be derived or have represented
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particular cases. Therefore, many relations that have a theorem character are called, by
historical reason, laws. Further, for more clarity, when necessary, each denomination will
be mentioned.

The examination of various quantities may be made in two ways, as the structure of
bodies is taken into consideration. Consequently, two manners of studying quantities and
phenomena naturally appear: The microscopic manner of the study and the macroscopic
one. Correspondingly, there are a microscopic theory of the electromagnetic field and a
macroscopic theory of the electromagnetic field.

1.4. MANNERS OF STUDYING THE THEORY OF
THE ELECTROMAGNETIC FIELD

1.4.1. The Macroscopic Study of the Electromagnetic Field

The character of the macroscopic study (from the Ancient Greek; µ  (makros)
means long and  (skopeo) means look at or examine) results from the fact that, in
the framework of the study, the atomic structure of bodies is not taken into consideration;
it is assumed that the substance is continuously distributed throughout the whole space. In
the case of macroscopic study, all relations are obtained by an analysis of the mode in
which the phenomena manifest themselves at the scale of the human senses.

1.4.2. The Microscopic Study of the Electromagnetic Field

The character of the microscopic study (from the Ancient Greek; µ  (mikros)
means small and  (skopeo) means examine) results from the fact that, in the
framework of the study, the atomic discontinuous structure is taken into account.

1.4.3. Generalities Concerning the Microscopic Study of
the Electromagnetic Field

The microscopic study of the electromagnetic fields takes into account the atomic
discontinuous structure of bodies.

It is recalled that all bodies are constituted of atoms, and an atom of each body is
composed of relatively light bodies called electrons that have negative charge, and of a
relatively heavy nucleus. The nucleus is essentially constituted of protons, particles that
have a positive electric charge, and neutrons, particles that have no electric charge.

The electron is the smallest material particle with an indivisible negative charge. The

electric charge of an electron is 1910602.1e C, and its mass is

kg109108.0 30
em .
The proton is a particle with a positive electric charge equal in absolute value to that

of electron, and its mass is kg10672.1 27
pm , hence approximately 1836 times

greater than the mass of electron. The neutron is a particle with zero electric charge, but
with the mass approximately equal to that of the proton.
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The substance is constituted of molecules that are formed of atoms. According to the 
Rutherford-Bohr-Sommerfeld atomic model, the substance presents itself in the form of 
planetary systems, each atom consisting of a nucleus with positive electric charge and of 
one or more electrons that turn about nucleus around closed orbits. 

Concerning the form of a nucleus and of an electron, the simplest proposal is to 
consider them as being of spherical form. However, this supposition is not satisfactory 
and it is necessary to use the Quantum Mechanics. Also, there are possibilities of using 
models that permit to obtain results close to the various ones obtained experimentally [20, 
p. 64]. 

The dimensions of nucleus and electrons, in the framework of the simple physical 
model above, are so small, that in many phenomena, the atomic nuclei and the electrons 
can be considered of negligible dimensions. Hence, they can be considered as material 
points or point-like bodies with electric charge and mass. The study of the nucleus 
structure does not enter into the frame of the present work, and belongs to the domain of 
Nuclear Physics. 

It is useful to be mentioned that, generally, one of the aims of Physics is the 
determination of the number, repartition and character of the particles charged with 
electricity which characterize the nature of bodies. Let us give the following example: 
The derivation of the laws of chemical and physical phenomena, by the aid of interaction 
laws of particles with electric charge. 

The single important exception is represented by the phenomena in which an 
important function is represented by forces of mechanical nature (gravitation forces, 
elastic forces, capillary forces, friction forces, etc.) and nuclear forces, because only these 
forces cannot be reduced to the action of electric charges. 

The characterization of the local state of the electromagnetic field in the macroscopic 
theory may be done by the help of local state quantities of the field: The electric field 
strength, the electric displacement (electric induction), the magnetic field strength, and 
the magnetic induction that will be further studied. 
 

1.4.4. Macroscopic Average (Mean) Values 
 

The macroscopic properties have to be described by means of macroscopic quantities. 
Macroscopic quantities are the quantities obtained by determining the average (mean) 
values of microscopic quantities for space domains and time intervals that are physically 
infinitesimal quantities (physically infinitesimal is in French, infiniment petit au sens 
physique [3, p. 408]). These mean values are called macroscopic average (mean) values. 

By a physical infinitesimal domain of space (also called of volume) we understand a 
domain small enough, from a macroscopic point of view for, within it, the macroscopic 
quantities show a negligible variation with distance, and at the same time, great enough, 
from a microscopic point of view. The last condition means that the domain must contain 
a very great number of particles, i.e., molecules, atoms and elementary particles. 

By a physical infinitesimal interval of time we understand a time interval small 
enough, from a macroscopic point of view for, within it, the macroscopic time-dependent 
quantities show a negligible variation with time, and at the same time great enough, from 
a microscopic point of view. The last condition means that the time interval must have the 
duration much greater than the duration of processes occurring at microscopic scale, i.e., 
molecular or atomic scale. 
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The value of a physically infinitesimal volume depends on the nature of the substance

and can be considered of about 35 cm)10( . It can also be mentioned that the processes
occurring at microscopic scale (e.g., the variation of the electric field strength) are
depending on the period of the orbital motion of electrons [18, p. 50]. This period is of

about 1610 s. In fact, infinitesimal means infinitely small.

1.4.5. Manner of Studying Adopted in the Present Work

In the engineering practice, the study of phenomena at macroscopic scale is of a
particular interest, however, in many cases, it is necessary to know the phenomena at the
microscopic scale, as is the case of devices with semiconductor elements, elements of
integrated circuits, devices with discharge in air, etc. Taking into account the physical
model, often relatively simple in the microscopic study, the following procedure will be
used: Firstly, the various quantities and phenomena at microscopic scale will be studied,
then, by calculating the average (mean) values, the phenomena at macroscopic scale will
be considered.

As starting point, the expression of the Coulomb force acting between two material
points with electric charge will be taken into account.

Considering material points with electric charge, in motion with respect to various
systems of reference (i.e., reference frames), and taking into account the transformation
relations of the components of a force from the Special Theory of Relativity, the general
relations of the Theory of the electromagnetic field can be obtained.

It is often stated that the observation of relativistic effects requires great velocities of
moving bodies and measurements of high precision. However, in Electromagnetism,
relativistic effects are encountered even in the case of small velocities compared to the
velocity of light. The component of the force referred to as being of magnetic nature and
which acts upon a moving material point with electric charge, is a relativistic component.
It represents a supplementary confirmation of the importance presented by the theory of
relativity.

The study of phenomena encountered in electromagnetism at microscopic scale
requires the Quantum Mechanics. It is to be noted that by certain improvements of the
models of various particles, the same results can be obtained for certain cases without
utilizing the Quantum Mechanics [20].

1.4.6. Laws of the Theory of Electric and Magnetic Phenomena

From the explanation concerning the laws, it results that they can be grouped
(classified) as follows. The macroscopic theory of electric and magnetic phenomena is
considered to have twelve important laws, nine of them being general laws and three of
them material laws.

The general laws are the following:
1. The law of electromagnetic induction.
2. The law of magnetic circuit (the magnetic circuital law).
3. The law of electric flux (the Gauss law).
4. The law of magnetic flux (the law of flux conservation).
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5. The law of the relationship between electric displacement (electric induction),
electric field strength and electric polarization.

6. The law of the relationship between magnetic induction, magnetic field strength,
and magnetization.

7. The law of conservation of free (true) electric charge.
8. The law of the energy transformation in a body carrying conduction electric

current.
9. Law of electrolysis.

The most important material laws are the following:
1. The law of temporary electric polarization.
2. The law of temporary magnetization.
3. The law of electric conduction.
To the general laws, the law of ponderomotive action upon a charged particle at rest

can be added, and is referred to as law of ponderomotive action. However, it is included
in the definition of the electric field strength.

The law of electrolysis will not be examined in this work. An explanation of this law
can be found in works containing sections devoted to Electrochemistry [23], [48], [49].

The material laws exist only in the macroscopic theory. The material laws can be
deduced from microscopic general laws under certain assumptions.

Four types of fundamental quantities macroscopically characterize the electromagnetic
state of bodies: Electric charge q, electric moment p , density of the conduction electric
current J , magnetic moment m .

The state of the electromagnetic field is macroscopically characterized by the
following types of quantities: Electric field strength E , electric displacement (electric
induction) D , magnetic field strength H , magnetic induction (magnetic flux density)
B . These kinds of state quantities are introduced by the help of two kinds of fundamental
quantities: Electric field strength in vacuo E  and magnetic induction in vacuo B . The
electromagnetic state of bodies and of the electromagnetic field is microscopically
characterized by three kinds of fundamental quantities: Electric charge q , electric field
strength E , magnetic induction B .

The microscopic theory of electric and magnetic phenomena has five general laws:
1. The law of electromagnetic induction.
2. The law of magnetic circuit or magnetic circuital law.
3. The electric flux law (Gauss law).
4. The magnetic flux law (the magnetic flux conservation law).
5. The law of ponderomotive action upon a moving electrically charged particle.
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1.5. GENERAL CONSIDERATIONS ON THE STRUCTURE OF
CONDUCTORS AND DIELECTRICS

1.5.1. Electrically Conductive Materials

The electrically conductive (conducting) materials are substances that, in normal
conditions of use, have good electricity conducting properties (therefore they permit the
rapid moving of particles charged with electricity within their interior).

The objects, pieces built of electrically conductive materials are called electric

conductors or simply conductors.
There are two kinds of conductors:
a. Conductors of the first kind, in which, no chemical reaction occurs when they are

carrying an electric current. This is the case of metals, metal alloys, carbon,
semiconductors.

b. Conductors of the second kind, in which, chemical reactions occur when they are
carrying an electric current. This is the case of electrolytes.

In metals, a part of the electrons that belong to the structure of an atom leaves the
atom (hence they are delocalized), for this reason, these electrons are referred to as free

electrons. These free electrons can move to large distances inside the conductor, ensuring
the displacement of electric charges.

The conductors of the second kind contain in their structure ions. Every ion has an
exceeding electric charge with respect to the neutral state. The ions can move to relatively
large distances inside the conductor, ensuring the displacement of electric charges.

The earth also shows conducting properties. Therefore, in conductors there are
particles that can displace themselves, carrying electric charges. They can be called free

charged particles or free electric charges.
The most utilized materials in construction of installation and electrical equipment are

copper and aluminium because of their great conductivity. Also, alloys of copper with
other elements are used. The conductors are produced in form of wire or strip. The cross-
section of a wire may be circular or rectangular.

The conductors are insulated for achieving various circuits and for avoiding defections
or accidents. When an electric current flows through a conductor, this conductor heats
and it is necessary to take into account that the utilization temperature is limited. For a
non-insulated conductor, the limitation is determined by the mechanical strength of the
equipment at high temperature. That is why, temperature of 200 – 300 ºC may not be
surpassed.

For insulated conductors, the limitation is determined by the utilisation of the
temperature of the insulation.

For achieving contacts, the following materials are utilized: Copper, silver, tungsten
(wolfram), in pure form or alloys with other elements or in the form of sintered powders.

1.5.2. Dielectrics

Dielectrics are substances that in normal conditions in which they are utilized, are bad
electricity conductors (i.e., they permit with difficulty the moving of electric charges),
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because in general they do not contain free microscopic particles charged with electricity,
which could displace themselves to relatively large distances.

Insulating materials are adopted from dielectrics. Any piece called insulator is
achieved of an insulating material.

Dielectrics are solid, liquid or gaseous substances formed of systems of electric
charges, namely neutral small domains (hence, the sum of electric charges of the interior
of each domain is zero).

Dielectrics may be divided, from the point of view of the distribution of electric
charges, into two fundamental groups: Polar and non-polar.

Dielectrics with polar and non-polar molecules have both positive and negative
electric charges, equal in absolute value. The centre of mass of the particles with positive
charge and with negative charge, respectively, may coincide (first case) or not (second
case) in space, depending on the type of molecule, i.e., of the substance. In the first case
the molecule has an electric moment only in the presence of an external electric field. In
this case, it is a non-polar dielectric. In the second case, the molecule has an electric
moment even in the absence of an external electric field. In this case, it is a polar
dielectric.

Examples of non-polar dielectrics: Mono-atomic inert gases (He, Ne, Ar, Kr, Xe),
diatomic gases ( 2H , 2N , 2Cl ), hydrocarbons and hydrocarbon composition (petroleum

oils, polyethylene, polystyrene), carbon dioxide ( 2CO ), methane, benzene 66HC ,
NaCl (ionic crystals).

Examples of polar dielectrics: Hydrocarbon when some atoms or groups of atoms
substitute hydrogen atoms like nitrobenzene ( 256 NOHC ), methyl chloride ClCH3 ,
water (a typical polar substance) having the electric moment of a molecule

mC101.6 30p . In the above cases, hqp d ; C10 19
dq ; m10 10h .

In the case of dielectrics, the particles charged with electricity cannot leave the system
of particles, namely atoms, molecules, ions, to which they belong. Always, the sum of
electric charge is zero for the system to which they belong, that is why these particles are
called bound particles, and the corresponding electric charges – bound electric charges.
Dielectrics can be charged by free electric charges, brought from outside.

Dielectrics may be divided from the point of view of the distribution of electric
charges and types of molecules into the three following groups:

a. Dielectrics constituted by particles grouped in neutral molecules. This is the case
for all dielectrics in gaseous or liquid form and for a part of those in solid form.

b. Dielectrics that besides the particles grouped in neutral molecules also contain
ions, the last being fixed in certain equilibrium positions, for instance at the nodes
of the crystalline lattice of the body. The ionic crystalline lattices are composed of
elementary domains, and each domain is charged with positive and negative
charges equal in absolute value, so that the domains globally appear as neutral.
This is the case especially for crystalline dielectrics like quartz, mica, anhydrous
oxide of aluminium, rutile ( 2TiO ).

c. Dielectrics that besides neutral molecules also contain molecules charged with
positive and negative charges equal in absolute value, called dipolar molecules.
This is the case of organic materials (cellulose, heat-convertible materials), glass,
glass materials, certain crystalline dielectrics (ice).
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Electrically insulating materials are used for the insulation of the parts of the
installations that are at an electric potential difference (voltage), carry an electric current
or are used in various electrical devices. The insulation of conductors is necessary, as
shown, in the achievement of installations, and for avoiding damages and accidents.

The electrically insulating materials can be classified according to the allowable
operation temperatures. These values have been established, taking into account the
operating conditions, for obtaining satisfactory service duration.

The electrically insulating materials are in gaseous liquid or solid form:
1. Gaseous form: Gaseous dielectrics.
2. Liquid form: Petroleum oils, synthetic liquids like silicon liquids.
3. Solid form: Polymers composing thermoplastic materials, cellulose, silk,
thermosetting materials (thermohardening materials), varnishes, compounds, plastic
compounds of binder (organic polymer capable of deformation) and powder like filler,
fibrous or sheets of cotton, mica, paper, fibrous materials, glasses, ceramic materials.

1.6. ELECTRIC CHARGE.  ELECTRIC FIELD STRENGTH IN VACUO

1.6.1. Electrification State.  Electric Field.

First, the state of electrification of bodies will be considered. We shall consider a set
composed of a piece of polished glass and a piece of resin, with no mechanical actions
between them. Let the piece of glass and the piece of resin to be rubbed together, and then
separated from each other. The two pieces will attract each other. We shall consider a
second set also composed of a piece of polished glass and a piece of resin. The pieces of
the second set will be subjected to the same operation as the pieces of the first set. We can
observe that between the pieces above, ponderomotive actions are exerted as follows:

1. Each piece of glass attracts each piece of resin.
2. Each piece of resin attracts each piece of glass.
3. Each piece of glass repels each other piece of glass.
4. Each piece of resin repels each other piece of resin.
5. Each piece of glass as well as each piece of resin does not exert a force on a set

composed of a piece of glass and a piece of resin that have not been separated.
Therefore, ponderomotive actions that did not exist previously appear. In this

situation, the system formed by certain or by all bodies above is considered to be
electrified, and each of these bodies is considered to be an electrified body.

This type of electrification is called electrification by friction. Electrified state of
bodies is called any state in which these bodies exert ponderomotive actions of electrical
nature upon other bodies, i.e., actions of the same nature with the one exerted by the
bodies electrified by friction.

If a body has the same behaviour as the piece of glass above, the body is considered as
vitreously electrified. If a body has the same behaviour as the pieces of resin above, the
body is considered to be resinously electrified. Conventionally, the vitreously
electrification was called positive electrification and the resinously electrification was
called negative electrification.
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The positive electrification of a piece of glass can also be obtained by friction with a
piece of cloth or texture. It is worth noting that the non-polished glass will not be
electrified. Details are given in the work [12, tome III, p. 362].

The electrification by friction appears on the contact surfaces of two bodies, at least
one of them being a dielectric (insulating material), as a result of friction when the two
bodies are in relative motion. In the case of non-metallic bodies, electric charges, i.e.,
electrons, are delivered on a superficial film (pellicle) as a result of friction abrasion.

From a microscopic point of view, the electrification state of a body means that it is in
the situation of having an excess or lack of electrons.

It was experimentally established that there is a great number of possibilities for
electrifying a system of bodies: By contact (temporary or permanent) with electrified
bodies, by deformation, by thermal action, by irradiation.

The electrification can be communicated from an electrified body to a non-electrified
one, by contact or by influence. It is useful to mention that the electrification by influence
means in fact a modification of the repartition of the electric charge, i.e., of the electrons
in a conducting body under the influence of the charge of another body.

According to the transmission duration of the electrification state, the materials can be
divided into three categories:

a. Electric conductors or simpler conductors that transmit the electrification state in

a very short time, of the order of 1210  s, thus nearly instantaneously. The bodies
made of such material are also called conductors.

b. Electric insulators or simpler insulators that transmit the electrification state in a
very long time of the order of hours or days.

c. Semiconductors that transmit the electrification state in an intermediary time, of
the order of second fractions.

The ponderomotive actions that are exerted on the bodies situated in the
neighbourhood of electrified bodies make evident the existence of the electrified system,
in the space surrounding the electrified field.

In accordance with the general definition of Section 1.1, electric field is called the
physical system that exists in the space regions in which ponderomotive actions (forces
and torques) of electric nature can act on bodies.

The interactions between electrified bodies are produced by means of electric field
produced by the electrified bodies. This fact was established by Faraday and Maxwell.
The preceding statement represents, in fact, a general rule accepted in Physics and called
principle of continuity: Two bodies can interact only by means of an intermediary
medium (i.e., throughout the intermediary medium between the bodies). Hence all laws
have to be expressed in a differential form concerning points infinitely close to each
other.

1.6.2. True Electric Charge (Free Electric Charge)

The mechanical and thermal quantities do not suffice for the study of the
electrification state and of the electric field. Therefore, it is necessary to introduce
experimentally new physical quantities that will be primitive (fundamental) quantities in
the framework of the theory of the electromagnetic field.
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From Sub-section 1.6.1, it follows that there are two kinds of electrification state:
positive and negative. The electrification state of an electrified body, namely the
electrified piece of resin of Sub-section 1.6.1, will be considered as reference state. This
electrification state is, as shown, negative.

To introduce the physical quantity called true (free) electric charge; the following
measuring procedure can be used. All bodies under consideration in this procedure are
considered to be very small, i.e., their dimensions are negligible compared with the
distances between them.

Several small bodies in identical electrification state will be considered. All these
bodies will be termed reference bodies.

As shown in Sub-section 1.6.1, no ponderomotive force acts on the system composed
of a piece of glass and a piece of resin if the system is under the action of an electrified
body, hence, if it is in an electric field. This system is called neutral system. The
operation of bringing together two or several electrified bodies, so that the resulting
system will not be subjected to a ponderomotive force, in an electric field, is called
neutralization. Therefore, the true electric charge of any body is proportional to the
number of reference bodies necessary for the neutralization of the given body.

The unit (of measure) of the true (free) electric charge may be adopted by convention
that of one reference body, [8, Vol. I], [23, Vol. I, p. 46].

The proportionality constant is the negative unity. In this case, the true (free) electric
charge of the given body is equal to the number of reference bodies and with opposite
sign with respect to the last ones.

Hence, the electric charge has been introduced in a non-correlative way, i.e.,
regardless of the electric field strength. At the same time, it follows that the electric
charge introduced in this way is independent of the reference frame (reference system) or
of the velocity. The previous terms true and free can be considered synonyms, however
certain authors are using the term true in the macroscopic approach and free in the
microscopic approach.

It is to be noted that the electric charge of a moving body does not vary like the mass
of the body with the velocity. This fact has been established experimentally observing
that, in the case in which the number of protons of one atom nucleus is equal to the
number of electrons turning about the nucleus, the neutral state of atoms is maintained,
although the velocity of electrons and nuclei, respectively, are different. For this reason,
hydrogen atoms or molecules are not deflected by an electric field. This fact is referred to
as constant charge principle [18, p. 17].

It follows that the true electric charge is a property of bodies, characterized by a scalar
quantity proportional to the number of electrons that are not neutralized by the positive
charge of the nuclei of the constitution of bodies. The electric charge of a body is
negative if it is an excess of electrons and positive if it is a lack of electrons. From the
microscopic point of view, the electric charge is distributed among the microscopic
particles of the respective body. Each microscopic particle of a certain type has always
the same electric charge. From a microscopic point of view, the electric charge is
distributed discontinuously in space.

From a macroscopic point of view, it is assumed that the true (free) electric charge,
like the substance, is distributed continuously within the whole domain occupied by the
considered body. Therefore, the macroscopic representation is an idealized one but
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permits, in many applications, to simplify the calculations and ensures a very good
accuracy.

The true electric charge and electric field strength in vacuo are primitive
(fundamental) quantities in the framework of the microscopic theory, as well as in the
framework of the macroscopic theory of the electromagnetic field. The particles with
electric charge, like electrons and ions, which can move carrying electric charge, are
called electric charge carriers.

In many cases, it is necessary to consider small bodies with electric charge. Since the
electric charge, as mentioned above, is a property of bodies, the more exact wording is
one of the following: A small body charged with the electric charge q; a point-like charge

q; a point charge q.
The electric charge of a body is also denoted by q and can be termed electric charge

or quantity of electricity.
The unit (of measure) of electric charge in the SI system of units is the coulomb

(symbol C); its definition will be examined in Section 1.15.

1.6.3. Density of Electric Charge

The local state of electrification is characterized by the volume distribution of the
electric charge. The volume density of the electric charge at any point of the body is
defined as the ratio of the following quantities: The electric charge, denoted q ,
contained within the domain bounded by a small closed surface  including that point,
and the volume v  bounded by the above surface, which is a physically infinitesimal
volume. As a macroscopic quantity, the electric charge may be considered continuously
distributed in the space occupied by any body. In this case, the macroscopic volume

density of the electric charge may be introduced in the form:
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The electric charges may sometimes be distributed in a very thin layer over certain
surfaces. Then, the idealized macroscopic case will be considered. In this case, the
electric charge is distributed on these surfaces, considered as discontinuity surfaces.
Therefore, the macroscopic surface density of the electric charge may be introduced in
the form:
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The electric charges may sometimes be distributed very non-uniformly and may be
concentrated about certain lines. Also, the idealized macroscopic case will be considered.
In this case, the electric charge is distributed along these lines, considered as discontinuity
lines. The macroscopic line density of the electric charge may be introduced in the form:
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The domains v , S , l  above utilized, in the denominators of relations (1.7), (1.8),
(1.9), were firstly considered physically infinitesimal space quantities, but when assuming
a continuous distribution of the electric charge they are assumed as tending to zero.

In many cases, it is necessary to calculate the average value with respect to space and
time that may be denoted by the suffixes v  and t  respectively.

The quantity obtained by calculating the average value of the microscopic values may
be designated by writing that microscopic quantity within the following angle brackets

suffix
 and the subscript of the second sign (here written suffix) indicates the quantity

with respect to which the average value has to be calculated. If the average value has to
be calculated with respect to two or more variables, then, the microscopic quantity will be
written between two or more pairs of signs, as above, with the corresponding subscripts.
If only a pair of signs is used and no suffix is written, it is considered that the average
concerns both, space and time. More details and examples will be given in Sub-section
1.6.6.

The macroscopic electric charge densities above defined are the average values (mean

values) and can be expressed in terms of the microscopic electric charge density:
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The electric charges are also referred to as quantities of electricity, in the cases of
volume, surface or line distribution, respectively, and are given by the following
relations:
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1.6.4. Conservation of the Free (True) Electric Charges

The total electric charge of an isolated system of bodies, i.e., situated in vacuo and
surrounded by insulators, is constant. Certain explanation will be added.

At a given moment, it is possible that a certain electric charge appears in one region
(zone) of the domain, where before no electric charge existed. However, at the same time,
a certain electric charge disappears in another region of the domain. In such cases, the
total electric charge is conserved, namely when in one region of the domain a charge q

appears, a charge q  simultaneously appears in another region, because the number of
charge carriers of the system of bodies remains the same.

1.6.5. The Electric Field Strength in Vacuo

Any reference frame will be considered. Let F  be the force exerted in vacuo (i.e.,
empty space) on a small body with a small free electric charge q  at rest in the reference
frame in which the force is measured. The charge has been assumed to be small enough,
in order of not disturbing the distribution of the other electric charges.
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It can be experimentally established that the ratio between the two quantities does not
depend on the electrification state of the above body, but depends only on the local
electric state of the electric field. Therefore, the following relation can be written:

,
q

F
E (1.12)

where the quantity E  is independent of the true electric charge q . The quantity E  is
called the electric field strength in vacuo. Hence, the electric field strength at a point is
defined in a certain reference frame, as the ratio of the force acting upon a point-like
electric charge at rest at the considered point (with respect to the adopted reference
frame), to the value of the electric charge.

In order to explore an electric field and thus find its strength at any point, a small
body, satisfying the conditions below can be used. The conditions to be fulfilled by the
body are the following:

a. Small enough dimensions, for permitting the measurement of the forces in very
small regions of the field.

b. Small enough electric charge in order of not disturbing the electric state of the
domain.

c. Build of conducting material, electrically very well insulated for permitting an
easy transfer of electric charge.

The small body fulfilling the conditions above is referred to as proof body or test body

(in French, corps d’épreuve). The test body will permit to determine the value of the
macroscopic field strength of the electric field at a point in empty space or in a gaseous
medium, according to the relation:

,lim
0 qq

F
E (1.13)

where F  is the force acting upon the test body and q is the electric charge of the body as
mentioned below. In the case in which a continuous distribution of the electric charge is
assumed, the value of q is supposed as tending to zero, actually, to a value small enough,
different from zero.

Consequently, the following relation can be used in the case of point-like charges:

.EF q (1.14)

Formula (1.14) expresses a general relationship referred to as expression or law of the

ponderomotive action upon one point-like electric charge at rest in the reference frame in
which the force is expressed. It can also be considered as a relation used for defining the
quantity E .

In accordance with relation (1.14), and with the definition of the lines of field of Sub-
section 1.2.1, it follows that a line of field that passes through any point is just the
trajectory of a particle with a very small electric charge (for not disturbing the state of the
field) and with a very small velocity (otherwise the relation is no more valid), which
passes through the considered point. The direction of the line of field is the direction
along which a particle, positively charged, is moving.
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1.6.6. The Macroscopic Electric Field Strength

The macroscopic electric field strength at a point is obtained by calculating the
average value of the microscopic electric field strength. According to the definition, the
macroscopic electric field strength E  at a certain point rN , at the moment t, in any
reference frame will be calculated.

For this purpose, a physically infinitesimal volume v  having at its centre the
considered point, will be chosen, and a physically infinitesimal time interval 0t , will be

chosen so that the moment t  will be at its middle. We shall denote by t,micro rE  the
microscopic electric field strength at a point within the volume element v  at a moment
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tt . The macroscopic electric field strength will be obtained by

calculating the average value of the microscopic field strength by the relation:
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In solids, a physically infinitesimal volume must be much greater than the volume
attributed to an atom assumed to be bounded by a sphere having a radius of about

cm10 8 , but small enough at macroscopic scale. This small volume may be assumed to

be a cube, or a sphere having a radius of about cm1010 54 . In the mentioned small

volume, the number of atoms is of approximately 910 . Another example, a cubic

centimetre of copper contains approximately 2310  atoms and 22105.8  free electrons.
The physically infinitesimal time interval must be much greater than the period of

time variation of atomic phenomena, namely the period of the orbital motion of electrons

is of about s1610 , but small enough at macroscopic scale, therefore it may be assumed

of s1312 1010 .
If a three-orthogonal rectilinear system of co-ordinates is used, the volume v  will be

that of a right parallelepiped having the sides 000 ,, zyx , and it follows:
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From the last relation, it results that [2], [3], [21]:
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where the indices v  and t  refer to the averages with respect to volume (space) and time
respectively.

The last two relations are useful in certain linear relations containing derivatives that
have been obtained for microscopic quantities; the same relations will be valid for
macroscopic quantities.

Within a physically infinitesimal volume and a physically infinitesimal time interval,
the distribution of charges may be assumed as uniform. The average value of the sum of
the forces acting upon the particles charged with electricity and belonging to the
considered small volume will contain the following two terms. The first term will be the
product of the average value of the electric charge q of the volume and the average value
of the electric field strength. The second term will represent the average value of the
product:
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that are not taken into consideration in the macroscopic studies.
It is interesting to remark that the microscopic field strength can vary very much from

one point to another. This aspect will be highlighted by examining the electric field of
electrons. A simple model of an electron is a sphere charged with electricity. The electron
charge may be assumed as distributed over the surface or within the volume of the sphere.
The radius of the sphere attributed to the volume occupied by the electron is of about

cm108.2 13 . The density of the electric charge of this model is very great. The electric
field strength in the electron vicinity is very great and changes its sign at the extremities
of each diameter of the sphere attributed to the electron, thus it shows considerable

variations at distances of the order of cm10 13 .
The average value of other physical quantities can be calculated in the same manner as

above.
Further on, if no special mention is made concerning a quantity, that quantity will be

considered as a macroscopic one.
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1.7. ELECTRIC FIELD STRENGTH IN THE LARGE SENSE

If at a point of any medium, there is a particle with the electric charge q, very small so
that it has a negligible effect on the resultant electric field, and at rest in the reference
frame, the electric field strength at that point is given by the following relation (Fig. 1.3):
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el-nonel FFF
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E

q
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(1.17)

where F is the force acting on that particle, in the same reference frame. The component

elF  is of electric nature and the component el-nonF  is of non-electric nature. The force F

denotes the total force regardless of the nature of its components.
The particle with the electric charge q is assumed as belonging to the considered

medium; it is no more a test body.
The macroscopic field strength at any point of a solid, a liquid or a gaseous medium,

in the framework of the macroscopic theory of the electromagnetic field, is a primitive
(fundamental) quantity. For this reason, it has to be introduced experimentally, hence
directly. This introduction can be done using cavities of certain forms and taking into
account the relations between the field quantities before and after having achieved these
cavities.

The subject has been widely analysed in literature [1], [5], [8], [12], [21].
According to its nature, a field of vectors can have components of two types:
a – Potential component pG , the curl of which is zero at any point of the space, but

the divergence of which may be different from zero.
b – Solenoidal component rG , the curl of which is different from zero at least within

certain regions of the space, but the divergence of which is zero.

Fig. 1.3. Explanation concerning the
electric field strength in the large sense.
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This separation of components can also be used in the case of electric field. According
to the nature of the components of the force F , the electric field strength in the large

sense, lE , may have components of three types:

1º The Coulombian electric field strength, cE , which is produced by electric charges

according to the Coulomb law. This is a potential component, hence Vc gradE ,
where the function V is the potential function.

2º The induced electric field strength (also termed rotational, curl, or solenoidal field
strength), rE , which is produced by the electromagnetic induction phenomenon.

3º The impressed electric field strength also termed extraneous electric field strength

[7, English edition, p. 12] (in French, champ électrique imprimé ou champ électromoteur
[3, p. 135], in German, eingeprägte elektrische Feldstärke [22, p. 109]), iE , which is not
produced by electromagnetic causes, but by non-electromagnetic causes. Among these
causes, the following ones can be mentioned:

a. Mechanical cause, for instance the acceleration of a metallic body that determines
forces which produce a displacement of electrons with respect to the positive ions of the
crystalline lattice of the metal.

b. Thermal or chemical phenomena determining forces which produce a displacement
of electric charge carriers. To every force described above an electric field strength
corresponds according to relation (1.17), and it is called impressed electric field strength.

Therefore, the expression of the electric field strength in the large sense is:

ircl EEEE (1.18)

or

,ncl EEE (1.18 a)

,rc EEE (1.18 b)

,il EEE (1.18 c)

where

irn EEE (1.19)

is referred to as the strength of the electromotive field or the strength of the non-
Coulombian electric field, and

rc EEE (1.20)

represents the strength of the electric field in the restricted sense or simpler the strength

of the electric field.
It can be added that the electric field strength is also referred to as electric field

intensity.
The lines of the vector field E , i.e., lines of electric field strength, also called simply

electric field lines, are the lines at each point of which the vector E  is tangent.
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1.8. LINE-INTEGRAL (CIRCULATION) OF THE ELECTRIC FIELD
STRENGTH ALONG AN ARC OF CURVE.  ELECTRIC
POTENTIAL DIFFERENCE.  ELECTRIC TENSION, VOLTAGE.
ELECTROMOTIVE FORCE.

Generally, in a field of vectors, the line-integral of a field vector round a curve or an
arc of curve, like in the case of a work, is also called circulation along the respective way.
In the case of an electric field, this circulation is referred to as electric tension also termed
voltage, in order to avoid any confusion with a mechanical meaning. This quantity is a
derived one and will also be utilized in the study of the electric field.

A point-like electric charge that is moving with a very small velocity along any open
curve ABC in an electric field will be considered (Fig. 1.4). It is supposed that the charge
q is small enough so that it will not sensibly modify the state of the electric field.

The resultant force F , acting upon the considered particle, having one component of
electric nature elF and another of non-electric nature el-nonF  does the work:
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Utilizing expressions (1.18) and (1.21), it follows:
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is independent of the electric charge of the particle that is moving along the curve ABC

and characterizes the work done when the point-like charge is moving along the curve.
The velocity of the point-like charge is assumed small enough so that the force acting on
it will be given by relation (1.17).

Fig. 1.4. Explanation to the calculation of
the line-integral of the electric field

strength.
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The line-integral of the electric field strength in the large sense, along the considered
curve, is called electric tension in the large sense along the considered curve and is given
by the relation:

.d

AB

AB

C

llCu lE (1.23 a)

If instead of the electric field strength in the large sense lE , the electric field strength
in the restricted sense E is introduced in relation (1.23 a), the line-integral along the
considered curve is also called electric tension and is given by the relation:

.d

AB

AB

C

Cu lE (1.23 b)

In accordance with relations (1.22) and (1.23 b), it follows:

.
ABCL uqW (1.23 c)

If instead of the electric field strength in the large sense lE , the non-Coulombian

electric field strength nE is introduced in relation (1.23 a), the line-integral along the
considered curve is also called electromotive tension or electromotive force and is given
by the relation:

.d

AB

AB

C

nCeu lE (1.24)

If the integrals (1.23 a) and (1.23 b) are considered around a closed curve , the
obtained expressions is called electromotive force (e.m.f.) or electromotive tension in the

large sense and in the restricted sense, respectively; or each of them is simply called
electromotive force (abbreviation e.m.f.). Therefore, the following relations:

,d lElleue (1.24 a)

,d lEeue (1.24 b)

are obtained, respectively.
The electromotive force obtained by the line-integral of the electric field strength in

the large sense around a closed curve coincides with the integral of the non-Coulombian
component of the electric field strength along that closed curve. The reason is that the
integral of the Coulombian component of the electric field strength is zero.

If instead of the electric field strength in the large sense lE , the Coulombian electric

field strength cE is introduced in relation (1.23 a), the line-integral along the considered

curve ABC yields:
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(1.24 c)

and is called electric tension, simply tension or voltage between the points A and B or
potential difference (p.d.) between the points A and B. This potential difference between
two points does not depend on the form of the curve ABC  but only on the position of the

two points. If the curve ABC  is closed, the integral (1.24 c) is zero.
All the definitions given for electric tensions and electromotive forces refer to any

medium, regardless of its nature.
The unit of electric tensions, potential difference and electromotive forces in the SI

system of units (which is a rationalized system) is the volt (symbol V) and is explained in
Sub-section 1.15.3.

1.9. POLARIZATION OF DIELECTRICS

1.9.1. The Polarization of Dielectrics Phenomenon.  Polarization State of
Dielectrics.  Polarization Electric Charge (Bound Electric Charge).
Electric Moment of a Neutral System of Electric Charges.

As shown in Sub-section 1.5.2, dielectrics consist of neutral systems (atoms, neutral
molecules, neutral domains) of electric charges. The electrically charged particles of each
system cannot move to relatively great distances, with respect to certain equilibrium
positions. For this reason, these charges are called bound electric charges.

Although they have this denomination, they are of the same nature as the free electric
charges. For each neutral system, the sum of all bound electric charges is zero. Therefore:

.0
1

bound

n

i

iq (1.25)

Under the action of an external electric field, the bound electrically charged particles
are not dislodged from their places (if the electric field strength is not too great), but they
are dislodged from their equilibrium into other neighbouring positions. Consequently, the
electric positive charges move in the direction of the electric field, and the negative
electric charges move in the opposite direction.
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Therefore, the space distribution of the electric charges of the dielectric is modified. 
The new state of the dielectric is called electric polarization state. The respective 
phenomenon is termed electric polarization. 

The metallic conductors are practically not polarizable. 
A neutral system of electric charges can be characterized by a vector quantity called 

electric moment of the system. In any reference frame, let a neutral system be composed 
of n electrically charged particles that can be considered as point-like charges 

( )niqi ,...,1, = , with the position vectors ( )nii ,...,1, =r  having their origin at the same 
point of the reference frame (Fig. 1.5). If one point-like electric charge is moving within 
the system around a closed orbit (as the case of electrons can be), when considering the 
average value with time, the end (extremity) of the vector ir  is considered as the action 
centre of the respective charge (i.e., the centre of the orbit). 
 

The electric moment of a neutral system of point-like electric charges is: 
 

,
1 1

bound∑ ∑
= =

==
n

i

n

i
iiis q prp  (1.26)

 

with 
 

∑
=

=
n

i
iq

1
bound .0  (1.26 a)

 

The relation (1.26) can serve to the characterization of a neutral system of electric 
charges, because the electric moment sp  previously defined is independent of the choice 
of the reference frame. Indeed, if the origin of the reference frame is displaced from the 
point O to the point O’ (Fig. 1.5 a) by any vector a , then the electric moment of the 
neutral system in the new reference frame becomes: 
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But 
 

∑
=

=
n

i
iq

1
bound .0a  (1.26 c)

 

It follows: 
 

.
1

bound s

n

i
iis q prp ∑

=

==′  (1.26 d)

 
 

Remark. It is useful to mention that the above definition of the electric moment has 
not an arbitrary character. It implicitly occurs in the expression of the electric potential 
produced by a neutral system of point-like charges at a relatively distant point and it 
remains only to denote it, as done above. 
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Fig. 1.5. Explanation concerning the electric moment of a neutral system of electric
charges: a – system with n charges; b – system with two charges (dipole).

The simplest neutral system of point-like electric charges is formed by two point-like
electric charges equal in absolute value but of opposite signs q and q , like in Fig.
1.5. This neutral system is called electric dipole or electric doublet, or shortly dipole or
doublet. A neutral system formed of several electric charges is called electric multipole or
multipole.

The electric moment of an electric dipole is (Fig. 1.5 b):

,212

2

1
1bound dddd

i

diid qqqqq hrrrrrp (1.27)

where the vector dh is always oriented as in Fig. 1.5. b, from the charge considered as
negative to the charge considered as positive.

1.9.2. The Macroscopic Electric Moment of a Polarized Body

The macroscopic electric moment of a polarized body can be obtained by performing
the sum of the electric moments sp of all the neutral systems forming the body and
calculating the average value over a physically infinitesimal time interval.

The calculation of the average value with respect to time is necessary because the
charges move round their trajectories and also because of their thermal agitation.

It results that the electric moment of a polarized dielectric body of volume DV is:
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where the suffix t indicates that the calculation of the average value refers to time. The
sum is extended over all bound electric charges, electrons and atomic nuclei that are
contained in the volume DV  of the dielectric body. In the case of a dielectric dipole,
relation (1.28) yields:

.
t

t

hhpp ddd

V

d qq

D

(1.28 a)

From a macroscopic point of view, because it is not possible to consider the structure
of substance (electrons and nuclei); the electric moment of a body cannot be deduced as
above and for this reason it is not a secondary (derived) quantity. It follows that, in the
macroscopic study, the electric moment of a body has to be introduced experimentally as
a primitive (fundamental) quantity. This procedure can be achieved by considering the
ponderomotive actions exerted upon a small-polarized body, in an external electric field.

1.9.3. The Polarization Electric Charge.  Density of the Polarization
Electric Charge.

As shown, dielectrics are constituted of neutral systems. Hence the total electric
charge due to the neutral systems inside the surface bounding the body is zero.

We shall consider (imagine) any macroscopic closed surface  situated inside a
dielectric body. The sum of bound electric charges of the interior of the closed surface 
is called polarization electric charge or electric polarization charge of the interior of that
surface and is denoted by pq . Therefore, the polarization electric charge is a

macroscopic charge. The manner of introducing this charge is analogous to that utilized
for the free electric charge.

A dielectric is composed of numerous neutral systems. Hence, the neutral systems that
are entirely in the interior of the surface yield a total charge equal to zero. Since the
closed surface  intersects several neutral systems of the dielectric, some electric charges
belonging to the neutral systems the centres of which are inside the surface  remain
outside this surface. It results that the total electric charge that remains inside the surface
may be different from zero. Therefore, the total electric charge of the interior of the
closed surface is equal to the sum of the electric charges of the interior of the closed
surface that belong to the neutral systems intersected by the closed surface.

As a macroscopic quantity, the polarization electric charge may be considered
continuously distributed in the space occupied by the dielectric. In this case, a volume

density of the polarization electric charge may be introduced:

.
d

d
lim

0 v

q

v

q pp

v
pv (1.29)

The neutral systems are not uniformly distributed, but they are more agglomerated in
certain regions; hence, the volume density of the charge in these regions can have values
different from zero. Hence, the volume density of the polarization electric charge
represents the local excess of a charge of a certain sign, with respect to that of opposite
sign.



General Theory of the Electromagnetic Field60

The neutral systems may sometimes have a very non-uniform distribution and may be
concentrated in a very thin sheet on certain surfaces. Then, the macroscopically idealized
case may be considered. In this case, the polarization charges are distributed over these
surfaces, considered as discontinuity surfaces. Therefore, the surface density of the

polarization electric charge is:

.
d

d
lim

0 S

q

S

q pSpS

S
ps (1.30)

The neutral systems may sometimes have a very non-uniform distribution and may be
concentrated about certain lines. Then, also the macroscopically idealized case may be
considered. In this case, the polarization charges are distributed along these lines.
Therefore, the line density of the polarization electric charge is:

.
d

d
lim

0 l

q

l

q plpl

l
pl (1.31)

The domains v , S , l  above utilized, in the denominators of relations (1.29),
(1.30), (1.31), are, like in relations (1.7), (1.8), (1.9), geometrically infinitesimal spaces.

The macroscopic densities of the polarization charges, previously defined, are the
average values of the microscopic densities of the bound electric charges:

.;;
tlbound

tsbound
tvbound lplspsvpv (1.32 a, b, c)

The polarization electric charges, in the case of a volume, surface or line distribution
respectively, over a volume DV , a surface DS  or a line DC , respectively, are:

.d;d;d

DDD C

plpl

S

psps

V

pvpv lqSqvq (1.33 a, b, c)

1.9.4. Electric Polarization

The local polarization state at a point of a body can be characterized by a vector
quantity called electric polarization vector or simpler electric polarization. If the electric
polarization state of the body is uniform, then the electric polarization is equal to the
vector sum of the electric moments of all multipoles of the unit of volume having at its
centre the considered point.

Let the unit of volume contain pn  multipoles, uniformly distributed, each of them

having the electric moment p . Then the electric polarization is:

.pP pn (1.34)

In general, the concentration of multipoles and their electric moments may differ from
a point to another. Then, instead of summing up the electric moments of multipoles over
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the unit of volume, the sum over a physically infinitesimal volume v  containing at its
centre the considered point has to be calculated.

Let ip  be the electric moment of a multipole with the ordinal number i , and p  the
vectorial sum of the electric moments of the considered volume. In this case, the electric
polarization is:

,
v

v

ip

P
(1.35 a)

and relations (1.26), and (1.35) yield:

,
1

1

n

i

ipiq
v

rP (1.35 b)

the sum being extended to all electric charges of the neutral systems of the volume
element v .

In any reference frame, with respect to which the substance is at rest, the macroscopic
value of the electric polarization vector is given by the average relation:

,
1

t1

n

i

ipiq
v

rP (1.36 a)

where the sum refers to all the charges that form a neutral system in the physically
infinitesimal volume.

The electric polarization defined by relation (1.36 a) represents the average value, over
a physically infinitesimal time interval, of the average of the vector sum of the electric
moments over a physically infinitesimal volume. The electric polarization represents the
volume density of the electric dipoles or multipoles.

As a macroscopic quantity, the electric moments of multipoles denoted ti ,rpp

may be considered continuously distributed in the space occupied by the dielectric. Then,
the sizes and electric moments of multipoles are supposed infinitely small. In this case,
the electric polarization vector may be introduced in the form:

.
d

d
lim

0 vv

v

i

v

p
p

P
(1.36 b)

The state of the substance in this case is referred to, as mentioned, polarization state.
From the microscopic point of view, the electric moment is a derived quantity. From the
macroscopic point of view, the electric moment has to be introduced experimentally as a
primitive (fundamental) quantity. The manner of introducing this quantity is based on the
ponderomotive forces acting on an electrified small body situated in a hollow cavity
within the substance.

The electric moment of a volume element v  of a polarized dielectric material is:

.vPp (1.37)



General Theory of the Electromagnetic Field62

The electric moment of a volume element DV  of a body of polarized dielectric
material is:

.d

DV

vPp (1.38)

The electric polarization can be decomposed into two components. The first one exists
even in the absence of certain external causes and is determined by the nature of the
substance. This component is termed permanent electric polarization and is denoted by

pP . The second one appears only under the action of certain external causes (electric

field) and is determined by these causes and by the nature of the substance. This
component is termed temporary electric polarization and is denoted by tP . It results that:

.tp PPP (1.39)

In certain conditions each of this components may be zero.

1.9.5. Polarization Electric Charge of the Interior of a Closed
Surface in a Dielectric

We shall consider a dielectric body (D) and in its interior, like in Fig. 1.6 a, we shall
adopt (imagine) any closed surface .

For the sake of simplicity, the multipoles will be replaced by identical equivalent
dipoles with the corresponding electric moment according to relation (1.28 a).

As recalled in Sub-section 1.9.3, at the beginning, and as it can be seen in Fig. 1.6 a,
the dipoles which are entirely inside the surface  give a total charge equal to zero.

Only the dipoles that are intersected by the surface  contribute to the total
polarization electric charge (i.e., due to the bound charges) contained by the closed
surface . The centre of each dipole is represented in the figure by a dot. We shall
calculate the electric charge belonging to the dipoles intersected by the surface element

S  of the Fig. 1.6. In this region, we assume, for simplicity, that the electric moment
vector of every dipole is parallel to the positive normal to the surface (outwards oriented)
and of the same direction.

The total electric charge different from zero belongs to the intersected dipoles the
centres of which are contained in the right parallelepiped of height h , the trace of which
is represented by dashed line in the figure.

The volume of the parallelepiped is Shnh S . As previously, the volume

concentration (number of dipoles per unit of volume) of dipoles will be denoted by pn .

The electric charge of the interior of the parallelepiped is:

,Shdp qnq (1.40 a)

but, according to relation (1.28 a), phdq , and

.Sppnq (1.40 b)
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Fig. 1.6. Explanation to the calculation of the polarization
electric charge of the interior of a closed surface: a. Closed surface inside a

dielectric body; b. Portion of the surface intersected by dipoles situated
perpendicular to it; c. The same portion of surface intersected by dipoles forming any

angle with the normal to the surface. The centre of each dipole is marked by a dot.

According to relation (1.34), Pppn , and

.SPpq (1.41)

In the case in which the positive normal to the surface is not parallel to the electric
moment vectors p (Fig. 1.6 c), the electric charge of the interior of the parallelepiped
constructed on the surface element S is given, as previously, by relation (1.41). Indeed,
the volume of the parallelepiped is given by the same expression and consequently the
expression of the electric charge does not change.

It follows that the polarization electric charge of the interior of the surface is:

.dSPpq (1.42)

The polarization electric charge pq can be expressed in terms of the volume density

of the electric polarization charge according to relation (1.33 a):
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.d
V

pvp vq (1.43)

Comparing relations (1.42) and (1.43), it follows that:

.dd SP

V

pv v (1.44)

By transforming the last surface integral into a volume integral, and taking into account
that the relation holds for any closed surface, it follows:

.div Ppv (1.45)

Now, we shall examine the case of Fig. 1.7 where, on any discontinuity surface of the
electric polarization vector P , the distribution of multipoles is highly non-uniform.
According to formula (1.45), on this surface, the density of the polarization electric
charge becomes infinite. For obtaining in this case the relation between the electric
polarization and the density of the polarization electric charge, we consider (Fig. 1.7) a
right parallelepiped of height h that contains the surface element S . The height h is
taken very small as compared to the sizes of the surface element S that is why the flux
of a vector through the lateral surface of the parallelepiped can be neglected.

Fig. 1.7. Explanation to the calculation of the surface density of the
polarization electric charge.
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By applying relation (1.44), we obtain: 
 
 

( ) ( ) ( ) SShpv Δ⋅+⋅−−=Δ⋅Δρ 1221211212 nPnPnn  (1.46)
 

or 
 

( ) ( ).2112 PPn −⋅=Δρ hpv  (1.47)
 

The surface density of the electric charge is: 
 

( ),hpvps Δρ=ρ  (1.48 a)
 

and it results that: 
 

( ).2112 PPn −⋅=ρ ps  (1.48 b)
 

 Therefore 
 

( )2112div PPnP −⋅=−=ρ sps  (1.49)
 

that represents the expression of the surface density of the polarization electric charge on 
a surface of discontinuity of the electric polarization, and Psdiv  is referred to as the 
surface divergence of the vector P . 
 

 
1.9.6. Ponderomotive Actions Exerted upon a Polarized Body in an 

Electric Field 
 

We consider a small electrically polarized body of electric moment p  submitted to an 
external electric field of intensity 0E . The equivalent electric dipole in the electric field 
will be examined (Fig. 1.8). 

The force acting upon the dipole is given by the sum of forces acting upon the two 
point-like charges of the equivalent dipole: 
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where 
 

,zyx Δ+Δ+Δ= kjih  (1.50 a)
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By expanding in a series and neglecting the small quantities of higher order, it 
follows: 



General Theory of the Electromagnetic Field66

.
,,

2

1,,

2

1,,

2

1

,,

2

1,,

2

1,,

2

1,,

,,
2

1

000

0

000

00

z

zyxE
z

y

zyxE
y

x

zyxE
x

zyxE

z
z

zyxE
y

y

zyxE
x

x

zyxE

zyxEE

xxx

x

xxx

xx hr

(1.52)

Analogous relations can be obtained for the Oy and Oz axes. It follows:
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or
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Similarly, we get:
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From relations (1.50) and (1.54), we obtain:

rEhF 0dE q (1.55)

or, because hp dq , we have:

.0 rEpFE (1.56)

From expression (1.56), it can be seen that the force, which acts upon the polarized body,
is zero if the electric field is uniform (homogeneous).

The torque acting upon the dipole is given by the sum of the moments of the forces
acting upon the two point-like electric charges, relatively to the axis that passes through
the centre of the dipole and is perpendicular to the plane determined by the vectors h  and

0E  (Fig. 1.9). The forces acting upon the two point-like electric charges differs of a very
small quantity, so that it can be considered that upon the dipole only one couple of forces
is acting. By using the known expressions of Mechanics for the moment of a force
relatively to one axis, it results that their sum is:
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Fig. 1.8. The force acting upon
an electrically polarized

small body situated in electric field.

Fig. 1.9. The couple of forces
acting upon an electrically

polarized small body situated in
electric field.

Expanding in a series in terms of h and neglecting the small quantities of higher
order, the last relation yields:

.0 rEpTE (1.58)

It follows that a force and a torque are acting upon a small electrically polarized body
with the electric moment p and a free electric charge q, in an external electric field of

intensity rE0 , and the corresponding expressions are the following:
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,00 rEprEF qE (1.59)

.0 rEpTE (1.60)

From relation (1.60), we can obtain the definition of the unit of the electric moment
coulomb metre (symbol mC ). The coulomb metre is the electric moment of a small
electrically polarized small body upon that acts a maximum torque of mN1  in an
external uniform electric field having the strength (intensity) of 1 V/m.

1.10. THE ELECTRIC CURRENT

A set of electrically charged particles that are moving with respect to a reference
frame represents an electric current in that frame.

The motion of electrically charged particles called electric charge carriers can occur in
empty space or inside some bodies.

The electric current can also be represented by the motion, with respect to a reference
frame, of some electrically charged bodies.

Taking into account the definition of the electric charge, the electrification state of a
body is independent of the reference frame. However, the electric current depends, like
the motion, on the reference frame to which it is related. Further on, excepting the case in
which a special mention is made, only the electric current with respect to a reference
frame fixed to the neighbouring substance will be considered.

According to the type of the charge carriers and their velocities, there are conduction
electric current, convection electric current, polarization electric current, Amperian
electric current.

1.10.1. Electric Current Intensity.  Electric Current Density.

The electric current that crosses a surface S , generally an open one, is characterized
by a scalar quantity i , called electric current intensity (intensity of electric current) [3, p.
113], electric current strength [1, Vol. II, p. 152, Art. 495] or shorter electric current

[44], and defined by the relation:
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q
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t
(1.61)

where the quantity Sq  represents the free (true) electric charge that passes through the

surface S  in the physically infinitesimal time interval t , the latter, after assuming a
continuous distribution of the electric charge, tends to zero.

The charges that pass through the surface in the direction of the positive normal to the
surface are taken with their sign, and the charges that pass in opposite direction are taken
with changed sign. In Fig. 1.10, we have supposed rv  and n  of the same direction.

Conversely, the electric charge that passes through the surface is:
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Fig. 1.10. Explanation concerning the
electric current intensity in the case

in which the velocity of charge
carriers is perpendicular to the surface.
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S (1.62)

Concerning the positive normal to the surface, its direction is taken as follows. It is taken,
as known, i.e., outwards, in the case of closed surfaces. It is taken in the direction
associated according to the right-handed screw rule with the direction of travelling the
curve bounding the surface (the latter direction being arbitrarily chosen) in the case of
open surfaces. Let us consider that the unit of volume contains cn charge carriers. Each
of them is assumed to have the same electric charge q and in the adopted reference frame
(generally a frame system fixed to the surface S ), the same velocity rv (relatively to the

reference frame), normal to the surface S  (Fig. 1.10).

In this case, the electric current intensity that crosses the surface S  is:

,Svqni rc (1.63)

where S  denotes the area of the surface S .
The electric current intensity is a scalar quantity and for this reason it can have only

sign but not direction. However, the notion of direction of a current is used.
The direction of an electric current through a surface is that of the normal to that

surface for which the electric current intensity is positive. The sign of the electric current
can be associated with the moving direction of the charge carriers. From relation (1.63), it
results that the sign of the electric current through a surface with a certain positive normal
is positive if the motion direction of positive electric charge carriers is that of that normal.

The intensity of the electric current that crosses the unit of surface is numerically
equal to:

,rc vqnJ (1.64)

and is called electric current density.
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Fig. 1.11. Explanation to the calculation
of the electric current density.

Consequently, the electric current intensity passing through a surface S with a certain
normal, is the quantity numerically equal to the electric charge passing through that
surface in the unit of time in the direction of the normal. The electric current density, at
any point, is the quantity numerically equal to the electric charge passing perpendicularly
through the unit of surface in the unit of time. It is a vector quantity having the direction
given by the velocity of the electric charge carriers and their sign. In the general case
(Fig. 1.11), there are m types of electric charge carriers that cross the surface S.

Each type of electric charge carriers has: a certain velocity kv with respect to a

reference frame (generally fixed to the surface S ), the electric charge kq and the

concentration kn (number of electric charge carriers per unit of volume). The
microscopic electric current density is expressed by the relation:

.
1

micro

m

k

kkk qn vJ (1.65)

Macroscopically, the electric current density is expressed by the macroscopic average
(mean) of the microscopic quantity. The macroscopic quantity is obtained by calculating
the average value with space (volume) and time, as shown in Sub-section 1.6.6. Thus:

.micromacro JJJ (1.66)

The electric current intensity that passes through (crosses) any surface S (generally
open) is:

S

i ,d SJ (1.67)

where the positive normal to the surface S  is adopted as mentioned above.
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If the electric current density is normal to the surface S , and does not vary from one
point to another, it follows:

,
S

i
J (1.68)

where S is the area of the surface.
Let us consider the electric charge of the charge carriers distributed in volume, with

the density v , in the adopted reference frame. The intensity of the electric current that

passes through the surface S is:

,d
S

rvi Sv (1.69)

and the electric current density is:

.rv vJ (1.70)

In the microscopic theory of the electromagnetic field, the electric current intensity
and the electric current density are derived quantities. In the macroscopic theory of the
electromagnetic field, one of the two quantities electric current intensity or current
density has to be introduced as a primitive (fundamental) quantity. For this purpose, the
electrochemical effect can be used.

In stationary regime (stationary operating conditions), the quantities voltage and
intensity of the electric current may be denoted by small letters as well as by capitals.
However, in other regimes, the notation has certain meanings.

From a microscopic point of view, as shown, the electric current is produced by
electrically charged microscopic particles in motion.

From a macroscopic point of view, it is accepted that the electric charge, as well as the
substance, is distributed in space. The electric charges and therefore the electric current
may be highly non-uniformly distributed on certain surfaces and may be concentrated on
certain surfaces, in a very thin film. Then, the macroscopic idealized case is considered in
which the electric current is distributed in the form of a current sheet on each of these
surfaces. Fig. 1.12 shows the trace of the surface dS with the current sheet on the figure
plane.

Fig. 1.12. Explanation to the calculation of the linear current density. The cross-sections
of the conductors (round wires) show that the carried currents enter the figure plane.
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Correspondingly, it is possible to define a linear current density also called linear

current sheet and denoted by sJ  or A :

.
l

i
AJ s (1.71)

Usually, it may be expressed as the number of ampere-turns per metre.

1.10.2. Conduction Electric Current

The electric charge carriers of the interior of a body of any substance are called free
(electric charge) carriers if they are not permanently located within a certain atom or
molecule, and are called bound (electric charge) carriers if they are permanently located
within one atom or molecule.

In certain cases, in dielectrics and semiconductors there are charge carriers (electrons
or ions) which may have limited motions in the crystalline lattice. After such a motion, a
free space remains, i.e., a space not occupied by particles of the crystalline lattice and it is
called hole. After this free place is occupied by a neighbouring charge, a new
neighbouring hole will appear.

This process can continue so that the row of holes, successively created, is equivalent
to the displacement of the hole within the substance. The displacement of holes is
analogous to the motion of a charge carrier having the sign opposite to that of the charges
of the carriers the limited motions of which have produced the holes.

Therefore, if the holes are produced by limited displacements of certain electrons, the
displacement of the hole is equivalent to the displacement of a positive charge. The free
place is sometimes called hole or lacuna (pl. lacunae), as it is produced by the
displacement of an electron or of an ion, respectively; however this distinction is not
compulsory, moreover it is rarely used.

The conduction electric current in a body is represented by the oriented motion of free
electrons with respect to a reference frame attached (fixed) to that body.

According to the nature of the electric charge carriers (electrons, ions, holes), the
conduction electric current may be referred to as electronic current, ion current, hole

current.
Correspondingly, the conduction of the body under consideration is called electronic

conduction (e.g., for certain metals and semiconductors of N-type), ionic conduction
(e.g., for electrolytes), and hole conduction (e.g., for semiconductors of P-type).

The macroscopic current density and the macroscopic current intensity can be
expressed by relations (1.66), (1.67).

1.10.3. Convection Electric Current

The convection electric current is represented by the motion of electrically charged
bodies with respect to a reference frame. Here, the electric current produced by the
motion of a great number of electrically charged particles (for instance a flux of electrons
or of protons) in empty space is included.

The macroscopic current density and the intensity of the convection electric current
can also be expressed by relations (1.66) and (1.67).
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1.10.4. Polarization Electric Current

The polarization electric current is represented by the motion of bound electric
charges with respect to the centre of mass of atoms and molecules. Further, the
macroscopic density and intensity of the polarization electric current will be calculated.

An open surface S  bounded by a simple curve , both situated within a substance
electrically polarized, will be considered. In the case of a variation of the electric field
intensity, under the action of the forces determined by the electric field, the bound electric
charge carriers will change their position. Therefore, electric charge carriers pass through
the open surface S , to very small distances. Hence, an electric current passes through
the surface, and it is called polarization electric current.

The charges that produce the polarization electric current are just the charges that
produce the electric polarization.

At a point of the surface S , we shall consider the physically infinitesimal volume
v  having the centre of mass at that point and containing a neutral system of electric

charges.
The electric polarization, in any reference frame, with respect to which the substance

is at rest, is defined by relation (1.36 a) as:

,
1

t1

n

i

ipiq
v

rP (1.72)

where the summation refers to all electric charges which form neutral systems within the
physically infinitesimal volume v  and the average value with respect to time is taken
over a physically infinitesimal time interval. The quantities ir  represent the position
vector in the considered reference frame. It is necessary to be mentioned that the position
vector of the centre of mass of the substance in the volume element v  remains
unchanged even when the electric charge carriers change their position (because the
positive and negative charges move in opposite directions). Also, the mean concentration
of the bound carriers remains constant. At a modification of the electric field strength, as
mentioned above, the positions of the electric bound charge carriers (the polarization
charges) in the volume element v  change. It follows:

,
1

t1

n

i

i
pi

t
q

vt

rP
(1.73 a)

thus:

.
1

t1

n

i

ipiq
vt

v
P

(1.73 b)

The macroscopic density of the polarization electric current may be written:
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vJ (1.74)
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and the intensity of the electric current through the surface S is:

.dd

S
S

PP
t

i S
P

SJ (1.75)

It is possible to obtain relation (1.75) in another way that permits the visualization of
the phenomenon.

Therefore, we shall anew consider a substance electrically polarized and within this
substance an open surface S bounded by a closed curve .

Fig. 1.13. Explanation of the polarization electric current produced by polarization
electric charges (bound charges) that pass through a surface, by considering two positions

a and b of bound electric dipoles. The centre of each dipole is marked by a dot.
The dimension of h is magnified.
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At a variation of the electric field strength, although the substance remains at rest with
respect to the reference frame, the bound electric charges modify their position, passing
through the surface S  and therefore produce an electric current. We shall express the
intensity of the electric current in terms of the electric polarization.

For this purpose, we consider an element S  of the surface S . We also assume that
the various multipoles are replaced by equivalent dipoles, all identical to each other (Fig.
1.13). The centre of each dipole is marked in the figure by a dot. This point remains at
rest even when the bound electric charges move, since the substance is considered at rest.

We shall denote by pn  the concentration of dipoles (i.e., the number of dipoles per

unit of volume) and by dq  the positive charge of the dipole. It follows that under the
action of the electric field supposed as increasing in the direction of the arrow (Fig. 1.13),

the electric bound charges will move by the distance h
2

1
 in the time interval t  with

the velocity th /
2

1
. Therefore, the dipoles will be elongated.

We shall consider, on the left side of the surface element S , the parallelepiped

having one base situated at the distance h
2

1
 from the surface element S  and the height

h
2

1
 oriented towards the left side. The positive electric charges belonging to dipoles

that have their centres within the mentioned parallelepiped will pass through the surface
S  towards the right side with the velocity pv . The positive charge of each dipole which

has not its centre within the mentioned parallelepiped will not pass through the surface in
the time interval t , and hence will not contribute in producing an electric current
through that surface. Analogously, the negative electric charges from the right side of the
surface S  will pass through the same surface towards the left side.

It results that through the surface SnS , the following electric current produced
by positive bound charges will pass in the interval of time t :

.
2

1

;pos

t

qni

p

pdp

h
vv

Sv

(1.76)

For the negative charges, a similar expression can be obtained. It has to be taken into
account that the passage of an electric current produced by a number of negative charges
from the right to the left is equivalent to the passage of an electric current of an equal
number of positive charges from the left to the right. It follows that the resultant
polarization electric current through the surface S , denoted by one of the symbols, Pi ,

pi , is:

.
t

S
h

t
qni dpP (1.77)
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Taking into account that the concentration of dipoles does not change because the
centres of the dipoles remain at rest, it follows:

.
t

S
P

Sh
t

qn
t

i dpP (1.78)

From relation (1.78), it follows that:

S
S

PP
t

i .dd S
P

SJ (1.78 a)

The same result will be obtained if it is considered that a rotation of dipoles is
produced under the action of the external electric field.

From the explanation above, it follows that the polarization current cannot be a steady-
state direct current, since the displacement of bound charges is limited. Only polarization
current varying with time can exist.

1.10.5. Amperian Electric Current (Molecular Electric Current)

The motion of an electric charge carrier along a closed way of sub-molecular
dimensions is referred to as molecular or Amperian electric current. The concept of
molecular current was introduced by Ampère for the explanation of the magnetization of
bodies based on electric currents, that is why the molecular currents are also called
Amperian currents.

The following simple models can be considered. The Amperian (molecular) electric
currents are essentially represented by the orbital and spin motion of electrons. Indeed,
each electron describes an orbital trajectory about the nucleus of the atom. The orbital
trajectory is assumed as having the shape of a circumference, or more precisely, that of an
ellipse. Moreover, it is also assumed that each electron turns about an axis passing
through its centre. This rotation may be of any sense, for some electrons, e.g., clockwise,
of opposite sense, i.e., counter-clockwise, for the others. This electron movement is called
spin motion.

Further on, the density and the intensity of the molecular current will be calculated.
Details on the motion of electrons and more precise models can be found in works
devoted to this subject. Certain details are given in the work [26]. For the sake of
simplicity, all Amperian electric current will be supposed identical to each other having
the intensity Amperi  and a circular trajectory of radius 0r  and normal n .

Within a substance in which there are Amperian (molecular) electric currents, we
consider (imagine) an open surface S  bounded by a closed curve  (Fig. 1.14).

We shall calculate the macroscopic intensity of the Amperian electric current through
this surface. The electric current intensity is:

,Amper
S

M ii
(1.79)
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where the summation refers to all Amperian currents the trajectories of which intersect
the surface S .

It is worth remarking that the intensity of a microscopic current occurs in the
calculation of the sum of relation (1.79) only if that current crosses once the surface S

(if it crossed twice the surface, its contribution to the total current would be zero). Hence,
only the Amperian currents that link the curve contribute to the sum. We shall
calculate the macroscopic Amperian current given by the sum:

,AmperiiM (1.80)

where the summation refers to all Amperian currents that link the curve .
Let us consider that along a short portion l of the curve , the orbits of the

Amperian currents are parallel with each other and their surfaces perpendicular to the
considered portion of the curve . The Amperian current concentration (i.e., the number
of Amperian currents per unit of volume) in this region will be denoted by 0n . The
Amperian currents that link the arc l of the curve are contained inside a right cylinder
having as axis the mentioned segment l approximated by a straight-line segment, and
the diameter 02 r , where 0r  is the radius of the orbit of an Amperian current. Thus:

,0Amper0Amper lSini
l

(1.81)

where 0S denotes both the surface of the orbit of an Amperian current and the area of the
cross-section  of  the cylinder above.  If the normal n  to  the surface  of the  orbit  of the

Fig. 1.14. Orbits of the Amperian (molecular) currents and the
surface through which macroscopic electric currents are passing.

For the sake of clearness, the orbits are magnified.
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Amperian current forms a certain angle with the arc element l , it follows:

.0Amper0Amper lSini
l

(1.81 a)

The calculation performed for a single curve  can be repeated for several closed
curves very closed to each other. These curves form a bundle that occupies the domain in
the form of a closed tube (pipe). The cross-section of this tube must be small enough, so
that together with the line element l , it shows a physically infinitesimal volume v .

We shall denote:

,0Amper0 Sm i (1.82)

quantity called magnetic moment of an Amperian current or Amperian magnetic moment,
and:

,
1

00

t

0 mmM n
v v

(1.83)

where v  represents the physically infinitesimal volume. The sum of magnetic moments
of Amperian currents of a volume of any substance may be different from zero. The state
of the substance in this case is referred to as magnetization state. From a microscopic
point of view, the magnetic moment is a secondary (derived) quantity. From a
macroscopic point of view, the magnetic moment has to be introduced experimentally as
a primitive (fundamental) quantity. The manner of introducing this quantity is based on
the ponderomotive forces acting on a magnetized small body situated in a hollow cavity
within the substance. The vector quantity M  defined by relation (1.83) is called
magnetization. In the case of a uniform distribution, it represents, the average value, over
a physically infinitesimal time interval, of the vector sum of magnetic moments of a unit
of volume. Generally, it represents the ratio of the sum of magnetic moments, of a
physically infinitesimal volume, to the magnitude of this volume.

Instead of the vector quantities, Amperian magnetic moment m  and magnetization
M , corresponding to expressions (1.82) and (1.83), there are also used the quantities
Coulombian magnetic moment jm  and magnetic polarization jM  defined by the

following expressions that contain the constant 0 :

,000 mm j (1.84)

,0 MM j (1.85)

where the quantity 0  represents a constant called the magnetic constant also termed
permeability of vacuum, which will be explained in Section 2.4.

The quantity jM  is denoted, according to [44], by the symbol J  but we shall not use

it, in order to avoid any confusion, because in this work the electric current density
denoted by the same symbol also occurs. Another symbol for denoting the same quantity,
according to [44], is iB  and it is called intrinsic magnetic induction.
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If the quantities jm and jM are used, then certain relations, referring to the magnetic

polarization state, show a symmetrical form with the corresponding relations referring to
the electric polarization state.

Correspondingly, we obtain the volume density of the fictive (fictitious) magnetic

charge:

,div MMv (1.86)

called volume density of the (fictive) magnetization charge, and

,div jmv M (1.87)

called volume density of the (fictive) magnetic polarization charge.
The relations (1.81), (1.83) yield:

,dAmper lMi (1.88)

and taking into account relation (1.80), it results that:

.d lMMi (1.89)

The macroscopic density of the macroscopic Amperian electric current, denoted by
one of the symbols AJ , aJ , MJ , mJ , can be obtained by using the Stokes theorem as
follows:

.dcurldd
SS

AMi SMlMSJ (1.90)

It results that:

.curl
1

curl
0

jaA MMJJ (1.91)

The magnetization M can be decomposed into the sum of two components. The first
one exists even in the absence of external causes and is determined by the nature of the
substance. This component is called permanent magnetization and it is denoted by pM .

The second one appears only under certain external causes (e.g., a magnetic field) and is
determined by these causes and the nature of the substance. This component is called
temporary magnetization and it is denoted by tM . Therefore, for the components of the
vectors magnetization and magnetic polarization, respectively, we obtain:

,tp MMM
(1.92)

.jtjpj MMM (1.93)

In certain situations, each of the two components above may be zero.
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1.11. LAW OF FREE (TRUE) ELECTRIC CHARGE CONSERVATION

1.11.1. Integral Form of the Law

Let us consider any closed surface  passing only through insulating materials, so
that the surface is not crossed by electric currents, then the total electric free charge of the
interior of the surface  remains constant:

.constq (1.94)

This relation, called law of electric charge conservation, is valid regardless of the
phenomena produced in the interior of the surface .

If an electric conduction current of intensity i  passes through the closed surface ,
leaving this surface, then the integral form of the law is modified as follows:

.
d

d

t

q
i (1.95)

This last expression of the integral form of the law of electric charge conservation also
follows from the magnetic circuital law subsequently treated; however the first integral
form of the law (1.94) does not result from the magnetic circuital law.

1.11.2. Local Form of the Law

The relation (1.95) can be modified as follows:

,d
d

d
d

V

v v
t

SJ (1.96)

where the quantity J  represents the density of the current passing through the surface 
and the quantity v  represents the volume density of the electric free charge.

Two cases will be examined: Surface  at rest with respect to the reference frame;
surface  in motion with respect to the reference frame.

1º Surface at Rest Relatively to the Reference Frame
In a reference frame at rest with respect to the surface , the operation of

differentiation can be introduced under the integral sign and it follows:

.dd
V

v v
t

SJ (1.97)

By transforming the surface integral into a volume integral (Gauss-Ostrogradski
theorem), we obtain:

.dddiv
V

v

V

v
t

SJ (1.97 a)
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Since the last relation is valid for any surface Σ , it results that:

,div
t
v

∂
ρ∂

−=J (1.98 a)

or

.0div =+
∂
ρ∂

J
t
v (1.98 b)

Relation (1.98 b) represents the local form of the law of free (true) electric charge
constancy for a medium to which the surface Σ  is attached (fixed) and that is
simultaneously at rest with respect to the reference frame.

2º  Surface in Motion with Respect to the Reference Frame
If the surface Σ  is moving with respect to the reference frame and the various points

of this surface have any velocity rv  with respect to the reference frame, then when
calculating the derivative:

,d
d
d
∫
Σ

ρ
V

v v
t (1.99)

it is necessary to take into account that two terms will occur: One term is obtained
supposing that the surface is at rest, and the quantity vρ  varies with time; the second term
is obtained supposing that the surface is moving and the quantity vρ  does not vary with
time, i.e., the procedure is the same as for the calculation of the derivative of composed
functions.

The first term is:

.d v
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(1.100 a)

The second term is given by the relation:

,dd1
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⎥
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(1.100 b)

where Σ=Σ1  and 2Σ  represent the two consecutive positions of the surface Σ  (Fig.
1.15), and 

1ΣV  and 
2ΣV  are the domains (volumes) bounded by the surfaces 1Σ  and 2Σ ,

respectively. The surface 1Σ  denotes the first position and the surface 2Σ  denotes the
second consecutive position after the displacement of every point of the surface Σ  with
the segment tr Δ⋅v .

Considering Fig. 1.15, it follows that the variation of the integral expressed by relation
(100 b) is given by the integral:



General Theory of the Electromagnetic Field82

,d

d
V

v v
(1.101)

that has to be calculated over the domain (volume) bounded by the closed surface d .

The closed surface d is determined by the two consecutive positions 1 and 2 of the

closed surfaces. Fig. 1.15 shows an element of the domain bounded by the surface d .
This element is a curvilinear parallelepiped. From the examination of Fig.1.15, it follows:

.tv rvS (1.102)

By replacing the volume element in expression (1.101) and integrating over all
elements Sd , hence over the whole surface d , we obtain:

.dd

dd
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v vS
(1.103)

Therefore, the derivative of the considered integral is:

,ddd
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Sv (1.104)

and by replacing in relation (1.96), it follows:

.ddd
V
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v v
t

SvSJ (1.105)

By transforming the surface integrals into volume integrals, the last relation becomes:

.ddivdddiv
V V

rv
v

V

vv
t

v vJ (1.106)

Since the last relation should be valid for any surface , it results that:

.divdiv rv
v

t
vJ (1.106 a)

Fig. 1.15. The displacement of an
element of the surface  in the two

consecutive positions and
determining the surfaces 1  and 2 .
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The last relation yields:

,0div rv
v

t
vJ (1.107)

that represents the local form, i.e., the differential form, for a medium (to which the
surface  is attached) in motion with the velocity rv  with respect to the reference frame.

The quantity J  represents the current density in a reference frame attached (fixed) to

an element of the surface  and the derivative 
t

v  is expressed in the reference frame

with respect to which the surface  is moving. Thus rv vJ  represents the current
density with respect to the reference frame at rest, relatively to which the surface  is
moving. With this remark, relation (1.107) can be obtained directly from relation (1. 98 b)
by replacing, correspondingly, the electric current density.

1.12. THE LAW OF ELECTRIC CONDUCTION.  THE LOCAL FORM.

The magnitude of the density of the conduction electric current at a point of any
medium depends on the strength of the electric field in the large sense at this point, and
on the nature of the medium.

In the case of any isotropic medium, the density vector of the electric current, at a
point, has the same direction as the vector of the electric field strength at the same point,
and is given by the relation:

,lEJ (1.108)

where  is a positive quantity. The quantity  is called electric conductivity and is
depending on the medium nature, thus a material quantity. The quantity:

,
1

(1.109)

is called electric resistivity.
Macroscopically, relation (1.108) can be obtained only in an experimental way. In the

macroscopic theory, this relation is a material law, also termed constitutive law, and is
referred to as the electric conduction law or the general Ohm law. In metallic conductors,
the electric resistivity depends, generally, on temperature.

The expression of the electric resistivity can be expanded in a Taylor series in terms of
temperature:
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(1.109 a)
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For relatively small variation, by neglecting the small terms of higher order, the
dependence is a linear one:

,1 000 (1.110)

,
1

00
0 (1.110 a)

where the following symbols have been used:

– electric resistivity at temperature ;

0 – electric resistivity at temperature 0 ;

0 – raising coefficient of resistivity with temperature.

The values of the resistivity and of the raising coefficient of resistivity with
temperature are given, according to the experimental results, in tables.

The resistivity of a metal usually increases with temperature, even during the metal
melting. However, certain metals like bismuth, antimony, gallium show a decrease of
their density during their melting, and their resistivity diminishes during their melting. In
the microscopic theory of the electromagnetic field, relations (1.108) and (1.110) can be
deduced starting from the general law of the electromagnetic field.

In the case of anisotropic media, the direction of the vector J  is not the same with
that of the vector lE . However, in these media, it is possible to determine a system of
three-orthogonal axes called principal axes, along which, the anisotropic medium behaves
like an isotropic one. In the case of these media, the electric conduction law, in the local
form, can be written in the form:

lEJ , (1.111)

where the quantity  is the tensor of the electric conductivity. Relations (1.108) and
(1.111) have a general character being valid in the cases when the quantities varies with
time.

In dielectrics (substances with bad conducting properties) and in semiconductors,
generally, the dependence between the density of the conduction electric current and the
electric field strength is not a linear one. However, in these cases, the same manner of
expressing the law is used. Then, the expression of the law is equivalent to the
expression, for each considered substance, of the dependence lEfJ  and JfEl .

The law is also applicable, with a good approximation, to electrolytes.
In the framework of the microscopic theory, using a simplified model, the relation

(1.108), can be derived as follows. The electric current flowing in a body is produced by
the oriented displacement of electric charge carriers under the action of external forces.
The collision of the charge carriers with the ions and atoms of the body opposes to the
oriented displacement of the charge carriers. Hence, the substance of the body presents a
certain resistivity to the electric current. The relation (1.108) that expresses this
phenomenon can be deduced directly from the equation of motion of the electric charge
carriers moving under the action of the forces which occur [23, Vol. II, p. 30].
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1.13. THE ELECTRIC FIELD STRENGTH OF ELECTRIC
CHARGES IN VACUO. ELECTRIC CONSTANT (ELECTRIC
PERMITTIVITY OF VACUUM).

1.13.1. COULOMB Formula

Let us consider two small bodies indicated by numbers 1 and 2, with the electric
charges 1q and 2q respectively, at rest in a reference frame and situated at points A and
P at a relatively great distance (compared with the dimensions of each body) from each
other. Therefore, the charges 1q  and 2q can be referred to as point-like charges.

The vector quantity 12r represents the distance between the two bodies, oriented from
the body 1 towards the body 2, like in Fig. 1.16.

The force exerted upon the body 2 with the electric charge 2q due to the body with

the electric charge 1q is given by the expression:
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F (1.112)

that represents the Coulomb formula in the case of empty space (i.e., vacuum).
At the time when it was experimentally established, relation (1.112) had a very

general character and has been referred to as the Coulomb law. At present, it is also called
the Coulomb theorem. From expression (1.112) and Fig. 1.16, it results that the direction
of the force is so that the charges of the same sign repel each other, and the charges of
opposite sign attract each other. The Coulomb formula can be used for introducing the
notion of true (free) electric charge.

The quantity 0k  is a universal constant referring to vacuum (free space, empty space),
i.e., a physical quantity independent of the nature of the bodies under consideration and of
all other physical quantities, dependent on the chosen system of units.

In the SI system of units, which is a rationalized system, instead of the constant 0k the

quantity 0  is used, and the relation between the two quantities is:

.
4

1

0
0k (1.113)

The quantity 0 is also a universal constant referring to vacuum and is called
permittivity of vacuum or electric constant, and in the SI system has the value:

Fig. 1.16. Explanation concerning the Coulomb formula.

(1) ( 2 ) q2q1

r 12A P F 21



General Theory of the Electromagnetic Field86

,m/F
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1
90 (1.114)

expressed in farad / metre (symbol F / m); the units of measure will be explained in Sub-
section 3.13.3.

If instead of relation (1.114), other values are adopted for the constant of relation
(1.112), other systems of units of measure of the electromagnetic quantities will be
obtained. The expression of the Coulomb formula, in vacuo, in the SI system of units is:
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As mentioned in Sub-section 1.6.2, the unit of measure of electric charge is called
coulomb. According to relation (1.115), the coulomb is the value of the point-like charge

that exerts a force of N109 9  upon another identical point-like charge placed at the
distance of 1 m from the first point-like charge and very far from any other body.

According to relation (1.17), it results that the electric field strength produced by the
charge 1q  at the point 2 (Fig. 1.16) has the expression:
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Relation (1.116) is also termed Coulomb formula, relation or theorem, respectively.

1.13.2. Utilization of the Principle of Superposition

For obtaining the force acting on a point-like charge, in many cases it is useful to
apply the principle of superposition. Therefore, for obtaining the force acting upon a
point-like charge q, due to other point-like charges niqi .,..,1 , the forces

corresponding to the pairs of charges 1, qq ; 2, qq ; . . .; nqq,  will be calculated

separately and the forces 1F , 2F , . . ., nF  will be obtained. The resultant force exerted
upon the point-like charge q situated at any point A is:

.
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n

i

iFF (1.117)

Correspondingly, the electric field strength at point A produced by the point-like
electric charges niqi .,..,1 , the charge q  being absent, is:
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iEE (1.118)
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1.13.3. The Electric Potential Produced by Electric Charges at Rest

We shall calculate the electric field strength produced at any point N , called
observation point or field point, by whatever point-like charge denoted here by q that is

placed at any point M called source point. We shall denote MNr . The electric field
strength at the point N is given by relation (1.116) and can be written in the form:
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E (1.119)

where the following symbol has been used:
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where C is an arbitrary constant. The scalar quantity V is called potential and because, in
this case, it is produced by electric charges at rest, it is termed electrostatic potential. The
minus sign in the right-hand side of relation (1.119) appears due to the following
convention accepted in the theory of the electromagnetic field. According to this
convention, the displacement direction of the particles with positive electric charge is
oriented from the regions of a higher potential towards the regions of a lower potential.

Hence, the direction of the electric field strength vector and the direction of the lines
of electric field are oriented from the regions of a higher potential towards the regions of
a lower potential. This direction is opposite to that of the vector Vgrad , since the vector

Vgrad is oriented along the direction along which V increases most rapidly.
According to the principle of superposition, the electric field strength produced at any

point N , by n point-like electric charges ).,..,1( niqi , each of them placed at the

point iM , is:
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where NM iir , and the potential is:

,
4

1

1 01

n

i i

i
n

i

i C
r

q
VV (1.122)

where:
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If besides the point-like electric charges it is a distributed electric charge, then, by
decomposing the electric charge distribution in elementary electric charges, the
distribution of electric charges may be replaced by sets of point-like charges and relations
of the form (1.121) and (1.122) can be applied.
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In the general case, in which in the whole infinite empty space (i.e., in vacuo) there are
n point-like electric charges and volume, surface and line electric charge distributions, the
expression of the potential can be written:
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and the electric field strength is:
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The electrostatic potential is a scalar function introduced in order to simplify the study
of the electrostatic field and generally has not a physical interpretation, excepting the
difference of the potentials at two points that can be related to a work, as it will be further
explained.

Therefore, in the applications in which the distribution of electric charges in vacuo is
given, and the calculation of the electrostatic field is required, the following procedure is
possible: To calculate successively the potential by relation (1.123) and then the gradient.
This way represents, in many cases, a much simpler solution than the direct calculation
by relation (1.124).

The electrostatic potential is useful for the calculation of the line-integral of the
electrostatic field strength between two points, referred to as:  a) potential difference

between the two points,  b) voltage between the two points or   c) electric (electrostatic, in
the present case) tension between the two points.

The expression of the line integral is:
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CMNU ,d lE (1.125)

but, in the case of the electrostatic field, we may write:
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and

.dddd zyx kjil (1.125 b)

Thus:
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It follows:
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and taking into account that the expression under the integral sign is a total differential, it
results that:

.NMCMN VVU (1.127)

It results that, in the case of the electrostatic field, the potential difference (voltage)
between two points is independent of the curve along which it is calculated and is equal
to the difference of the electrostatic potentials at the two points.

1.14. THE ELECTRIC FLUX LAW IN VACUO

Let us consider a closed surface situated in vacuo, and in its interior a point-like
charge q (that may be referred to as source charge). The electric field strength at a point
of the surface can be obtained by relation (1.119), using the same symbols, and it is
given by the following expression:
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We shall calculate the flux of the electric field strength vector through the surface .

Fig. 1.17. Explanation concerning the electric flux law in vacuo.
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We have:
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We surround the point at which is the point-like charge, by a sphere of surface 0

having its centre at that point and any radius 0r  (assumed generally small but this
assumption is not necessary). Then, we shall consider the surface obtained by the union
of surfaces  and 0 . We obtain:

.00v (1.130)

We shall calculate the flux of the vector E  through the surface 0v . Having in view
the positive direction of the positive normal to the last surface, as shown in Fig. 1.17, we
obtain:
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For the exterior surface , we have:

.dE SE (1.131 a)

For the interior surface 0 , hence that of the sphere, we have 
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At the same time:
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But in the considered domain 
0

V , which does not contain the singular point 0r , we

have:
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Introducing into relation (1.131), the expressions (1.131 a) and (1.131 b), and taking
into account relations (1.132) and (1.133), we obtain:
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.d
0

q
SE (1.134)

Formula (1.134) expresses the integral form of the electric flux law in vacuo, in the
case of a single point-like charge.

Formula (1.134) can also be directly established starting from relation (1.129), taking
into account that the quantity:

S
r

dd
3r

(1.135)

represents the solid angle subtended at the point O (i.e., at 0r ) by the surface element
Sd . Therefore, the solid angle  is obtained as follows. Let O and S  be the given

point and surface, respectively. Let 0  be a spherical surface having its centre at the

point O and any radius 0r . Let us consider the conical surface obtained when a half-
straight-line having its starting point at O is moving along the closed curve that bounds
the surface S . Let 0S  be the surface determined by the intersection of the conical
surface with the spherical surface. Then, the solid angle subtended at the point O by the
surface S  is defined as:
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Immediately, it follows that if S  is a closed surface containing the point O, then 0S

will be the whole surface of the sphere 0 , and the solid angle will be 4 . It is the solid

angle subtended at the point O by the surface of the sphere. If 0S  were smaller than the
whole surface of the sphere, the solid angle subtended at the point O would be less than
4 .

The concept of solid angle is an extension of the notion of plane angle, from the Plane
Geometry, to the notion of solid angle, in the Solid Geometry. As shown, the definitions
are analogous.

Also, as shown, if the point O is contained by the closed surface , then the surface
S  is to be replaced by that whole surface and the solid angle subtended at the point O

by the closed surface will be 4 .
If the point O is just on the closed surface , then the surface S  is to be replaced by

that whole surface and we shall consider the point O as tending from a neighbouring
position to the final one, on the surface . It results that, in this case, the solid angle
subtended at the point O by the closed surface will be 2 .

If the point O is outside the closed surface , anew the surface S  is to be replaced
by that whole surface. In this case, the conical surface above will be tangent to the closed
surface and consequently divides the whole closed surface into two parts. The value
(area) of the surface on the sphere 0  corresponding to those two parts will have the
same absolute value but opposite signs. The different signs are determined by the
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opposite directions of the positive normal to each of the two surface parts. Therefore, in
this case, the solid angle subtended at the point O will be 0 .

It results that the flux of the vectors E  through the surface element S  is:
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If inside the surface , there are several point-like electric charges, then, in
accordance with the principle of superposition and relation (1.118), expression (1.137)
remains valid provided that, in the right-hand side, the sum of all point-like electric
charges is introduced.

If inside the surface, there are distributed electric charges, then, by decomposing the
electric charge distributions into elementary electric charges, the electric charge
distributions can be replaced by sets of point-like electric charges and relation (1.137)
remains valid.

It follows that, generally, for a closed surface , the following expression can be
written:
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q
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or

,dd0 qSDSE (1.139)

,0 ED (1.139 a)

where the quantity q  represents the total free (true) electric charge of the interior of the
surface  and D  is called the electric flux density in vacuo.

The expressions (1.138) and (1.139) represent the integral form of the electric flux law

in vacuo.
The electric charge of the inside of the surface  can be expressed in terms of the

electric charge volume density:
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and relation (1.139) becomes:
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By the aid of the transformation relation of a volume integral into a surface integral
(Gauss-Ostrogradski theorem), we obtain:
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Since the last relation can be written for any volume domain V , it results that:

,div0 vE (1.142)

which is the local form of the electric flux law in vacuo.
By replacing relation (1.124) in (1.142), in the case in which only a volume electric

charge distribution exists, it follows:

0

graddiv vV (1.143 a)

or
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2 vV (1.143 b)

In the framework of the macroscopic theory, the electric flux law is a general law. In
the framework of the microscopic theory, it can be derived as above, as a theorem. For
this reason, the above law is also called the electric flux theorem as well as the Gauss

theorem.
The integral form of the electric flux law can be expressed as follows: The flux of the

electric field strength through a closed surface, situated in vacuo, is proportional to the
sum of all electric charges belonging to the volume delimited by this surface.

In the case in which there is a single point-like electric charge, but situated on the
surface , then, in relation (1.138) or (1.139), the right-hand side will be multiplied by
the factor 21 . The reason has been shown above (considering the solid angles) and it
consists in the fact that instead of a sphere surrounding the point-like charge (Fig. 1.17), it
is a half-sphere (hemisphere) that occurs.

The charges from the outside of the closed surface  do not occur in the expression of
the electric flux law.

1.15. THE SI UNITS OF: ELECTRIC CHARGE, ELECTRIC
MOMENT, ELECTRIC TENSION, ELECTRIC FIELD
STRENGTH, ELECTRIC CURRENT.

In the publications concerning the SI system of units, a set of definitions of the units
of measure is given. For the same units, various definitions can be used as required. In the
present work, each occurring unit is defined employing only relations and units
previously introduced.

1.15.1. The Unit of Electric Charge

The SI unit of electric charge may be established in accordance with the Coulomb

formula and is called coulomb (symbol C). The electric charge of a conducting small

body that exerts a force of N109 9  upon another identical body having an identical
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electric charge, in vacuo, at the distance of 1 m from the first body, and very far from any
other bodies, is called coulomb. The definition of this unit has been examined in the Sub-
section 1.13.1.

The units of volume, surface and line density corresponding to relations (1.7), (1.8)

and (1.9), respectively, are the following: coulomb per cubic metre (symbol 3m/C ),

coulomb per square metre (symbol 2m/C ) and coulomb per metre (symbol m/C ).

1.15.2. The Unit of Electric Moment

The SI unit of electric moment results from relation (1.26) and is called coulomb-
metre (symbol mC ). Coulomb-metre is the electric moment of an electrically polarized
small body upon which a maximum torque of mN1  is exerted in an electric field having
the strength of m/V1 . The definition of this unit has been examined in Sub-section
1.9.6.

The unit of electric induction and electric polarization is called coulomb per square

metre (symbol 2m/C ) and will be explained in Sub-section 3.13.1.

1.15.3. The Unit of Electric Tension

The SI unit of the quantities: electric potential difference, electric tension,
electromotive force, and in general the integral of the electric field strength along a curve
is the volt (symbol V).

The definition of this unit can be given according to relation (1.22). The line-integral
of the electric field strength, along a curve, in any reference system, between two points,
has the value of 1 volt, in the following case. Let a small body with the electric charge of
1 C move along that curve in an electric field, with a very small velocity. Also, during
this motion, let the forces due to the electric field and exerted upon the body above do a
work of 1 J. In this case, the integral above will be equal to 1 V.

The small velocity is required for the definition of the electric field to be valid in the
considered reference frame.

After the unit of the electric potential difference has been adopted, according to
relation (1.23 a), the unit of the electric field strength can be deduced and is called volt

per metre (symbol m/V ). The strength of a uniform (homogeneous) electric field is of
1 m/V  if the electric potential difference between two points situated at a distance of

m1  along a direction parallel with the direction of the electric field strength is of V1 .

1.15.4. The Unit of Electric Field Strength

At the same time, another definition of the electric field strength can also be given
after having adopted the unit of electric charge. In accordance with relation (1.17), the
electric field strength in vacuo, at any point, has the value of m/V1  if at that point, the

electric field exerts a force of N1  upon a conducting small body having the electric
charge of C1 .
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1.15.5. The Unit of Electric Current Intensity

The SI unit of the intensity (strength) of the electric current is called ampere (symbol
A). The electric current constant with time that passes through any surface has the value
of 1 A (ampere) if through that surface an electric charge of 1 coulomb passes in a time of
1 second:

.
s1

C1
A1 (1.144)

Another form for expressing the unit in the SI system of a certain quantity will be
shown for the case of the unit of electric current, as follows:
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q
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The unit of the electric current density is called ampere per square metre (symbol
2m/A ). Since this unit is small, in numerous practical applications, a multiple of this

unit is used, namely ampere per square millimetre (symbol 2mm/A ). When the electric

current density is introduced in computation expressions in 2mm/A , it is necessary to
make the involved transformations.

The unit of the linear current density is the ampere per metre (symbol m/A ).
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2. INTRODUCTION OF THE STATE QUANTITIES OF
THE ELECTROMAGNETIC FIELD IN VACUO

The state quantities of the electromagnetic field can be introduced (i.e., defined) either
by experimental way or by using the expression of transformation of forces when passing
from one reference frame to another that is moving with respect to the first one. Firstly,
the second way will be used, and further the first way will be presented. Each manner
requires certain derivations. The manner of presentation used for the first way is based on
several works [23], [11], [13], [25], [40], [41].

2.1. THE LAW OF PONDEROMOTIVE ACTION UPON A
POINT-LIKE ELECTRIC CHARGE AT REST IN AN INERTIAL
REFERENCE FRAME

The electric charge of any body, according to the non-correlative definition of Sub-
section 1.6.2, will be considered as independent of the velocity of the body. This
assumption is supported by experimental facts mentioned in the above Sub-section.

We shall consider a point-like electric charge in vacuo in a reference frame

oooo ,, zyxK , considered as the original frame, and another reference frame

1111 ,, zyxK  that is moving, at a constant velocity, relatively to the first reference
frame. The original reference frame is indicated by the suffix “o”, in order to avoid any
confusion with the suffix “0” of 0  and 0 .

Any reference frame may be considered, but further on, only inertial reference frames
will be examined.

We shall recall the meaning of inertial reference frame, and we shall make some
remarks.

Inertial reference frame is called any reference frame, with respect to which, three
material points, very distant from each other and from other bodies, and moving in
different, non- parallel planes, describe straight-line trajectories.

All inertial systems are equivalent to each other, from the point of view of mechanical
phenomena. Indeed, all the laws of Classical Mechanics (e.g., inertial law, action and
reaction law, fundamental law of Dynamics) have the same expression in any inertial
reference frame. The inertial reference frames are in a uniform translation motion.

The expression of the law of ponderomotive action, in any reference frame K, exerted
upon a point-like charge q, at rest, in this reference frame is:

.EF q (2.1)

The expression of the law of ponderomotive action is:

,oo EF q (2.2 a)
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in the reference frame oK  if the point-like charge is at rest in this reference frame and:

,11 EF q (2.2 b)

in the reference frame 1K  if the point-like charge is at rest in this reference frame.

The vector quantities oE  and 1E  represent the electric field strengths in the reference

frames oK  and 1K , respectively.
If the point-like charge (or the body represented by this charge) is moving relatively to

the reference frame, then the law of ponderomotive action is different from that presented
above. In this case, the law can be established either by the generalization of experimental
results or by using certain expressions from Mechanics established in the Special Theory
of Relativity.

2.2. DERIVATION OF THE EXPRESSION OF THE LAW OF
PONDEROMOTIVE ACTION UPON A POINT-LIKE ELECTRIC
CHARGE THAT IS MOVING RELATIVELY TO AN INERTIAL
REFERENCE FRAME

The expression of the law of ponderomotive action upon a point-like charge that is
moving with respect to an inertial reference frame can be established by using certain
assumptions (hypotheses) from Mechanics established in the Special Theory of
Relativity.

The used hypotheses are the following:
1. In an inertial reference frame, the expression of the force acting upon a point-like

electric charge that is in motion relatively to this reference frame, and produced by the
interaction with another point-like electric charge, at rest with respect to the same
reference frame, is given by the Coulomb law from Electrostatics.

2. For obtaining the expression of the force acting upon a point-like electric charge
the principle of superposition will be used. So, in order to find the force acting upon a
point-like electric charge q at rest or in motion, under the action of several point-like
charges niqi .,..,1 , we shall proceed as follows. We consider separately the pairs of

charges 1, qq ; 2, qq ; . . .; nqq,  and we obtain the forces 1F , 2F , . . ., nF . The resultant
force exerted upon the point-like electric charge q is:

.
1

n

i

iFF (2.3)

The subscript of point-like electric charges indicates only the ordinal number and has
no relation with the subscript of the reference frame symbol. On the other hand, the
definition of the electric charge does not depend on the reference frame.

3. For expressing the forces in another inertial reference frame, the transformation
relation of forces, from Mechanics, established in the Special Theory of Relativity, will
be used.
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4. Firstly, only point-like charges will be considered. By this procedure, instead of
elementary particles with electric and magnetic moments, only point-like electric charges
without electric and magnetic moments will be considered.

2.3. THE TRANSFORMATION EXPRESSION (WHEN PASSING
FROM AN INERTIAL SYSTEM TO ANOTHER) OF THE FORCE
IN THE SPECIAL THEORY OF RELATIVITY

The following postulates lie at the base of the Special Theory of Relativity:
1. Relativity principle: There are an infinity of reference frames in uniform rectilinear

relative motion, called inertial reference frames, in which all the laws of nature take the
same form namely the simplest form, established for the case in which the reference
frame would be at rest.

2. The principle of constant velocity of light in empty space: In all inertial reference
frames, the velocity of light emitted by any source of light in empty space, measured with
physically identical gauges and clocks, has the same value.

3. The mechanical momentum along any direction perpendicular to the direction of
motion is conserved when passing from an inertial reference frame to another. The
general expression of the momentum of a material point in motion [11, p. 666].

The first two postulates have been supported by several experiments. Einstein
enounced these postulates. The last postulate is also included in the Special Theory of
Relativity. The mentioned first two postulates lead to certain relations between lengths
and times in two inertial reference frames in motion relatively to one another. These
relations differ from those of Classical Mechanics.

Certain difficulties involved by these postulates have been mentioned in Introduction
and are analysed in literature.

2.3.1. The Transformation Expressions of Co-ordinates and Time

We shall recall the notions of duration and time. The duration is a scalar quantity,
expressing the relation between two events. This quantity is attached to the events as
follows. Each event is related to the position of a moving point. We determine two
positions occupied successively by a point corresponding to the two events. The duration
between the two events is proportional to the length of the path (way) described by the
point between the two positions.

For defining the duration and time in a reference frame, it is possible to do as follows.
We consider a point that is in a uniform rectilinear motion in this frame, hence the point
describes a straight-line trajectory. When a certain event occurs, we shall mark the

position of the moving point at that moment. The duration between two events is thus a
scalar quantity, proportional to the distance between the points marking the two events.
The unit of measure of the duration is determined by adopting certain proportionality
constant between distance and duration, for a given motion of the point above.

The duration measured with respect to an origin, and having the sign plus or minus as
the second event is posterior or anterior to the origin-event, is called time, and may be
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referred to as a temporal co-ordinate. The device for measuring the time is a clock of any
type.

The standard unit of time is deduced from the duration of rotation of the Earth about
its axis. The duration of a sidereal day is defined as the duration of the rotation of the
Earth determined with a high precision by astronomical measurements relatively to stars.
The duration of a solar day is defined as the duration of the rotation of the Earth
determined with a high precision by astronomical measurements. The duration of the
mean solar day is obtained from the duration of solar days taking into consideration the
duration of the year. The unit of time adopted in Physics is the second deduced with
respect of the mean solar day.

A more precise definition of the unit of time can be based on the consideration of the
periodic duration of oscillation (vibration) of a certain kind of light the wave-length of
which is used for defining the unit of time. The second is the duration of 7706311929
periods of the radiation corresponding to the transition between the two hyperfine levels
of the fundamental state of the atom of caesium 133. The clocks with caesium ensure a
satisfactory precision for most applications.

The standard unit of length is the metre adopted firstly in France by the decree of the
1st August 1793 of the Convention as ten-millionth part of the quarter of an Earth
meridian circle (according to the proposition of Borda, Condorcet, Laplace, Lagrange,
Monge). Standard metres were manufactured.

Fig. 2.1. The reference frames oK and 1K .
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In 1887, Michelson proposed the utilization of optical interferometers for the measure
of lengths and determined the length of the metre from the wave-length of cadmium. In
1960, the Conférence Générale des Poids et Mesures (CGPM) adopted the length of the
metre from the wave-length of the radiation corresponding to the transition between two
specified energy levels of the atom of krypton 96 in vacuo. In 1983, the CGPM adopted
for the metre the following definition: the metre is the length covered by light in vacuo in

458792299/1  second [46]. We shall consider the reference frames oooo ,, zyxK , and

1111 ,, zyxK  of Fig. 2.1. Three-orthogonal rectilinear (Cartesian) right-handed systems
of co-ordinates are used.

The co-ordinates of any point P seen by an observer in the frame oK  are denoted by

ooo ,, zyx , and the co-ordinates of the same point seen by an observer in the frame 1K

are denoted by 111 ,, zyx .
As shown in Appendix 3, the unit vectors of the two systems of co-ordinates can be

denoted by the sets ooo ,, kji , and 111 ,, kji , respectively. In the case in which the axes
of co-ordinates of the two systems are parallel with each other, since the unit vectors are
dimensionless, both sets of unit vectors may be denoted by the same set of symbols,
namely kji ,, .

Hence, the unit vectors of the three axes in the frame oK  as well as in the frame 1K

are denoted by kji ,,  and they are not affected by the transformation expressions of the
co-ordinates, because they are dimensionless quantities that indicate only the directions.

The components of any vector, in the reference frame oK , for instance oF , along the

three axes of co-ordinates can be denoted by 
ooo ooo ,, zyx FFF . If no confusion can appear,

for the sake of brevity, the last suffix may be omitted, and then the components become

zyx FFF ooo ,, . The components of any vector, in the reference frame 1K , for instance 1F ,

along the three axes of co-ordinates can be denoted by 
111 111 ,, zyx FFF  or zyx FFF 111 ,, ,

according to the case, as explained above.
The components of the velocity of the reference frame 1K  with respect to the

reference frame oK  denoted for instance o1v , along the three axes of co-ordinates can be

denoted by 
ooo o1o1o1 ,, zyx vvv  or zyx vvv o1o1o1 ,, , according to the case, as explained above.

The reference frame 1K  is in a uniform rectilinear motion at velocity

xvv o1o1o1 iiv  with respect to the reference frame oK  that is supposed at rest.

The choice of the reference frames is arbitrary so that the adoption of the 1Ox - axis

having the direction of the velocity vector xvv o1o1o1 iiv  simplifies the mathematical
expressions, without reducing the generality of the analysis.

In the reference frame oK  the time determined by a certain procedure (e.g., a clock),

is denoted by ot , and in the reference frame 1K  determined by the same procedure is

denoted by 1t . The two determination procedures (usage of clocks) are assumed identical
and synchronized. The term synchronization means, in this case, that at the moment when
the origins of the two reference frames coincide, the time is chosen equal to zero. The
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velocity of propagation of light, assumed to be in vacuo the same, in any reference frame,
is denoted by c. In certain cases that here will not occur the symbol 0c  is also used.

On the base of the postulates of the Special Theory of Relativity, the transformation
expressions that give the quantities in the frame 1K  in terms of the quantities in the

reference frame oK  are as follows:

,oo1oo11 tvxx x (2.4 a)

,o1 yy (2.4 b)

,o1 zz (2.4 c)

,o2
o1

oo11 x
c

v
tt x (2.4 d)

.;
1

1 o1
o1

2
o1

o1
c

v x
(2.4 e, f)

The relations (2.4 a, b, c, d, e, f) are called Lorentz transformation relations. The same
relations have been established previously by Lorentz, on the base of other considerations
than those previously presented (i.e., the postulates of the Special Theory of Relativity).

The transformation relations that give the quantities in the reference frame oK  in

terms of those in the reference frame 1K  can be obtained analogously by solving the
system of equations (2.4 a, b, c, d, e, f) and are:

,1o111oo tvxx x (2.5 a)

,1o yy (2.5 b)

,1o zz (2.5 c)

,12
o1

11oo x
c

v
tt x (2.5 d)

.;
1

1
o1

o1
1o

2
1o

o1o1
c

v x
(2.5 e, f)

For every moment, the lengths can be calculated in each reference frame by the
expression known from Geometry. For instance, we shall consider two points A and B

belonging to a body at rest with respect to the reference frame 1K  and we shall express

the distances between the two points in the two reference frames oK  and 1K .
We obtain:

2
oo

2
oo

2
ooo ABABABAB zzyyxxl , (2.6 a)
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.2
11

2
11

2
111 ABABABAB zzyyxxl (2.6 b)

The observer in the reference frame oK  will locate the points A and B at the same

moment ot  and then we obtain from relation (2.4 a):

.ooo111 ABAB xxxx (2.7)

Thus ABAB ll 1o  and this modification of the length due to the motion, for an

observer in the reference frame oK , is called contraction of lengths along the direction
parallel with the motion.

If the distance between the two points is very small, the following relations can be
written:

,dd

,dd

,dd

o1

o1

oo11

zz

yy

xx (2.8 a)

(2.8 b)

(2.8 c)

or

.dddd oooo11 zyx kjir (2.8 d)

Analogously, for the surface elements:

,dddd

,dddd

,dddd

oo1111

oyo1111

o111

zz

y

xx

SyxS

SxzS

SzyS

(2.9 a, b, c)

and for the volume elements:

.dd oo11 vv (2.10)

The relations by which the various geometrical quantities of the frame oK  are

expressed in terms of those of the frame 1K  can be analogously written taking into
consideration the corresponding transformation relations of co-ordinates. For instance:

.dd 11oo yy SS (2.11)

From relation (2.5 d), it results that between the duration 1t  between two events

considered by an observer in the frame 1K  and the duration ot  between the same

events, considered by an observer in the frame oK , the following relation can be written:

.1o1o tt (2.12)
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Thus 1o tt  and this modification of the duration between the two events is called
dilatation of time [13] or dilation of time [18].

From the analysis above, it follows: It is accepted that at every point in the reference
frame oK , there is a clock that defines a local time ot  and that at every point of the

reference frame 1K  there is a clock that defines another local time 1t . It is not the case of
general shift between the two reference frames, but it is a time difference that depends on
the considered point. Then, the phenomena that simultaneously occur in the reference
frame oK  are not generally simultaneous in the reference frame 1K  and inversely.

This aspect concerning the time is connected to another aspect concerning the space.
Indeed, let us consider two points A and B, at rest in the reference frame 1K  and therefore

moving relatively to the reference frame oK . If in the reference frame 1K  the distance
between them is measured by a ruler at rest, their position will be located at the same
moment BA tt 11 . But in the reference frame oK , the time Ato  differs from the time Bto .

2.3.2. The Transformation Expressions of Forces

We shall consider the reference frames oK  and 1K . The reference frame oK  is

considered at rest, and the reference frame 1K  is considered in a uniform rectilinear

motion, at the velocity xv o1o1 iv , relatively to the reference frame oK .

We consider a material point that is moving at any velocity o2v  (not necessary

constant) relatively to the reference frame oK , and at the velocity 21v , relatively to the

reference frame 1K .
The expression of the force acting upon a material point of mass m and velocity u , in

any reference frame K is given by the derivative of the momentum (quantity of motion):

.
d

d
uF m

t
(2.13)

We shall denote by oF  the force acting upon the material point in the reference frame

oK  and by 1F  the force acting upon the same point in the reference frame 1K .
In the framework of the Special Theory of Relativity, using the transformation

expressions of co-ordinates and time, the transformation expression of the force can be
obtained in the form given by relation (A.3.13) in Appendix 3:

,
1

1o1o1o221o Fvvi
c

FF xx (2.14 a)

,
1

1o1o1o221o1oy Fvvj
c

FF y (2.14 b)

,
1

1o1o1o221o1o Fvvk
c

FF zz (2.14 c)

.
1

1o1o1o221o11o11o FvvkjiF
c

FFF zyx (2.14 d)
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2.3.3. The Manner of Adopting the Transformation Relations of Forces
and Geometrical Quantities

We admit that there is a reference frame nK  having the following property: The force

nF  acting in that reference frame upon an electrically charged particle moving with any

velocity pnv  (not necessary constant) is independent of the velocity pnv . The last

velocity must not be too great for avoiding the electromagnetic radiation of the charge
and the corresponding braking. Such a case occurs when all charged particles are at rest
in the reference frame nK  the particle above, of velocity pnv , excepted.

In any other reference frame, the forces can be expressed by relations of the type
(2.14) in terms of the force nF  from the reference frame nK . Therefore, nF  is

considered as the proper value of the force in the reference frame nK .
All geometrical elements (lines, surfaces, volumes) have their proper dimensions

taken in the reference frame nK . The sizes in the reference frame nK  can be expressed
in terms of the sizes of any other reference frame. As a consequence, relations of the type
(2.8) will be used. Hence the area 1S  can be expressed in terms of the area oS .
Consequently, relations (2.9 a, b, c) will be used.

With the usual denominations, the sizes are contravariant quantities (tensor), and the
force components are covariant quantities. When writing various relations, it is necessary
to keep in mind the kind of the involved quantities.

2.4. THE EXPRESSIONS OF THE FORCE AND ELECTRIC FIELD
STRENGTH IN VARIOUS REFERENCE FRAMES.  ELECTRIC
DISPLACEMENT IN VACUO AND MAGNETIC INDUCTION IN

VACUO.  MAGNETIC CONSTANT (MAGNETIC PERMEABILITY
OF VACUUM).

Let us consider that at a fixed point AAA zyxA 111 ,,  of the reference frame 1K  there

is a point-like electric charge 1q . The subscript of point-like electric charges has no
relation with the subscript of the reference frame symbol, as explained in Section 2.2,
assumption 2. The medium is considered to be vacuum.

We shall also consider that there is another point-like electric charge q. This charge is
moving at the velocity o2v  (that is not necessary to be constant) relatively to the

reference frame oK , and 21v  relatively to the reference frame 1K .
On the base of hypothesis 1 of Section 2.2, the force acting upon the point-like electric

charge q at the point 111 ,, zyxP  in the reference frame 1K  is given by the Coulomb
formula:

,
4 13

1

1

0

1
1 E

r
F q

r

qq

AP

AP
(2.15)
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where the quantity 1E  represents, in accordance with relation (2.2 b), the electric field

strength in the reference frame 1K .
The components of this force along the three axes of co-ordinates are:

,
4 13

1

11

0

1
1 x

AP

A
x Eq

r

xxqq
F (2.16 a)

,
4 13

1

11
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1
1 y
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y Eq

r

yyqq
F (2.16 b)

,
4 13

1

11
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1 z

AP
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z Eq

r

zzqq
F (2.16 c)

where:

.2

1
2

11
2

11
2

1111 AAAAP zzyyxxrr
(2.17)

Let us suppose the point P fixed to the reference frame oK . By using the
transformation expressions of co-ordinates and time (2.4), referring to Fig. 2.1, it follows:
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where:

.2

1
2

1o
2

1o
2

1oo1oo11 AAAxAP zzyyxtvxr
(2.19)

By using the transformation expressions of the force (2.14 a, . . ., d), we obtain the
force in the reference frame oK :

,
1

1o1o1o221o Evvi
c

EqF xx (2.20 a)

,
1

1o1o1o221o1o Evvj
c

EqF yy (2.20 b)

.
1

1o1o1o221o1o Evvk
c

EqF zz (2.20 c)
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In vector form, the expression of the force in the reference frame oK  is:

.
1

1o1o1o22

1o11o11oooo

Evv

kjikjiF

c
q

EEEqFFF zyxzyx

(2.20 d)

Relation (2.20 d) represents the expression of the force in the reference frame at rest

oK , in terms of the force in the moving reference frame 1K . We denote:

.1o11o11o zyx EEE kjiE (2.21)

The relation (2.21) represents the expression of the electric field strength in the
reference frame at rest oK , in terms of the electric field strength in the moving reference

frame 1K .

Since 0o1vi , the direction of the Ox - axis coinciding with the direction of
motion, we obtain:

.
1

oo12o2oo EvvEF
c

qq (2.22)

We denote 002

1

c
, where the constants 0  and 0  have already been introduced.

The constant 0  denotes, as previously, the (electric) permittivity of vacuum, also called

electric constant. The constant 0  denotes the (magnetic) permeability of vacuum, also
called magnetic constant. In the SI system of units (i.e., a rationalized system), the values
of the two constants are:

,)metre/farad(
m

F

1094

1
90 (2.23)

.)metre/henry(
m

H
104 7

0 (2.24)

The definition of the units farad and henry will be given further in Sub-section 3.13.3.
The following symbols are adopted:

,oo0 DE (2.25)

.
1

ooo10oo12
BDvEv

c
(2.26)

We may remark in relations (2.25) and (2.26), that the original reference frame is
indicated by the suffix “o”, in order to avoid any confusion with the suffix “0” of 0  and

0 , as previously mentioned.
At the same time, the following quantity is also used:
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;oo1o DvH    .o0o HB (2.27 a, b)

The vector quantity oD  introduced by relation (2.25) is referred to by one of the
following expressions: Electric displacement, electric flux density, and electric induction,

in vacuo, in the reference frame oK .

The vector quantity oB  introduced above is referred to by one of the following
expressions: Magnetic induction, and magnetic flux density, in vacuo, in the reference
frame oK .

The vector quantity oH  is called magnetic field strength or magnetic field intensity, in

vacuo, in the reference frame oK .

In the SI system of units, the unit of electric displacement is, as mentioned,

coulomb/square metre (symbol 2m/C ), and the unit of magnetic induction is volt second
per square metre, called tesla (symbol T). The definition of the unit of measure of the
magnetic induction will be presented in Sub-section 3.13.4.

If instead of expression (2.23), other values are adopted for the constants included in
the expression of c  in relation (2.22), other units of measure are obtained for the units of
measure of the electromagnetic quantities. With the adopted symbols, we obtain:

.oo2oo BvEF q (2.28)

This is the expression of the force in the reference frame oK  that acts upon a point-like
electric charge, thus the expression of the ponderomotive action upon a point-like electric
charge in motion with respect to an inertial reference frame. It is also referred to as the
Lorentz expression of the force. It is necessary to add that in the last expression the
quantities oE  and oB  are assumed to be not influenced by the electric charge q. For this

assumption to be satisfied it is necessary that the velocity o2v  be not too great. Indeed,
otherwise the charge in motion produces an electromagnetic field that modifies the value
of the quantities oE  and oB  in the preceding formula.

Hitherto, we have supposed that the oE  and oB  are produced by the point-like

electric charge 1q  fixed in the reference frame 1K . If instead of a single point-like

electric charge 1q , there are n point-like electric charges niqi .,..,2,1 , at rest in the

reference frames nKKK .,..,, 21 , which are moving with the velocities nii .,..,2,1v

relatively to the reference frame oK , each charge produces a force. According to the
hypothesis 2 of Section 2.2, the principle of superposition and formula (2.28) remain
valid in this case.

In the case in which the electric charge is distributed with the volume density 1v  in

the reference frame 1K , then the expression of the electric field strength at a point

PPP zyxP 111 ,, , corresponding to relation (2.15), is replaced by:
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,1111 MMM zyx kjir (2.29 a)

,2

1
2

11
2

11
2

111 MPMPMPMP zzyyxxr
(2.29 b)

,dddd 1111 zyxv (2.29 c)

where the vector M1r  has its origin at the origin 0,0,01O  and its end at any point

MMM zyxM 111 ,, ; the vector MP1r  has its origin at any source point

MMM zyxM 111 ,,  and its end at the observation point PPP zyxP 111 ,, . The integral is

extended over the whole space, in the reference frame 1K , and the index P  refers to the
observation point the co-ordinates of which are expressed in the same reference frame.

If there is a single point-like electric charge, then instead of any source point

MMM zyxM 111 ,, , there is a single point AAA zyxA 111 ,, . In the approach above, the
magnetic induction in vacuo B  appears as a derived quantity. If the Special Theory of
Relativity were not used, then the magnetic induction would be introduced as a primitive
(fundamental) quantity, what can be done, as it will be shown in the next Section.

2.5. GENERAL EXPRESSIONS OF THE FORCE ACTING UPON A
POINT-LIKE ELECTRIC CHARGE IN MOTION RELATIVELY
TO AN INERTIAL REFERENCE FRAME.  INTRODUCTION
(DEFINITION) OF THE QUANTITIES: ELECTRIC FIELD
STRENGTH E  AND MAGNETIC INDUCTION B .

The general expression of the force acting upon a point-like electric charge in motion
with respect to an inertial reference system, deduced in the preceding Section can also be
established by the generalisation of certain experimental results.

We consider a point-like electric charge q that is moving with any velocity v  (that is
not necessary to be constant) with respect to any inertial reference frame K . The force
acting upon a point-like electric charge (the Lorentz force) is:

,BvEF lq (2.30)

where in the right-hand side, besides the velocity, other vector quantities occur, namely:
E and B . For the sake of simplicity, we shall assume that EEl .

The vector quantity E , called electric field strength, can be introduced (in accordance
with the explanation of Sub-section 1.6.5) as follows. The electric field strength at a point
in any reference frame is the ratio between the force exerted at that point upon a point-
like electric charge q, when it would be at rest in this reference frame, and the electric
charge q.

It is to be noted that, in this case, the electric charge q should be small enough to not
perturb the state of the field, hence, to not modify the distribution of the electric charge.
This remark is significant only when introducing the vector .E In the general case, the
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electric charge q of the point-like charge may be of any magnitude, hence q can modify
the state of the electric field. However, in this case, the electric field strength at that point
will be determined by the actual distribution of all electric charges. The relation (2.30)
remains valid.

The vector quantity B , called magnetic induction, included in relation (2.30), can be
introduced as follows: The magnetic induction at a point of an inertial reference frame is
the vector quantity which multiplied by the velocity vector v  and introduced into relation
(2.30), where the quantity E is known, gives the force vector exerted upon a point-like
electric charge q that is moving with any velocity v  relatively to the inertial reference
frame. Here, the remark concerning the necessity that the electric charge q be small
enough to not modify the electric charge distribution remains still valid.

In the presented manner, the vector quantity B appears as a primitive (fundamental)
quantity (if it is introduced in the previously way and if this way is considered to be the
only possible for determining the vector quantity B ).

If the vector quantity B  is introduced via a certain deduction (for instance by certain
relations of Mechanics, established in the Special Theory of Relativity) the vector
quantity E  remains a primitive (fundamental) quantity, and the vector quantity B

becomes a secondary (derived) quantity. In this case, the previous introduction of the
quantity B  is called measurement or verification. The macroscopic magnetic induction is
expressed by the macroscopic average value of the microscopic magnetic induction. The
average value is obtained by using a multiple integral expressed by relation (1.15). The
vector quantity B  is a function of point or, in other words, B is a field vector (producing
a field of vectors also called vector field).

The lines of the vector field B , shortly called lines of magnetic induction or lines of

magnetic field, are lines to which the vector B  is tangent at any point.
It is interesting to mention that the lines of magnetic field, like the lines of electric

field, are only auxiliary notions that serve to describe the fields and are not material
entities, the elements of which could be materialized or related to certain sources of the
field.

The impossibility of such interpretation results, for instance, in the case of
superposition of the fields of two coaxial cylindrical magnets, one fixed and the other in a
rotating motion about its axis.

Magnetic flux tube is called the surface in a magnetic field bounded by the totality of
lines of magnetic induction that passes through the points of a closed simple curve.

It is to be remarked that the component acting upon an electric charge in motion,
which does not exist if the charge is at rest, is:

.mag BvF q (2.30 a)

If the charge q  is assumed to be continuously distributed in an infinitesimal volume

vd , then we can write in the reference frame 1K  the relation vq v d .
In the case of a thread-like (in French, filiforme) distribution of electric charge with

the cross-section cs  in the reference frame 1K , the volume element vd  becomes ls dc

(where the vectors ld  and cs  are parallel). Then, taking into account that the quantity

csJo  represents an electric current i  relatively to the reference frame oK , the last
formula can be written:
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.dd mag BlF ×= i  (2.30 b)
 

The last formula represents the force acting on a current element ldi  in a magnetic 
field of magnetic induction B , and is referred to as the Laplace formula. 

It is to be remarked that in relation (2.30), the force acting upon a point-like electric 
charge has two components: the first independent of the velocity and the second 
depending on the velocity of the electric charge carrier. For this reason, the two kinds of 
vector quantities E  and B  have different specific properties. 

The vector E  of relations (2.30 a, b) is not generally a quantity deriving from a 
potential. This fact can be established using relations (2.20) – (2.22). For this purpose, we 
shall calculate the curl of the vectors E  of the various inertial reference frames. 

The differential operators at a point of a reference frame will be indicated by the index 
corresponding to that reference frame in which the respective operator is calculated. Thus 

Eocurl  means that the differential operator curl is calculated in the reference frame oK . 
The relations between the components of the vector quantities oE  and 1E  are given 

by relation (2.20 a, . . ., d). By replacing in the expanded expression of the curl the 
components of the vector 1E , it results that:  
 

,0curl 11 =E  (2.31)
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Taking into account the relation (2.21), it results that:  
 

.0curl oo ≠E  (2.32)
 

Indeed, from the expression of the curl, it follows: 
 

( ) .curl
o

oz

o

o
oo x

E
z

E x

∂
∂

−
∂
∂

=⋅ Ej  (2.32 a)
 

But, according to relations (2.21) and (2.20 d), we have: 
 

,1o xx EE =  (2.33 a)
 

.1o1o zz EE α=  (2.33 b)
 

We take into account that zE1  is a function of 111 ,, zyx . Relations (2.32 a), (2.4 c), 
(2.33 a), (2.4 a), (2.33 b), (2.31 a) yield: 
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The above component of the ocurl  being different from zero, relation (2.32) is 
established. 
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The electric field strength contains besides the Coulombian component, that is a
potential one, a curl (rotational) component, also called solenoidal component or induced

component:

.rc EEE (2.35)

Therefore, in the case of the reference frames oK  and 1K  considered previously, the

strength of the resulting electric field in the reference frame oK  is oE  and can be
written:

,ooo rc EEE (2.36)

where the quantity coE  represents the Coulombian component, and the quantity roE

represents the curl component (rotational, solenoidal or induced component) of the
electric field strength.

The solenoidal component of the electric field strength and the magnetic induction at a
point are produced by the electric charge in motion with respect to the considered
reference frame.

2.6. THE MAGNETIC FIELD

Firstly, we shall recall some generalities about magnetism and magnets. Various
bodies, among which the loadstone (iron ore), have certain properties, explained below,
and for this reason they are called magnets. A body, which after having been subjected to
certain treatments gets such properties, becomes a magnet and the treatment represents
the process of magnetization. The material of which the body is made represents a
magnetic material. The properties mentioned above consist in actions or forces of
magnetic origin. For instance, a body suspended near any part of the earth surface, so as
to turn freely about a vertical axis, could tend to set itself in a certain position. If it is
disturbed from this position, it could tend to come back in the previous position, after
several oscillations. In the case in which the body satisfies the mentioned tendencies, then
it is a magnetized body, and in the contrary case, it is an unmagnetized one. In the first
case the body is a magnet. The study referring to actions of magnetic origin is called
magnetism.

Between certain bodies, like those of magnetite ( 32OFe ), ponderomotive actions
(forces and torques) are exerted. These actions are not of thermal, mechanical or electrical
nature, but of magnetic nature.

Also, between conductors carrying macroscopic electric currents, ponderomotive
actions are exerted. These actions are not of thermal, mechanical or electrical nature, but
of magnetic nature. Therefore, upon bodies carrying electric currents, ponderomotive
actions that are not of thermal, mechanical or electrical nature but of magnetic nature, can
be exerted.

The ponderomotive actions of magnetic nature between magnetized bodies, or
carrying electric currents, and other magnetized bodies, or carrying electric currents, are
not directly exerted but by means of the magnetic field.
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The magnetic field is the physical system that exists in the space regions in which
ponderomotive actions (forces or torques) of magnetic nature can be exerted upon
magnetized bodies or on bodies carrying macroscopic electric currents.

The magnetic field exists around magnetized bodies as well as in their interior and
represents, in any reference frame, as a component of the electromagnetic field, namely
the magnetic field. The magnetic field can be produced by various causes: Electric
charges in motion, electric currents, variation with time of the electric field strength,
variation with time of the electric polarization, and electrified bodies in motion relatively
to the considered reference frame.

The electromagnetic field is a physical system that exists in the space regions, in
which ponderomotive actions of electric nature as well as of magnetic nature are exerted
upon bodies that are electrified, magnetized or crossed by electric currents.

2.7. TRANSFORMATION RELATION OF THE VOLUME DENSITY
OF THE FREE (TRUE) ELECTRIC CHARGE

Let oK  and 1K  be two inertial reference frames. In any reference frame, the volume
density of the true electric charge will be expressed in terms of the volume density of the
true electric charge in the reference frame in which the electric charges are at rest.

We suppose that the electric charge is at rest in the reference frame 1K . At the same
time, we take in view that in accordance with the non-correlative definition of the electric
charge (of the Sub-section 1.6.2), the magnitude of the true electric charge is invariant
relatively to the change of the inertial reference frame by another one. Then, the
conservation law of the true electric charge of a volume element, in the two reference,
frames oK  and 1K , can be expressed as follows:

,dd 11oo vv vv (2.37)

and according to relation (2.10), it results that:

,1o1o vv (2.38)

which is the transformation relation of the volume density of the true (free) electric
charge.

The transformation relation of the volume density of the polarization electric charge
has the same form.
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2.8. THE EXPRESSIONS OF THE MAGNETIC FIELD STRENGTH
PRODUCED AT A POINT BY A MOVING ELECTRIC CHARGE
OR AN ELECTRIC CURRENT IN VACUO.
THE BIOT-SAVART-LAPLACE FORMULA.

We shall consider the case in which the electric and magnetic field are produced by
the charge 1q , in vacuo, mentioned at the beginning of Section 2.4. In this case, at any

observation point PPP zyxP 111 ,, , in the reference frame 1K , formula (2.15) yields:
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and according to relation (2.21), we have in the reference frame oK , at the same

observation point PPP zyxP ooo ,, , considered fixed in the reference frame oK :
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According to relation (2.26), we have at the same observation point PPP zyxP 111 ,, :
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For values of the ratio 
c

v o1  small enough so that o1  tends to unity, the last formula

becomes:
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If the charge is assumed to be continuously distributed around the point

AAA zyxA 111 ,, , in an infinitesimal volume 1dv , then we can write, in the reference

frame 1K , the relation 111 dvq v  and it follows:
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or, taking into account relation (1.70), we have:
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In the case of a thread-like distribution of electric charge with the cross-section cs in

the reference frame 1K , the volume element 1dv becomes ls dc (where the vectors ld

and cs are parallel) and ld is a length element. The quantity ldi can be referred to as

current element. Taking into account that the quantity csJo represents an electric

current i  in respect to the reference frame oK , the last formula can be written:
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If we renounce the indices referring to the reference frames, the last relation yields:
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The formula (2.47) is referred to as the Biot-Savart-Laplace formula. This formula
was firstly established starting from certain experimental results.

In the case of a closed curve , by integrating both sides of relation (2.47), it follows
(Fig. 2.2):
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Fig. 2.2. Explanation to the calculation of the magnetic field strength
produced by a circuit carrying an electric current.
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It is interesting to make the following remark. Let us consider a two-dimensional
orthogonal rectilinear system of co-ordinates xOy  and two current elements, one of them
placed along the Oy - axis and having its centre at the point O , and the second placed
along the Ox - axis and having its centre at any point P  on the same Ox - axis.

Let us calculate the magnetic field strength produced at the point P , by the current
element having its centre at point O  by formula (2.47). We shall obtain a vector B

perpendicular at the point P , on the xOy - plane. Then, we calculate the force acting
upon the current element with the centre at the point P , by formula (2.30 b). We obtain
for this force a certain value different from zero. Hence, the force, calculated in this way,
is different from zero.

If we calculate, in the same way, the force acting upon the current element having its
centre at the point O , we obtain that this force is zero. Under these conditions the
principle of action and reaction from the classical Mechanics is not satisfied.

For the remark above, in Classical Electromagnetism, it is considered that the formula
(2.47) is valid only if it is applied for a closed contour, hence a closed electric current.

A special circumstance should be highlighted. The formulae used in calculation in
Classical Electromagnetism concern electric conduction currents carried by conductors
(wires). In a conductor, the electricity of charge carriers (electrons) is to a great extent
compensated by the electricity of the lattice ions of the conductor (positive charge). For
this reason, only the force of magnetic nature is calculated. That is not the case for the
current elements previously examined, where only the moving charge carriers are
considered. Therefore, both forces of magnetic and electric nature have to be calculated.

In fact, the remark above, relatively to the principle of action and reaction does not
mean that the formulae concerning the current elements are not valid. Indeed, the
formulae that have to be applied are the relations obtained from the Special Theory of
Relativity, without the approximation assumed above. Therefore, the complete formulae
(2.21), (2.22) or (2.28) must be used.

Let us consider that the current element along the Oy - axis contains the electric

charge 1q  moving with the velocity 1v  in the positive direction of this axis, and also

contains the immobile electric charge 1q . The current element along the Ox - axis

contains the electric charge 2q  moving with the velocity 2v  in the positive direction of

this axis, and also contains the immobile electric charge 2q .
The calculation carried out in [18, p. 263] has shown that concerning the principle of

action and reaction of forces in the classical Mechanics, no deviation occurs along the
Ox - axis, but a small deviation occurs along the Oy - axis, of the order of magnitude

proportional to 
2

21

c

vv
.

Certain applications of formula (2.48) can be found in Section 3.15 and in papers [57],
[58].



3. THE LAWS OF THE ELECTROMAGNETIC FIELD

3.1. THE LAW OF ELECTRIC FLUX

The expression of the law of electric flux can be established as a generalization of
experimental results (i.e., the law being considered as correct, no experimental result has
been found to contradict it) or deduced by utilizing certain relations established in the
Special Theory of Relativity. We shall use both manners beginning with the second one.

3.1.1. The Expression of the Law of Electric Flux in Vacuo

Let oK  and 1K  be inertial reference frames. The reference frame 1K  is moving with

the constant velocity o1v  relatively to the reference frame oK .

Let 1  be a closed surface in the reference frame 1K . The same surface, considered at

the same position in space, but in the reference frame oK , will be denoted by o , like in
Fig. 3.1 a.

This surface contains in its interior a point-like electric charge 1q  situated in vacuo at

the point A. We shall calculate the flux of the vectors o0 E  through the closed surface

o . Therefore:

,d

o

oo0 SE
(3.1)

where:

.dd oo SnS (3.1 a)

By replacing the quantity oE  given by relation (2.21) and taking into account the
relation (2.8 a, b, c), (2.9 a, b, c) and (2.21), we obtain:
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(3.2 a)

It results that:

.dd 11oo SESE (3.2 b)
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Fig. 3.1. Explanation concerning the integral form of the electric flux law in
vacuo referring to: a – deduction of expression; b – general expression.
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But, in accordance with the law of electric flux in vacuo of Section 1.14, we can write:

.d 1110

1

qSE (3.3)

It results that

.d 1oo0

o

qSE (3.4)

In the case of several point-like electric charges, according to the hypothesis 2 of
Section 2.2, we can apply the principle of superposition and expression (3.4) keeps the
same form but instead of the charge 1q , the total charge 

o
q  of the closed surface will be

introduced.
The macroscopic quantities at a point, at any moment, are obtained by the

computation of the average values (mean values) of the microscopic quantities over a
physically infinitesimal volume, around the considered point and over a physically
infinitesimal time interval containing the considered moment.

After the calculation of the average values, the form of relation 3.3 is not modified.
If instead of the point-like electric charge 1q , a distributed electric charge with the

density ov  in the volume 
o

V  is given, then, by utilizing the transformation of the

surface-integral into a volume-integral (Gauss-Ostrogradski theorem), it follows:

.ddivdd oo0ooooo0

ooo

vv

VV

v ESE
(3.5 a)

Since the preceding relation is valid for any surface o , it results that:

.div oo0o vE (3.5 b)

If we renounce the index o, and consider the total charge, relations (3.4) and (3.5 a)
yield:

,d0 qSE (3.6)

where q  is the total charge contained by the volume bounded by the surface , and

.div 0 vE (3.7)

The expression established above remains valid for any inertial reference frame, since
the differential operator divergence is invariant with respect to the transformation from
one inertial referential frame to another, at rest relatively to the first one.

Relations (3.6) and (3.7) represent the integral form and the local form respectively, of
the electric flux law for empty space (i.e., in vacuo) in any inertial reference frame.
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3.1.2. The Expression of the Law of Electric Flux for Any Medium in the
Case of Free (True) and Polarization Electric Charges

The expression of the law of electric flux for any medium, as previously mentioned,
can be established either by the generalization of experimental results or using the results
of the Special Theory of Relativity.

In the case of any medium, it is necessary to establish the relations between the
macroscopic state quantities of the electromagnetic field. The macroscopic quantities at a
point and at a certain moment can be obtained by calculating the mean values (average)
of the microscopic quantities over a physically infinitesimal volume around the
considered point and over a physically infinitesimal time interval that contains the
considered moment.

In the case of any medium, both free (true) electric charges and bound electric charges
can exist. If it is considered that only free electric charges exist, then, after the calculation
of the mean value, the form of the relations between the various macroscopic quantities
remains the same as for the microscopic quantities. If it is considered that both free (true)
electric charges and bound electric charges exist, then, after the calculation of the mean
value, the form of the relations between various macroscopic quantities is modified, as it
will be shown further on. The symbols and the meaning of the quantities are the ones
used in Chapter 1.

It will be considered that in the inertial system of reference frame oK , in which the

vector quantity oE  is expressed, there are both true (free) electric charges with the

volume density ov  and polarization electric charges with the volume density opv . In

this case, after the calculation of the mean values, relation (3.4) yields:

,dd oooo0
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pvvSE
(3.8 a)

thus:

.ddd oooooo0
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V

pvSE
(3.8 b)

The volume density of the polarization electric charges opv  in terms of the vector

quantity oP , electric polarization, in the reference frame oK , and also in any other
inertial reference frame, according to relation (1.45), is:

.div oo Ppv (3.9)

It results that:

oooooo0 dddivd
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(3.10 a)

or, by transforming the first volume-integral into a surface-integral (Gauss-Ostrogradski
theorem):
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.ddd oooooo0

oo o

v

V

vSPSE
(3.10 b)

Let us denote:

.oo0o PED (3.11)

The vector quantity oD , is referred to by one of the terms: Electric displacement, electric

flux density or electric induction, and is introduced in the reference frame in which the
quantities oE  and oP  are expressed.

Therefore, in any inertial reference frame oK , the following relations are satisfied:

,d
o

o

oo qSD (3.12)

,d oo

o

o
vq

V

v (3.12 a)

where
o

q  represents the free (true) electric charge of the interior of the surface o .

Taking into account that the two last relations are valid for any surface o  and by
utilizing the transformation theorem of a surface-integral into a volume-integral (Gauss
and Ostrogradski theorem), relation (3.12), written in an integral form, yields the
following relation, in differential (local) form:

.div ooo vD (3.13)

Relations (3.12) and (3.13) represent the expressions of the integral and local form,
respectively, of the law of electric flux for any medium. Relation (3.12) is also called the
Gauss law (theorem).

3.1.3. The General Expression of the Law of Electric Flux

The general expression of the law of electric flux, previously deduced, can be
established as a generalization of experimental results, in the sense mentioned at the
beginning of Section 3.1.

In an inertial reference frame, in any medium, the flux of the vector electric
displacement D  through a closed surface  is equal to the sum of electric true (free)
charges of the inside of that surface (Fig. 3.1 b):

.d qSD (3.14)

Let us consider that the electric charge is macroscopically distributed with the volume
density v .

By using the Gauss-Ostrogradski theorem and expression (1.11 a), relation (3.14),
becomes:
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.dddiv vv

V

v

V

D (3.15)

Having in view that relation (3.15) is valid for any surface , the following
differential relation is obtained:

,div vD (3.16)

where the vector quantity D  is the electric displacement at the considered point, and v

is the volume density of the true (free) electric charge at the same point.
Relations (3.14) and (3.16) represent the integral and local form, respectively, of the

electric flux law.

3.1.4. The Electric Flux through Various Surfaces

The electric flux el  through an open surface is the surface-integral of the vectors

electric induction PED 0 . It follows:

,del
S

SD (3.17)

where S  is any open surface bounded by the closed curve . The positive direction of

the normal to the surface S  is associated to the right-handed screw rule with the
travelling direction around the curve .

For the calculation of the electric flux through a closed surface, that is the case of the
law of electric flux, it is necessary to have in view that when calculating the surface-
integral over a closed surface, the positive direction of the normal to the surface is
outward.

3.2. THE RELATION BETWEEN THE ELECTRIC DISPLACEMENT,
ELECTRIC FIELD STRENGTH AND ELECTRIC
POLARIZATION

We shall examine, for the case of a medium containing any substance, the relation
between the following state quantities of the electric field: Electric displacement, electric
field strength and electric polarization.

The macroscopic state quantities of the electromagnetic field at a point and at a certain
moment are obtained by calculating the mean values of the microscopic quantities over
physically infinitesimal entities of space and time containing the considered point and
moment, respectively.

In the case of any medium, there can be both true (free) electric charges and
polarization (bound) electric charges.



The Laws of the Electromagnetic Field 123

If we consider that only free electric charge exists, then, after calculating the mean
values, the form of relations between the values of the macroscopic quantities remain the
same as for the microscopic quantities.

But if there are free electric charges as well as polarization charges, then, after
calculating the mean values, the form of the relations between the values of the
macroscopic quantities will be modified.

In the framework of the macroscopic theory of the electromagnetic field, the vector
quantity referred to by one of the terms: Electric displacement, electric flux density or

electric induction will be introduced by the following relation:

,0 PED (3.18)

that occurred in calculations of Sub-section 3.1.2, relation (3.11).
In the framework of the macroscopic theory, the vectors D  and E  are directly

introduced as primitive (fundamental) quantities.
Relation (3.18) represents, in the framework of the macroscopic theory, the expression

of the law of relationship between the vectors: Electric displacement, electric field

strength and electric polarization.

3.3. THE LAW OF TEMPORARY ELECTRIC POLARIZATION

In the case of any isotropic medium (i.e., containing any isotropic substance), but
without permanent electric polarization, the vector of temporary electric polarization is
generally parallel with the electric field strength, and of the same direction. Hence:

.0 EP et (3.19)

The quantity e  is termed electric susceptibility and depends on the nature of the
medium, being a material quantity.

Relation (3.19) can be macroscopically established only by experimental way. This
relation, in the macroscopic theory of the electromagnetic field, is a material law referred
to as the law of temporary electric polarization.

Practically, for variations small enough of the quantity E , the quantity e  is constant
with respect to the vector quantity E  for a part of the isotropic media that are called
linear and isotropic media.

In the case of an anisotropic medium, the orientation of the vector P  is not, generally,
the same with that of the vector E . However, in these media it is possible to determine
generally, three-orthogonal axes, called principal axes or eigenaxes along which the
anisotropic medium behaves like an isotropic one. For these media, the law of the
temporary polarization is written in the form:

EP et 0 , (3.20)

where the tensor quantity e  represents the electric susceptibility.
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For isotropic media without permanent electric polarization, the relation between the
quantities electric induction, electric field strength and electric polarization (3.18)
becomes:

.100 EPED et (3.21)

The following symbols are adopted:

,1 er (3.22)

.0 r (3.23)

The quantity r is called relative electric permittivity or dielectric constant of the
medium and the quantity is called electric permittivity of the medium. With these
symbols, relation (3.21) becomes:

.ED (3.24)

Taking into account the established relations that contain the quantities E and D ,
certain general considerations concerning the electric field lines and electric induction
lines will be made.

Fig. 3.2. Electric hysteresis loop, the direction of travelling along the curve
(upward when the electric field strength increases, downward when the

electric field strength decreases); at the middle, the branch starting
from 0E  and 0D .
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The line to which the vector E  is tangent at any point is a line of electric field. The
line to which the vector D  is tangent at any point is a line of electric displacement.

In accordance with the explanations of Sub-section 1.2.1, the lines of electric field can
be open lines that begin and end at points at which the divergence of the vector E  is
different from zero, or can be closed lines.

As it follows from relations (3.16) and (3.24), the quantity Ediv  may be different
from zero at points at which the density of the true electric charge is different from zero
or at points at which the permittivity varies, thus at the points at which the quantity
grad  is different from zero (for example on the contact surface of two different

dielectrics, because there 0div Es ).
In accordance with relation (3.16), the electric induction lines may be open lines that

begin and finish at points at which the divergence of the vector D  is different from zero
or may be closed lines.

As it follows from relation (3.16), the quantity Ddiv  is different from zero only at
points at which the density of electric charge is different from zero.

Similar considerations, concerning the lines of the electric field and the lines of
electric displacement, may be extended also for the case in which permanent electric
polarization exists. In this case, from relations (3.18), (3.24), (1.39), it follows:

.pPED (3.25)

The dependence between the quantities D  and E  may be linear or non-linear.
Also, sometimes, the curve of D  as a function of E  may represent a closed curve

(Fig. 3.2) called by one of the terms: electric hysteresis loop, electric hysteresis cycle or
electric hysteresis curve. Certain characteristic points are marked on the figure.

3.4. THE LAW OF MAGNETIC FLUX

The expression of the magnetic flux can be established as a generalization of the
experimental results (i.e., in the sense mentioned at the beginning of Section 3.1) or can
be derived by using the relation established in the Special Theory of Relativity.

Further on, firstly, a derivation by using certain relations established in the Special
Theory of Relativity will be presented.

3.4.1.The Expression of the Law of Magnetic Flux for Empty Space

Let us consider the inertial reference frames oK  and 1K . The reference frame 1K  is

moving with a constant velocity o1v  relatively to the reference frame oK . For the sake of

simplicity, we assume xv o1o1 iv .
Let us also consider one point-like electric charge q situated in empty space (i.e., in

vacuo) at a point AAA zyxA 111 ,, . We shall calculate oodiv B  at any point P.  We have:

.curlcurl
11

divdiv ooo1o1oo2oo12ooo EvvEEvB
cc

(3.26)
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From (2.20 d) and (2.21), it follows: 
 

,1o1o yy EE α=  (3.26 a)
 

,1o1o zz EE α=  (3.26 b)
 

( ) .curl 0
1

1

1

1
o1

o

o

o

o
oo =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
−

∂
∂

α=
∂

∂
−

∂
∂

=⋅
z

E
y

E
z

E
y

E yzyzEi  (3.26 c)

 

According to the last relation, the vector oocurl E  is perpendicular to the Ox - axis. 
But 0curl o1o =v  because the velocity is constant, and 0curl ooo1 =⋅ Ev , since the 

quantities o1v  and oocurl E  are perpendicular to each other. Therefore, it follows: 
 

.0div oo =B  (3.27)
 

The left-hand side of relation (3.27) will be integrated over any closed surface Σ  of 
the reference frame oK . Utilizing the transformation of the volume-integral into a surface 
integral (Gauss-Ostrogradski theorem), it follows: 
 

.0dddiv ooooo
oo

=⋅= ∫∫
ΣΣ

SBB v
V

 (3.28)

 

Thus, the flux of the vector oB  through any closed surface is zero. 
In the case of several point-like electric charges, according to the assumption 2 of 

Section 2.2, the principle of superposition can be applied, and for each of these charges a 
relation of the type (3.27) will be obtained. By summing up, side by side, these relations, 
it follows that the expression (3.27) remains valid. Moreover, the relation holds for any 
inertial reference frame (with any orientation of the three-orthogonal rectilinear system of 
co-ordinates), since the differential operator div is invariant relatively to the 
transformation of the co-ordinates when passing from one inertial frame to another, at 
rest, relatively to the first one. 

Relations (3.27) and (3.28) represent the expressions of the local and integral form 
respectively, of the law of magnetic flux in empty space (i.e., in vacuo). 
 

3.4.2. The Expression of the Law of Magnetic Flux for Any Medium 
 

Expression (3.28), as mentioned, can be established as a generalization of 
experimental results (in the sense mentioned at the beginning of Section 3.1). 

In the case of any medium (i.e., containing any type of substance), the aim is to 
establish the relations between the macroscopic state quantities of the electromagnetic 
field. 

The macroscopic quantities at a point and at a certain moment are obtained by the 
calculation of the mean values of microscopic quantities over a physically infinitesimal 
volume, around the considered point and over a physically infinitesimal time interval 
containing the considered moment. 
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Fig. 3.3. Explanation referring to
the law of magnetic flux.

Fig. 3.4. Two open surfaces that are
bounded by the same closed curve .

In the case in which electric charges do not directly occur in relations, then, after the
calculation of average values, the form of relations between the macroscopic quantities
remains the same as for the microscopic quantities. For this reason, relations (3.27) and
(3.28) remain also valid for any medium.

3.4.3. The General Expression of the Law of Magnetic Flux
(for Any Medium)

The general expression of the law of magnetic flux derived previously, as mentioned,
can be established as a generalization of experimental results (in the sense mentioned at
the beginning of Section 3.1).

In an inertial reference frame, in any medium, the flux of the vector magnetic induction
B  through a closed surface  is zero (Fig. 3.3):

.0d SB (3.29)

Utilizing the Gauss-Ostrogradski theorem, relation (3.29) becomes:

.0ddiv v

V

B (3.30)

Taking into account that relation (3.30) remains valid for any closed surface , the
following relation in differential form will be obtained:

.0div B (3.31)
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Expressions (3.29) and (3.31) represent the integral form and local form, respectively, 
of the law of magnetic flux for any medium. The vector quantity B  is introduced as 
shown in Section 2.5. 

By comparing the local form of the law of electric flux with the local form of the law 
of magnetic flux, it results that the field of vectors B  has no sources (because 0div =B ). 
Therefore, the following statement is equivalent: The existence of magnetic forces, 
having the direction and the orientation of the vector B  is not possible. 

Certain investigators, for instance Dirac, in the year 1948 [18, p. 43] supposed that 
true magnetic charges referred to as magnetic monopoles, could exist or could be 
produced in accelerators of high energies. 

If magnetic monopoles existed, then the lines of magnetic field would diverge from 
the magnetic monopoles like the lines of electric field diverge from the electric charges. 
For a system of magnetic monopoles, the divergence of the magnetic induction would not 
be zero, but equal to the volume density of the magnetic charge. 

Up to now, the existence of magnetic monopoles, despite many investigations made 
during the recent years, has not been proved. Even if the existence of magnetic 
monopoles were established, the equations of the electromagnetic field would have to be 
modified only in quite special cases, in order to take into account the presence of 
magnetic monopoles. 

It follows that it is justified to assume that true magnetic charges have not to be taken 
into consideration, and the divergence of the vector magnetic induction is zero. 

In a vector field which has the divergence zero, the lines of field are always closed. 
Thus the lines of magnetic induction are always closed lines because in the magnetic field 
there are no sources (magnetic charges). 
 

3.4.4. The Magnetic Flux through Various Surfaces 
 

The magnetic flux Ψ  through an open surface is the surface integral of the vector 
magnetic induction: 
 

,d∫
Γ

⋅=Ψ
S

SB  (3.32)
 

where ΓS  is a simply connected open surface bounded by the closed curve Γ . The 
positive direction of the normal to the surface ΓS  is associated according to the right-
handed screw rule with the travelling sense along the curve Γ . 

The magnetic flux through two open simply connected surfaces bounded by the same 
closed curve Γ  is the same. Indeed, if we consider two surfaces 

1ΓS  and 
2ΓS , bounded 

by the same curve, their union forms a closed surface. In this case, by virtue of the law of 
magnetic flux, it follows (Fig. 3.4): 
 

,0
21
=Ψ−Ψ

ΓΓ SS  (3.32 a)
 

and hence (according to the explanation below), it follows: 
 

.
21 ΓΓ

Ψ=Ψ SS  (3.33)
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When applying the law of magnetic flux, it is necessary to take into account that at the
calculation of a surface-integral over a closed surface, the positive direction of the normal
to the surface is outward. Consequently, in the case of the preceding example, the positive
direction of the normal to one of the open surfaces, in accordance with the chosen sense
of travelling the bounding curve, will be opposite with respect to the positive direction of
the normal to the closed surface, resulted from the union of the two open surfaces.

3.4.5. The Magnetic Flux-Turn.  The Magnetic Flux-Linkage.
Magnetic Vector Potential.

In the case in which the curve  that bounds the surface S  through which the
magnetic flux has to be calculated is taken along the conductor (wire) of a coil having w
turns (Fig. 3.5), the notions of magnetic flux-turn and magnetic flux-linkage have to be
introduced (defined). It is to be noted that the number of turns of a coil or generally of
any winding can be denoted by w as well as by N, the last being utilized in several
standards. However, we shall prefer the former symbol, because the latter has also other
meanings in certain applications widely utilized.

Fig. 3.5 shows the coil conductor, two lines of magnetic induction, a helical surface
(hatched) bounded by the coil contour and also the electric tension between the two
points M  and N of the coil.

The magnetic flux-turn is the magnetic flux that crosses the portion of the helical
surface bounded by a single turn of the coil, according to relation:

.d

w
S

SB
(3.34)

The magnetic flux through the whole surface is calculated taking into account that a
line of magnetic field intersects several times the surface.

The magnetic flux-linkage, also called total magnetic flux, is the magnetic flux that
crosses the helical surface bounded by all the turns of the coil, according to relation:

.d
S

SB (3.35)

The last two relations yield:

,w (3.36)

because the same line of magnetic field intersects w times the helical surface that is
bounded by all the turns of the coil. If the magnetic flux-turn has not the same value for
all the turns, then a mean value of the magnetic flux turn, also called average magnetic

flux-turn, will be used.
According to relation (3.31), the divergence of the vector B  is always zero.

Consequently, it is possible to express the vector B  as follows:

,curl AB (3.37)

where A  denotes the quantity called magnetic vector potential. Since the divergence of a
curl is always zero, several vectors A  can give the same vector magnetic induction B .
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Fig. 3.5. Explanation to the
calculation of magnetic fluxes:

flux-turn and flux-linkage.

For example, the vectors ByiA and BxjA give the same vector BkB .
This circumstance is of no interest, for only the value of B is important in this case.

By employing the last relation, the magnetic flux through an open surface, as
previously, can be expressed in the form:

,dcurld
SS

SASB (3.38)

that, by using the Stokes theorem, becomes:

.dd lASB

S
(3.39)

Therefore, the magnetic flux through a simply connected open surface bounded by a
closed curve can be calculated by a line-integral along that curve. By using this
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expression, the conclusions obtained above concerning the flux through surfaces related 
to some curves result directly. 
 
 
 

3.5. THE LAW OF ELECTROMAGNETIC INDUCTION FOR 
MEDIA AT REST 

 

The expression of the law of electromagnetic induction may be established by a 
generalization of experimental results (i.e., in the sense mentioned at the beginning of 
Section 3.1) or deduced by utilizing certain relations established in the Special Theory of 
Relativity. We shall use both manners beginning with the second one. 
 

3.5.1. The Expression of the Law of Electromagnetic Induction for 
Empty Medium at Rest 

 

Let oK  and 1K  be the two inertial reference frames. The reference frame 1K  is 
moving at a constant velocity o1v  relatively to the reference frame oK . 

We shall consider a point-like charge 1q , situated in empty space (i.e., in vacuo) at 
any point ( )1A1A1A ,, zyxA  fixed to the reference frame 1K , and we shall calculate 

oocurl E  at the point ( )ooo ,, zyxP . It follows: 
 

.curl

ooo

ooo
oo

zyx EEE
zyx ∂
∂

∂
∂

∂
∂

=

kji

E  (3.40)

 

The component along the oo xO - axis is: 
 

,
o

o

o

o
z

E
y

E yz
∂

∂
−

∂
∂  (3.40 a)

 

and by using relations (2.21), (2.18 b, c) and (2.17), we obtain: 
 

( )( ) ( ),3
4

5
11o1oo1

0

1

o

o −−−α
επ

=
∂
∂ −rzzyy

q
y

E
AA

z  (3.41 a)
 

( )( ) ( ).3
4

5
11o1oo1

0

1

o

o −−−α
επ

=
∂

∂ −ryyzz
q

z
E

AA
y  (3.41 b)

 

By replacing relations (3.41 a, b) into expression (3.40 a), it follows: 
 

.0
o

o

o

o =
∂

∂
−

∂
∂

z
E

y
E yz  (3.42 a)
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Analogously, it follows that the components along the axes oo yO  and oo zO are:

,3
4

5
1

2
o1

2
o11o1oo1oo1

0

1

o

o

o

o rzzxtvx
q

x

E

z

E
AAx

zx
(3.42 b)
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2
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o

o

o
ryyxtvx

q

y

E

x

E
AAx

xy
(3.42 c)

because

.
1

1
11

;

;
1

1

2
o1

2
o12

o1

2
o1

o1
o1

2
o1

2
o1

c

v

(3.42 d)

(3.42 e)

(3.42 f)

Now, we calculate the vector quantity:

.
o

o

o

o

o

o

o

o

t

B

t

B

t

B

t

zyx kji
B

(3.43)

According to relation (2.26) and taking into account that 
200

1

c
, the vector

quantity oB  is:

.
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00
1

1o1o121o1o12

ooo

o12o yxzx

zyx

x E
c

E
c

EEE

c
vkvjv

kji

B (3.44)

After the calculation of derivatives, we obtain the components:

,0
o

o

t

B x
(3.45 a)
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(3.45 b)
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(3.45 c)

It follows that:
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E xyz (3.46 a)
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(3.46 c)

Thus:

.curl
o

o
oo

t

B
E (3.47)

We shall integrate both sides of the last equation (3.47) over any simply connected
open surface

o
S bounded by the closed curve o , both at rest relatively to the reference

frame oK . By expressing this operation, it follows:

,ddcurl o
o

o
ooo

o
o

S
B

SE

S
S

t (3.48)

and by transforming the surface-integral into a line-integral (Stokes theorem), it follows:

.dd o
o

o
oo

o
o

S
B

lE

S

t (3.49)

In the case in which there are several point-like electric charges, according to the
assumption 2 of Section 2.2, the principle of superposition may be applied and expression
(3.49) remains valid also in this case. Expression (3.49) remains valid for each inertial
system, since the differential operator curl is invariant with respect to the transformation
from one reference frame to another one if the latter is at rest relatively to the former one.

Relations (3.47) and (3.49) represent the local and integral forms, respectively, of the
law of electromagnetic induction for empty space, and reference frame at rest.

3.5.2. The Expression of the Law of Electromagnetic Induction
for Any Medium at Rest

In the case of any medium (i.e., containing any substance, whatever it would be), it is
necessary to establish the relations between the macroscopic state quantities of the
electromagnetic field.

The macroscopic quantities at a point, at a certain instant, are obtained by the average
of the microscopic quantities over a physically infinitesimal volume around the
considered point, and over a physically infinitesimal time interval that contains the
considered instant (time). As in Sub-section 3.4.2, the law keeps its previous form.
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3.5.3. The General Expression of the Law of Electromagnetic Induction
for Media at Rest

The general expression of the law of electromagnetic induction, previously derived,
can be established by the generalization of experimental results (in the sense mentioned at
the beginning of Section 3.4).

In an inertial reference frame, in any medium, the following relation exists between
the vector quantities E  and B :

,dd

S

t
S

B
lE (3.50)

where S is a simply connected open surface bounded by the closed curve , both at rest
relatively to the considered inertial reference frame. The curve may represent any
contour in particular it can even be the contour of an electric circuit. The last situation is
of great interest in applications.

The positive direction of the normal to the surface S is associated according to the
right-handed screw rule with the travelling sense of the curve (Fig. 3.6).

Relation (3.50) can also be written in the form:

,d magilE (3.51)

where the quantity magi is called, according to the work [3, p. 259], intensity of magnetic

current.
By using the Stokes theorem, relation (3.50) becomes:

.ddcurl S
B

SE

S
S

t (3.52)

Taking into account that the last relation holds for any surface S , the following
relation in differential (local) form is obtained:

.curl
t

B
E (3.53)

Relation (3.53) may also be written in the form [3, p. 367]:

,curl magJE (3.54)

where the quantity magJ is called [3, p. 260] magnetic current density.

Relations (3.50) and (3.53) represent the expressions of the integral form and local

form, respectively, of the law of electromagnetic induction for any medium at rest.
The vector quantities E  and B  can be introduced as shown in Section 2.5.
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Fig. 3.6. Explanation to the
law of electromagnetic

induction.

3.5.4. The Concise Integral Form of the Expression of the Law of
Electromagnetic Induction for Media at Rest.  Faraday Law.

The left-hand side of relation (3.50) represents the induced electromotive force (by the
solenoidal component of the electric field) along the curve :

.d lEeu (3.55)

It is to be remarked that, in this case, the electric field strength E contains only the
Coulombian and induced component, but not the impressed component, hence:

.il EEE (3.55 a)

The integral of the Coulombian component along the closed curve is zero, since it
derives from a potential.

Also, it can be seen that the right hand side of relation (3.50) may be written in the
following form (since the surface S  is at rest):

,
d

d
d

S

S
tt

S
B

(3.56)

where

S

S ,d SB (3.56 a)

represents the magnetic flux through any open surface S .
It follows:
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e (3.57)
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that represents another manner of writing the integral form of the law of electromagnetic
induction for media at rest. This law is also called the Faraday law.

The phenomenon of producing an electromotive force along a closed curve Γ  by the
variation with time of the magnetic flux which links that curve is called electromagnetic
induction. The electromotive force produced in this way is called induced electromotive
force, and the magnetic flux that produces the electromotive force is termed inductive
magnetic flux.

The variation with time of the magnetic flux through any surface bounded by the
curve Γ  can have two causes:

a. Variation with time of the local magnetic induction (for instance due to the
variation with time of the electric current carried by the circuits which produce the
magnetic field);

b. Motion of the contour Γ .
The electromagnetic induction is referred to in the first case as induction by

transformation and, in the second case, induction by motion; in particular it can be
induction by rotation (i.e., rotation without translation) and induction by deformation.

The inductive magnetic flux can be produced by a permanent magnet or by electric
currents. The inductive magnetic flux can be produced even by the electric current (if it
exists) flowing along the circuit for the contour of which the electromotive force has to be
calculated, and also by the currents flowing along other circuits. Correspondingly, the
electromagnetic induction is referred to as self-induction and mutual induction,
respectively.

3.6. THE LAW OF MAGNETIC CIRCUIT (MAGNETIC CIRCUITAL
LAW) FOR MEDIA AT REST

The law of magnetic circuit also called magnetic circuital law can be established by
the generalization of certain experimental results (in the sense mentioned at the beginning
of Section 3.1) or derived by employing certain relations established in the Special
Theory of Relativity. We shall use both manners beginning with the second one.

3.6.1.  The Expression of the Law of Magnetic Circuit for Empty Medium
at Rest

Let oK  and 1K  be two inertial reference frames. The reference frame 1K  is moving
with the constant velocity o1v  with respect to the reference frame oK . Let 1q  be a point-
like electric charge fixed in empty space at any point ( )AAA zyxA 111 ,, .

We shall calculate the vector quantity oocurl B  at a point ( )ooo ,, zyxP . Taking into
account relation (2.26), we can write:

( ) ( ).curlcurlcurl oo1o00o0o10ooo EvEvB ×με=ε×μ= (3.58)

By using an expression of the Vector Calculus, namely:

( ) ( ) ( ) ,divdivcurl ababbababa −∇⋅+∇⋅−=× (3.58 a)
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it follows:

.

divdivcurl

o1oo00

ooo100o1oo00ooo100oo

vE

EvvEEvB
(3.59)

But 0div o1ov  and 0o1oo vE  because the velocity o1v  is constant. Hence, it
follows:

.divcurl ooo100ooo100oo EvEvB (3.60)

From the known relation of Vector Calculus, it follows:

,
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o
o1ooo1

x
v x

E
Ev (3.61)

where we have taken into account that xv o1o1 iv .
Now, we calculate the following vector quantity:
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Since we have supposed that there is a single point-like electric charge 1q , it results that:
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Taking into account all these relations (3. 63 a, b, c) in the general case of any system
of electric charges, it results that:
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v x

EE
Ev (3.64)

It follows:

.divcurl
o

o
00ooo100oo

t

E
EvB (3.65)

In the case in which there are several point-like charges, according to the assumptions
of Section 2.2, the principle of superposition can be applied, and the last relation keeps its
form.

The macroscopic quantities at a point, at a certain moment, are obtained by the
average of the microscopic quantities over a physically infinitesimal volume, around the
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considered point, and over a physically infinitesimal time interval including the
considered moment (time). After the calculation of the average (mean) values, the form of
relation (3.65) remains unchanged.

Let us consider the free (true) electric charge continuously distributed in empty space,
with the volume density ov , in the interior of the surface o . In accordance with the law
of electric flux, it can be written:

.div ooo0 vE (3.65 a)

Consequently, it follows:

o

o0
0o1o0oocurl

t
v

E
vB (3.65 b)

or

.curl
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B
(3.66)

If we denote:

,o1oo vJ ve (3.67)

the density of the current constituted by the electric charges in motion, the last relation
yields:

.curl
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B
(3.68)

We shall integrate both sides of relation (3.68) over any open surface 
o

S  bounded by

the closed curve o , both in the reference frame oK . It follows:

.dddcurl
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By using the transformation of the surface-integral into a line-integral (Stokes
theorem), it follows:

.ddd
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(3.70)

Expression (3.70) remains valid for any inertial reference frame, for the differential
operator curl is invariant with respect to the transformation from one inertial reference
frame to another, at rest relatively to the previous one.

Relations (3.68) and (3.70) represent the expressions of the local form and integral

form, respectively, of the law of magnetic circuit for empty space (i.e., in vacuo), and
reference frame at rest.
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3.6.2. The General Expression of the Law of Magnetic Circuit
for Empty Space

The general expression (3.70), previously derived, can also be established as a
generalization of experimental results (in the sense mentioned at the beginning of Section
3.1).

In an inertial reference frame, between the vector quantities: Magnetic induction B ,
density of the resultant electric current (produced by the electric charges in motion) eJ ,

and product of the permittivity of vacuum by the electric field strength E0 , the
following relation exists in empty space:

,ddd 0

0
S

S

e
t

S
E

SJl
B

(3.71)

where S is a simply connected open surface, bounded by the closed curve , both at
rest with respect to the considered inertial reference frame. The positive direction of the
normal to the surface S is associated, according to the right-handed screw rule, with the

travelling sense along the curve . The quantity 0 is a universal constant referring to
vacuum, and termed magnetic constant or permeability of vacuum. In the SI system of
units, it has, as mentioned in Section 2.4, the value:

.m/H104 7
0 (3.72)

By using the Stokes theorem, relation (3.71) becomes:

.dddcurl 0
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(3.73)

Taking into account that the last relation holds for any surface S , the following
relation, in local (differential) form, is obtained:

.curl 0

0 t
e

E
J

B
(3.74)

Relations (3.71) and (3.74) represent the expressions of the integral form and local
form, respectively, of the law of magnetic circuit for empty space, and frame at rest.

The vector quantities B  and E  can be introduced as shown in Section 2.5.

3.6.3. The Expressions of the Law of Magnetic Circuit and Magnetic
Field Strength, for Any Medium at Rest, in the Case of all Types of
Electric Charges and Currents

The expression of the law of magnetic circuit for any medium (i.e., containing
whatever substance) at rest can be obtained by the generalization of certain experimental
results (in the sense mentioned at the beginning of Section 3.1).
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In the case of any medium, it is necessary to establish relations between the
macroscopic state quantities of the electromagnetic field.

The macroscopic quantities at a point, at a certain moment, are obtained by calculating
the average of the microscopic quantities over a physically infinitesimal volume, around
the considered point, and over a physically infinitesimal time interval including the
considered moment (time). In the case of a medium, in which only free charges can exist,
after the calculation of the average (mean) values, the form of the relations between the
various macroscopic quantities will not be modified (they will remain as in the case of
microscopic values). If there are free electric charges, polarization electric charges, and
Amperian electric currents, then, after the calculation of the average (mean) values, the
form of the relations between the various macroscopic quantities will be modified.

The symbols and their meaning are the same as in Section 1.10.
The electric current density eJ (of relation (3.67), but without index o) in the case of

macroscopic quantities can be expressed as the sum of three components: the density of

electric conduction currents J , the density of Amperian electric currents aJ , and the

density of polarization electric currents PJ . Consequently, the following relation is
obtained:

.Pae JJJJ (3.75)

By replacing the quantities of relation (3.75) into relation (3.74), it results that:

.curl 0

0 t
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E
JJJ

B
(3.76)

If we integrate both sides of relation (3.76) over any open surface bounded by a closed
curve , and we utilize the transformation theorem of a surface-integral into a line-
integral (Stokes theorem), the following relation between the macroscopic quantities is
obtained:
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(3.77)

In the right-hand side, the second term represents the intensity of the Amperian
electric current given by relation (1.90), and the third term represents the intensity of the
polarization electric current given by relation (1.75). By performing the corresponding
substitutions and grouping the terms, it follows:

.ddd
1

00
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S

t
SPESJlMB (3.78)

Taking into account relation (3.18), relation (3.78) can be written:

,ddd

S
S

t
S

D
SJlH (3.79)



The Laws of the Electromagnetic Field 141

where we have denoted:

MBH
0

1
(3.80 a)

or

.
11

00
jMBH (3.80 b)

The vector quantity H , defined by each of relation (3.80 a, b), is called magnetic field

strength or magnetic field intensity and is a function of point or, in other words, it
represents a vector field. The lines of the vector field H , called lines of magnetic field

strength, are the lines to which the vector H is tangent at each point. Analogously, the
lines of the vector field B , called lines of magnetic induction or lines of magnetic field,

are the lines to which the vector B  is tangent at each point.
A tube of magnetic flux is termed each surface in the magnetic field formed by the

totality of lines of magnetic induction passing through the points of a simple closed curve.
In the SI system of units, the unit of measure of the electric field strength is the

ampere per metre, symbol m/A . A definition of this unit will be given in Section 3.15.
Relation (3.79) can also be written in the form:

,d
d

d
dd SDSJlH

SS
t (3.81)

because the position of the differential operator is indifferent in the case in which the
derivative does not concern the variable with respect to which the integral is to be
calculated, and the surface S  is considered at rest.

By using the Stokes theorem, relation (3.79) becomes:

.dddcurl

S
SS

t
S

D
SJSH (3.82)

Having in view that the previous relation is valid for any surface S , the following
relation in local (differential) form can be obtained:

.curl
t

D
JH (3.83)

Relations (3.81) and (3.83) represent the expressions of the integral form and local

form, respectively, of the law of magnetic circuit for any medium at rest, in the case in

which, there are free electric charges, polarization electric charges and Amperian

electric currents.
A detailed analysis of the introduction of the physical quantities E, D, H, B can be

found in papers [55], [56].
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3.6.4. The General Expression of the Law of Magnetic Circuit for Any
Medium at Rest

The general expression of the law of magnetic circuit for media at rest, derived
previously, can be established by the generalization of certain experimental results.

In an inertial reference frame, and in any medium, the following relation exists
between the vector quantities H , J , D :

,ddd

S
S

t
S

D
SJlH (3.84)

where S is any simply connected open surface bounded by the closed curve , both at
rest relatively to the reference frame. The positive direction of the normal to the surface
S is associated with the travelling sense along the curve by the right-handed screw
rule.

If, in the considered space, there are bodies charged with electricity with the volume
density conv , in motion at any velocity rv relatively to the reference system, then, in the
right-hand side of relation (3.84), another term occurs. Indeed, the motion of bodies
charged with electricity represents a supplementary electric current called convection

electric current. In this general case, expression (3.84) becomes:

,dddd conv

S
SS

t
S

D
SJSJlH (3.84 a)

where the quantity rvJ convconv  is the density of the convection electric current.
Relation (3.84 a) may also be written in the form:

,d lilH (3.85)

where the quantity li  represents the intensity of the electric current in the large sense.

Having in view that relations (3.84) and (3.84 a) hold for any surface S , and using
the Stokes theorem, the following two relations, in differential (local) form, are obtained:

,0,curl convJ
D

JH
t

(3.86)

.curl conv
t

D
JJH (3.86 a)

Relations (3.86) and (3.86 a) can also be written in the form:

,curl lJH (3.87)

,conv
t

l

D
JJJ (3.87 a)
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where the quantity lJ  represents the density of the electric current in the large sense.
Relations (3.84), (3.84 a) and (3.86), (3.86 a) represent the expressions of the integral

form and local form, respectively, of the law of magnetic circuit, for any media at rest.
The vector quantities H and D are defined by relations (3.80 b) and (3.18),

respectively.
In the right-hand side of relation (3.84 a) the three terms have the following meaning,

respectively: intensity of the conduction electric current, intensity of the convection

electric current, and intensity of the displacement electric current. The intensity of the
displacement electric current is the sum of the intensity of the displacement electric
current in vacuo and the intensity of the polarization electric current. The sum of the
terms of the right-hand side of relation (3.84 a) is referred to as intensity of the electric

current in the large sense.

3.6.5. Conditions (Regimes) of the Electromagnetic Field.
Law of Magnetic Circuit in Quasi-stationary Condition.
Ampère Law (Theorem).

The electromagnetic field can be in one of the following conditions also called
regimes: Static condition, Stationary condition, Non-stationary condition, Quasi-
stationary condition.

Static condition is the regime in which no macroscopic quantity varies with time and
no electric current exists.

Stationary condition is the regime in which no macroscopic state quantity varies with
time and electric current exists but does not vary with time.

Non-stationary condition is the regime in which the macroscopic state quantities vary
with time.

Quasi-stationary condition is the regime in which the macroscopic quantities vary
with time but their variation is relatively slow, implying the following consequences. The

value of the quantity
t

D
may be neglected with respect to the quantity J , at any point

of a conducting medium or a medium in which a convection electric current exists; but
the derivatives with respect to time of the other state quantities of the electromagnetic
field cannot be neglected. One of the practical results of these remarks results in the fact
that in an electric circuit in quasi-stationary condition, the intensity of the electric current
is assumed to have the same value at any cross-section of the circuit wire. The higher the
speed of variation of the state quantities (e.g., magnetic induction), the farther from the
previous assumption the circuit will be.

In quasi-stationary condition, the expressions of the integral form and local form,
respectively, of the law of magnetic circuit (without including the convection current)
become:

,dd
S

SJlH (3.88)

,curl JH (3.89)
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and are referred to as the integral form and the local form, respectively, of the Ampère

theorem or of the Ampère circuital law.
Expression (3.88) may be obtained by employing the Biot-Savart-Laplace formula

(2.47), and (2.48), if it is previously known. For this purpose, formula (2.48) will be
applied for a closed curve , and the expression of the solid angle, and certain vector
transformations are to be used [23, p. 120].

3.6.6. The Components of the Magnetic Field Strength.  Magnetic
Tension.  Magnetomotive Force.

The magnetic field strength has generally two components: a potential (non-curl,

irrotational) component pH  and a curl (rotational, solenoidal) component rH . Hence:

.rp HHH (3.90)

Generally, in a field of vectors, the line-integral of the field vector along a curve can
be referred to as tension; this tension is also introduced in the case of magnetic field. The
definitions, in the case of the magnetic field, are analogous to those introduced for the
electric field in Section 1.8.

The line-integral of the magnetic field strength along a curve is called magnetic

tension and is given by the relation:

.d

AB

AB

C

Cmu lH (3.91)

If in relation (3.91), instead of the magnetic field strength H , only the curl component

rH  of the magnetic field strength is introduced, the magnetomotive tension calculated by
employing a line-integral (along an open curve) is termed magnetomotive force

(abbreviation m.m.f.) along that curve, and is obtained by the relation:

.d

AB

AB

C

rCmmu lH (3.92)

If the line-integrals (3.91) and (3.92) along a closed curve are considered, the obtained
expression is called magnetomotive force, also termed magnetomotive tension, along that
curve. The magnetomotive force obtained by integrating the magnetic field strength H

along a closed curve coincides with the integral of the curl component of the magnetic
field strength, because the line-integral of the potential component of the magnetic field
strength is zero along a closed curve.

All the definitions of magnetic tensions refer to any medium, regardless of its state.

3.6.7. The Concise Integral Form of the Law of Magnetic Circuit for
Media at Rest

The left-hand side of relation (3.84) represents the magnetomotive force along the
closed curve :
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.d lHmmu (3.93)

It is to be remarked that the magnetomotive force is determined only by the curl
(rotational) component of the magnetic field strength.

The first term of the right-hand side of relation (3.84 a), i.e., the flux of the vector of
the conduction electric current density through the surface S , bounded by the closed
curve , is called current-linkage and is determined by the conduction electric current
that crosses the surface S . The current-linkage is given by the relation:

.d
S

SJ (3.94)

Let us consider a coil with w turns carrying an electric current. We shall adopt a curve
linking the coil as it can be seen in Fig. 3.7.

In this case, a simply connected open surface S , bounded by the curve , is crossed
at w places by the conductor carrying the current i . At the other points of the surface,
the density of the conduction electric current is zero. It follows:

.iw (3.95)

Analogously, for the coils of Fig. 3.8, the following result is obtained:

.2211 iwiw (3.95 a)

In the case of coils, the current linkage is also expressed by the denomination ampere-

turns.
The last term of the right-hand side of relations (3.84) and (3.84 a), i.e., the flux of the

vector
t

D
through the surface S is called displacement electric current. If the

considered condition is quasi-stationary, it will be disregarded.
It can be remarked that the expression of the displacement electric current of the right-

hand side in relations (3.84) and (3.84 a) can be written:

,d
d

d
d SDS

D

S
S

tt (3.96)

because the order of the differential and integral operators is indifferent, since the
derivation does not refer to the variable of integration, and the surface S  is at rest.

But, the surface S  being at rest, it results that:

,
d

d
d

d

d
el S

S
tt

SD (3.97)
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Fig. 3.7. Coil linked by a curve 
of integration – curve .

Fig. 3.8. Two coils disposed on a
closed core made of ferromagnetic

material and the curve of
integration.

where

SD del
S

S (3.97 a)

represents the electric flux through the open surface S .
Hence:

Smm
t

iu elconv d

d
(3.98)

that represents another way of writing the integral form of the law of magnetic circuit
(magnetic circuital law) for media at rest.

Remark. It can be added that a coil constituted by a wire, wound on a cylinder, in the

i

S

w

u u

i i

w w1 1

1 2

2 2



The Laws of the Electromagnetic Field 147

3.6.8. Adoption of the Curves and Surfaces That Occur in the
Expressions of the Laws of Electromagnetic Induction,
and Magnetic Circuit

All differential operations 
t

div,curl,  are performed in the fixed reference system,

i.e., assumed at rest.
The curve  and the surface S  are taken in the fixed reference frame, but may also

be taken in the moving reference frame. Concerning this circumstance, it is to be noted
that, in both cases, the curve  and the surface S  occur only by the elements ld  and

Sd  at any moment. The motion occurs by the velocity and by the determination of the
various quantities in the two reference frames.

In most of cases, the laws are written for determining the quantities and relations in
the moving reference frame with respect to the fixed one.

3.7. THE RELATIONSHIP BETWEEN MAGNETIC INDUCTION,
MAGNETIC FIELD STRENGTH AND MAGNETIC
POLARIZATION

In the case of a medium containing any substance, it is important to know the relation
between the macroscopic state quantities of the magnetic field, i.e., magnetic induction,
magnetic field strength and magnetization or magnetic polarization.

The macroscopic state quantities of the electromagnetic field at a point, at a given
moment, are obtained by calculating the average value of the microscopic quantities over
the physically infinitesimal of volume and of time interval, respectively, containing the
point and time under consideration.

From relations (3.80 a, b), it follows that:

.00 jMHMHB (3.99)

In the framework of the macroscopic theory, this formula constitutes the expression of

the law of relationship between the vectors: Magnetic induction, magnetic field strength

and magnetization (or magnetic polarization). In the framework of the macroscopic
theory, the quantities above and their relationship have to be introduced as primitive
(fundamental) quantities and law, respectively.

3.8. THE LAW OF TEMPORARY MAGNETIZATION

In the case of any isotropic medium (hence, containing any substance), but without
permanent magnetization (or magnetic polarization), the temporary magnetization vector
(temporary magnetic polarization vector) is parallel with the magnetic field strength
vector and of the same direction, as follows:
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,HM mt (3.100 a)

.0 HM mjt (3.100 b)

The quantity m is called magnetic susceptibility and is depending on the nature of
the medium, hence a material quantity.

In the framework of the macroscopic theory, relation (3.100 a) can be determined only
experimentally. In the macroscopic theory of electromagnetic field, this relation is a
material law, also termed constitutive law, referred to as the law of temporary

magnetization, or the law of temporary magnetic polarization, as the reference concerns
relation (3.100 a) or (3.100 b), respectively.

In fact, for variations slow enough of the quantity H , the quantity m is constant
with respect to the vector quantity H for certain isotropic media called isotropic and
linear media.

In the case of anisotropic media, the orientation of the vector M is not, generally, the
same as that of the vector H . However, in these media, it is possible to determine,
generally, three-orthogonal axes, termed principal axes or eigenaxes, along which the
anisotropic medium behaves like an isotropic medium. For these media, the law of
temporary magnetization (or of the temporary magnetic polarization, respectively) is
written in one of the following forms:

,HM mt (3.101 a)

,0 HM mjt (3.101 b)

where the quantity m  represents the tensor of the magnetic susceptibility.
For isotropic media without permanent magnetic polarization, the expression of the

relationship between the magnetic induction, the magnetic field strength and
magnetization (or magnetic polarization, respectively) (3.99) becomes:

,100 HMHB mt (3.102 a)

.100 HMHB mjt (3.102 b)

The following symbols are adopted:

,1 mr (3.103)

.0 r (3.104)

The quantity r is called relative magnetic permeability of the medium, and the

quantity  is the magnetic permeability of the medium.
With the adopted symbols, relations (3.102 a, b) become:

.HB (3.105)
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Taking into account the established relations that contain B and H , we shall make
certain general considerations concerning the lines of magnetic induction and the lines of
magnetic field strength.

The lines to which the vector H is tangent at any point, are lines of magnetic field

strength. The lines to which the vector B is tangent at any point are lines of magnetic

induction.
According to relation (3.29), the lines of magnetic induction are closed lines, because

the divergence of the vector B  is zero at every point.
In accordance with the explanations of Sub-section 1.2.1, the lines of magnetic field

strength can be open lines that begin and finish at the points at which the divergence of
the vector H  is different from zero.

From relations (3.31) and (3.105), it follows that the quantity Hdiv may be different
from zero at the points at which the magnetic permeability varies.

Similar considerations concerning the lines of magnetic induction and the lines of
magnetic field strength can be extended to the case in which permanent magnetization
also exists. In this case, from relations (3.99), (3.102 a, b), (1.92), (1.93) it follows:

,0 pMHB (3.106 a)

.jpMHB (3.106 b)

The dependence between the quantities B and H may be linear or non-linear.

Fig. 3.9. Magnetic hysteresis loop, the direction of travelling along the curve (upward
when the magnetic field strength increases, downward when the magnetic field strength

decreases); at the middle, the branch starting from 0H and 0B .
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Also, sometimes, the curve of B  as a function of H  may represent a closed curve
(Fig. 3.9) referred to by one of the terms: hysteresis loop, hysteresis cycle, hysteresis

curve. Certain characteristic points are marked on the curve.

3.9. DERIVATION OF THE FUNDAMENTAL EQUATIONS OF THE
ELECTROMAGNETIC FIELD THEORY IN THE GENERAL
CASE.  MAXWELL EQUATIONS.

In the preceding Sections, we have derived the fundamental laws of the theory of the
electromagnetic field in the case in which the velocities of particles that produce the
electromagnetic field are constant with respect to time in the reference frame in which the
equations are expressed. The experience has shown that these equations are also valid
when the velocities of the mentioned particles vary with time.

There are possibilities to derive the equations for the general case of fields showing
forces with a central symmetry (radial symmetry). Here we include the theory of the
electromagnetic field, starting from the field of Coulombian forces that also show a
central symmetry. Also, it is possible, under certain assumptions, to derive the equations
in the case in which the particles that produce the field are moving with velocities varying
with time [11], [18], [23], [40], [41].

The equations (3.53), (3.16), (3.18), (3.86 a), (3.31), (3.99) will be written as follows:

,curl
t

B
E (3.107 a)

,div vD (3.107 b)

,0 PED (3.107 c)

,curl conv
t

D
JJH (3.107 d)

,0div B (3.107 e)

,00 jMHMHB (3.107 f)

and represent the laws in local (differential) form of the electromagnetic field, in the
macroscopic theory for media at rest, and are referred to as the laws of the

electromagnetic field for media at rest.
For isotropic and homogeneous media and without permanent electric and magnetic

polarization, according to relations (3.24), (3.105), it follows:

,ED (3.107 g)

.HB (3.107 h)

Relations (3.107 a, . . ., f) are also referred to as Maxwell equations.
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The relations that represent the equations of the electromagnetic field contain, apart
from the relations mentioned above, also other equations that are related to
Electrokinetics and Electrodynamics.

Maxwell established a system of equations in two forms: 32 scalar equations for the
first form and 10 vector equations plus two scalar equations for the second form,
respectively. In the latter form, the equations have been designated in his work [1, Arts.
591, 598, 603, 606-614] by capital letters from (A) to (L). These equations link scalar and
vector quantities. The quantities represent the electromagnetic field state quantities and
the bodies state quantities. In his work, these equations have been written in a form very
close to that utilized at present. For denoting the vectors, he used letters of the Gothic
alphabet.

3.10. RELATIONS BETWEEN THE STATE QUANTITIES
OF THE ELECTROMAGNETIC FIELD IN VARIOUS
INERTIAL REFERENCE FRAMES

Let K  and K  be two inertial frames, the first at rest, the latter moving at a constant
velocity v  relatively to the former one.

Also, let one point-like electric charge be in motion relatively to the two inertial
reference frames.

The relations between the various state quantities of electromagnetic field can be
established in several ways. These ways are as follows: a. Comparison between the forces
acting upon a point-like electric charge in motion in the two inertial reference frames;
b. Change of variables, i.e., co-ordinates and time that leave unchanged the form of the
equations of the electromagnetic field. The equations that have the same mathematical
form in all inertial reference frames after a transformation of the variables, i.e., co-
ordinates and time, are considered to be covariant in Lorentz sense.

From the comparison of the forces components expressed in the two inertial reference
frames, in terms of the various state quantities of the electromagnetic field, we obtain
relations between the various state quantities of the electromagnetic field. For the other
quantities, the relations are obtained by putting the condition the equations of
electromagnetic field to be satisfied in each of the two reference frames. Detailed
calculations are given in Appendix 3.

The most general case can be considered in which there are several point-like electric
charges, each of them moving at any velocity relatively to both reference frames. These
charges produce the electromagnetic field. For the sake of simplicity, we shall assume

viv xv o1o1 .
The obtained relations between the state quantities of electromagnetic field are the

following:
,Bvixx EE (3.108 a)

,Bvjyy EE (3.108 b)

.Bvkzz EE (3.108 c)
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,
1
2' Evi

c
BB xx (3.109 a)

,
1
2' Evj

c
BB yy (3.109 b)

.
1
2' Evk

c
BB zz (3.109 c)

,
1
2' Hvi

c
DD xx (3.110 a)

,
1
2' Hvj

c
DD yy (3.110 b)

.
1
2' Hvk

c
DD zz (3.110 c)

,Dvixx HH (3.111 a)

,Dvjyy HH (3.111 b)

.' Dvkzz HH (3.111 c)

,
1
2' Mvi

c
PP xx (3.112 a)

,
1
2' Mvj

c
PP yy (3.112 b)

.
1
2' Mvk

c
PP zz (3.112 c)

,Pvixx MM (3.113 a)

,Pvjyy MM (3.113 b)

.' Pvkzz MM (3.113 c)

,' vxx JJ vi (3.114 a)

,'yy JJ (3.114 b)

.'zz JJ (3.114 c)
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,xAvVV (3.115)

;
2' V

c

v
AA xx    ;' yy AA    ;' zz AA (3.116 a, b, c,)

where

,
1

1
2 (3.117 a)

.
c

v
(3.117 b)

If the velocities are relatively small cv , then it follows that 1 and the

following relations will be obtained:

,BvEE (3.118)

,
1
2

EvBB
c

(3.119)

,
1
2

HvDD
c

(3.120)

,DvHH (3.121)

,
1
2

MvPP
c

(3.122)

,PvMM (3.123)

.vJJ v (3.124)

3.11. EXPRESSIONS OF THE LAWS OF THE
ELECTROMAGNETIC INDUCTION AND
MAGNETIC CIRCUIT FOR MOVING MEDIA

If the differential operator curl is applied to both sides of relation (3.118), it follows:

,curlcurlcurl BvEE (3.125)

but, using relation (3.53) and (3.37):

,curl
t

B
E         ,curl AB (3.126 a, b)

and it follows that:
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.curlcurl Bv
B

E
t

(3.127)

If the differential operator curl is applied to both sides of relation (3.121), it follows
that:

DvHH curlcurlcurl (3.128)

but using relation (3.86), it results that:

Dv
D

JH curlcurl
t

(3.129)

or, if 0convJ , in accordance with relation (3.86 a), it follows:

.curlcurl conv Dv
D

vJH
t

(3.129 a)

By adding up to each side of relation (3.86), the quantity Mcurl  and multiplying by
the quantity 0 , it results that:

.curlcurl 00 M
D

JMH
t

(3.130)

We shall consider the case in which the moving reference frame is fixed to the moving
substance. Also, we shall suppose that the magnetic polarization in the moving substance
is zero, 0M . In this case, from relation (3.123), it follows:

.PvM (3.131)

For the case under consideration, it results that:

Pv
D

JB curlcurl 0
t

(3.132)

and

.PP (3.133)

We shall consider in the moving reference frame an open surface bounded by any
closed curve. At the moment of observation in the fixed reference frame, this surface will
be denoted by S .

Integrating both sides of relations (3.125) and (3.129) over the surface S  and using
the transformation of surface-integrals into line-integrals (the Stokes theorem), it follows
successively:

,dcurlddcurl
S

S
S

t
SBvS

B
SE
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,dcurld
S

S

t
SBvS

B

.ddd lBvS
B

lE

S

t (3.134)

,dcurldddcurl
S

S
SS

t
SDvS

D
SJSH

.dddd lDvS
D

SJlH

S
S

t (3.135)

Relations (3.127), (3.134) and (3.129), (3.135) represent the expressions of the local

and integral forms of the laws of electromagnetic induction and of magnetic circuit,

respectively, for any moving medium.

The vector quantities E and B are introduced as explained in Section 2.5, the vector
quantity H is introduced according to relation (3.80) and the vector quantity D is
introduced as shown in Section 3.2, relation (3.18).

Expressions (3.134) and (3.135), for moving media, may be obtained from relations
(3.56) and (3.96). For this purpose, instead of quantities E and H , we shall introduce
the quantities E and H from a moving reference frame fixed to the moving medium,
and we shall calculate the derivatives with respect to time of the magnetic and electric

fluxes. Hence, we have to calculate
S

t
SB d

d

d
and

S
t

SD d
d

d
, and the quantities B

and D are expressed in the fixed reference frame. The calculation of the derivative can
be performed taking into account the following two remarks:

1° – The vector function, which has to be integrated, varies with time even in the case
in which the surface S is at rest;

2° – The surface S varies in form and position relatively to the system of co-
ordinates even in the case in which the function above does not vary. The
derivation of this formula is given in Vector Calculus and is sometimes called the
derivative of the flux.

3.12. THE RELATIONS BETWEEN THE COMPONENTS OF THE
STATE QUANTITIES OF ELECTROMAGNETIC FIELD
IN THE CASE OF DISCONTINUITY SURFACES

The relations between the components, expressed in the same reference frame, of the
quantities E , D , B and H , of both sides of the discontinuity surface will be examined.

d lE
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3.12.1. The Relation between the Normal Components of Electric
Displacement Vectors

Let dS  be the separation surface of two insulating media having different electric

permittivity. Let S  be a portion of the separation surface dS . The dimensions of S

are assumed infinitesimals of the first order. The dimensions of S  are taken small
enough for to be assumed as plane. The portion S  of the separation surface will be
dressed by a very flat surface  having the form of a right cylinder or a parallelepiped
(Fig. 3.10) the height of which is an infinitesimal of a higher order relatively to the
dimensions of the cross-section S .

Let the vector quantities 1D  and 2D  be the electric displacements at two points very
near situated on both sides of the separation surface.

The true (free) electric charge is supposed to be distributed in space with a finite
volume density.

The law of electric flux, in integral form, expressed by relation (3.14) will be applied
for the case of the closed surface . The true electric charge in the interior of the
parallelepiped, represented by the right-hand side of expression (3.14) of the electric flux
law, is an infinitely small quantity of higher order, proportional to the height of the
parallelepiped and tends to zero together with that height.

Neglecting the flux through the lateral surface of the parallelepiped, because its height
is much smaller than the dimensions of its bases, the following relations will be obtained:

,0d qSD (3.136)

,0122121 SS nDnD (3.137)

where the vector 12n  is the unit vector of the normal to the separation surface dS ,

oriented from the medium 1 towards the medium 2, hence 2121 nnn .
Hence:

.01212 DDn (3.138)

It follows that, in the case of the true (free) electric charge distributed in space, at the
passage through a separation surface of two media, the normal component of the electric
induction is conserved, thus:

,21 nn DD (3.139 a)

.21 nn DD (3.139 b)

The last relation expresses the theorem of conservation of the normal component of

the electric displacement.
In the case in which there is true electric charge distributed with a finite surface

density s  just on the separation surface, say on the portion S , then Sq s  and
instead of relation (3.138) we obtain:
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Fig. 3.10. Explanation to the computation of the normal components of the vector
electric displacement at the passage from one medium to another.
The vector 1D  has been displaced, being brought with its end point to

its starting point for avoiding superposition in the figure.

,div1212 ss DDDn (3.140)
thus:

.12 snn DD (3.141)

3.12.2. The Relation between the Tangential Components of Electric
Field Strength Vectors

Let dS be the separation surface of two insulating media having different electric
permittivity. Also, it will be assumed that the electric field strength has finite values on
the separation surface and within its vicinity. Also, let be a small rectangular plane curve
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having each of its long sides on one of the two sides, respectively, of the separation
surface, parallel and very near to that surface (Fig. 3.11). The length of one long side of
the rectangular curve, parallel to the separation surface will be denoted by l and the
height, parallel with the normal to the separation surface, will be denoted by h . The
length of l is taken small enough for to be considered as a straight-line segment. The
quantity l is assumed as an infinitesimal of the first order, and the quantity h as an
infinitesimal of a higher order.

Let the vector quantities 1E and 2E be the electric field strengths at two points very
near situated on both sides of the separation surface.

The law of electromagnetic induction in integral form, expressed by relation (3.50)
will be applied for the closed curve that has a rectangular form (Fig. 3.11). The
travelling direction along the curve of Fig. 3.11 results from the direction of the unit
vectors 1t  and 2t . The magnetic flux represented by the surface-integral of the right-hand
side of expression (3.50) of the law of electromagnetic induction, is an infinitely small
quantity of higher order, proportional to the height of the rectangle, and tends to zero
together with that height.

Fig. 3.11. Explanation to the calculation of tangential components of electric field
strength vectors at the passage from one medium to another.

The vector 1E  has been displaced, being brought with its end point to
its starting point for avoiding superposition in the figure.
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By neglecting the line-integrals along the height, because the height h  is much
smaller than the length l , it follows:

,021 ll tEtE (3.142)

where the vector quantity t  is the unit vector of the tangent to the separation surface
along the side of length l  of the rectangle. Thus:

.021 EEt (3.143)

It results that at the passage through a separation surface between media, the tangential
component of the electric field strength is conserved:

,21 tt EE (3.144 a)

.21 tt EE (3.144 b)

The last relation expresses the theorem of conservation of the tangential component of

the electric field strength.

3.12.3. The Theorem of Refraction of the Lines of Electric Field in the
Case of Insulating Media

Let us consider a separation surface between two isotropic media of different electric
permittivity and we shall assume that the electric charge is distributed in space, i.e., it has
a volume distribution.

We can write:

,111 ED (3.145 a)

.222 ED (3.145 b)

At the passage through the separation surface above, the vectors electric displacement
and electric field strength vary in magnitude and direction, i.e., they are refracted. From
Fig. 3.10, it follows:
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or by using the conservation theorems (3.139) and (3.144), it results that:
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Relation (3.146) represents the theorem of refraction of the lines of electric field in the
case in which the true (free) electric charge has a volume distribution. In this case, there
are not discontinuity surfaces of the true electric charge distribution. Therefore, on the
separation surface, there is not electric charge distributed with a finite surface density.

The refraction theorem expressed by relation (3.146) is similar, to some extent, to that
of Optics. However, it differs from the latter because relation (3.146) is not compatible
with the total reflection phenomenon, since the trigonometric tangent function occurs
instead of sine function in Optics. Hence, the refraction ratio (3.146) cannot have
negative values like in Optics.

3.12.4. The Relation between the Normal Components of Magnetic
Induction Vectors

Let dS  be the separation surface of two insulating media having different magnetic

permeability. Let S  be a portion of the separation surface dS . The dimensions of S

are assumed very small, hence infinitesimal entities of the first order. The portion S  of
the separation surface will be dressed by a surface  having the form of a right cylinder
or parallelepiped (Fig. 3.12) the height of which is an infinitesimal of a higher order
relatively to the dimensions of the cross-section S  that may be considered as a plane
surface element. The bases of the parallelepiped that is a closed surface have the same
dimensions like the cross-section. Let the vector quantities 1B  and 2B  be the magnetic
inductions at two points very near situated on both sides of the separation surface.

The law of magnetic flux, in integral form, expressed by relation (3.29), will be
applied for the case of the closed surface . Neglecting the flux through the lateral
surface of the parallelepiped, because its height is much smaller than the dimensions of its
bases, the following relations are obtained:

,0d SB (3.147)

,0122121 SS nBnB (3.148)

where the vector 12n  is the unit vector of the normal to the separation surface dS ,

oriented from the medium 1 towards the medium 2, hence: 2121 nnn .
Hence:

.0div1212 BBBn s (3.149)

It follows that at the passage through a separation surface of two media, the normal
component of the magnetic induction is conserved, thus:

,21 nn BB (3.150 a)

.21 nn BB (3.150 b)

The last relation expresses the theorem of conservation of the normal component of

the magnetic induction.
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Fig. 3.12. Explanation to the computation of the normal components of the vector
magnetic induction at the passage from one medium to another.

The vector 1B has been displaced, being brought with its end point to
its starting point for avoiding superposition in the figure.

3.12.5. The Relation between the Tangential Components of the
Magnetic Field Strength Vectors

Let dS be the separation surface of two insulating media having different magnetic
permeability. Also, it will be assumed that the electric current density has finite values on
the separation surface, hence, the electric current is not discontinuously distributed in the
form of a current sheet on the separation surface. In addition, it will be assumed that the
electric displacement has finite values.

Also, let be a small rectangular plane curve having each of its long sides on one of
the two sides, respectively, of the separation surface, parallel and very near that surface
(Fig. 3.13). The length of one long side of the rectangular curve, parallel to the separation
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Fig. 3.13. Explanation to the calculation of tangential components of the magnetic
field strength vectors at the passage from one medium to another.

The vector 1H has been displaced, being brought with its end point to
its starting point for avoiding superposition in the figure.

surface will be denoted by l , and the height, parallel with the normal to the separation
surface, will be denoted by h . The length of l is taken small enough for to be
considered as a straight-line segment. The quantity l is assumed as an infinitesimal of
the first order, and the quantity h as an infinitesimal of a higher order.

Let the vector quantities 1H and 2H be the magnetic field strengths at two points
very close one to the other situated on both sides of the separation surface.

The law of magnetic circuit in integral form, expressed by relation (3.84) will be
applied for the closed curve that has a rectangular form (Fig. 3.13). The travelling
direction along the curve results from the direction of the unit vectors 1t  and 2t .

The electric flux represented by the surface-integral of the right-hand side of
expression (3.81) of the law of magnetic circuit, is an infinitely small quantity of higher
order, proportional to the height of the rectangle, and tends to zero together with that
height.

By neglecting the line-integrals along the height, because the height h is much
smaller than the length l , it follows:
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,021 ll tHtH (3.151)

where the vector quantity t  is the unit vector of the tangent to the separation surface
along the side of length l  of the rectangle. Thus:

.021 HHt (3.152)

It results that at the passage through a separation surface between media, the tangential
component of the magnetic field is conserved:

,21 tt HH (3.153 a)

.21 tt HH (3.153 b)

The last relation expresses the theorem of conservation of the tangential component of

the magnetic field strength.
We shall consider the case in which an electric current is distributed on the separation

surface in the form of a current sheet (Fig. 1.12), of linear density sJ  of direction

perpendicular to the plane of the figure at the points of the trace of the surface dS  in the

Fig. 1.12. In this case, the current linkage is lJ s  and instead of relation (3.152), we
obtain:

,21 sJHHt (3.154)

thus:

.21 stt JHH (3.155)

3.12.6. The Theorem of Refraction of the Lines of Magnetic Field at the
Passage through the Separation Surface of Two Media

Let us consider a separation surface between two isotropic media of different magnetic
permeability and we shall assume that the electric current has a volume distribution.

We can write:

,111 HB (3.156 a)

.222 HB (3.156 b)

At the passage through the separation surface above, the vectors magnetic induction
and magnetic field strength vary in magnitude and direction, i.e., they are refracted. From
Fig. 3.13, it follows:
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or, by using the conservation theorems (3.150) and (3.153), it follows:
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Relation (3.157) represents the theorem of refraction of the lines of magnetic field in
the case in which the electric current has a volume distribution. Hence, there are not
discontinuity surfaces carrying electric current sheets.

3.12.7. The Relation between the Normal Components of Electric
Displacement Vectors and Electric Current Densities

Let us consider the separation surface dS between two media having different electric
properties, namely different electric permittivity and conductivity. The surface is assumed
carrying no electric current sheet. The very flat parallelepiped surface of Sub-section
3.12.1 (Fig. 3.10) will be considered. For the parallelepiped base of medium 1, bounded
by a rectangular curve, by applying relation (3.79), we can write:
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For the parallelepiped base of medium 2, bounded by a rectangular curve, by applying
relation (3.79), we can write:
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The curves 1 and 2 that bound the two bases tend to the same curve of very

small dimensions placed on the separation surface. The quantities lHlH dd 11 t  and

lHlH dd 22 t  are equal, for according to relation (3.153), 21 tt HH .
The last two relations (3.158 a) and (3.158 b) yield:

.2
2

1
1

t

D
J

t

D
J n

n
n

n (3.159)

and, as mentioned, the following relation

21 tt HH

subsists.
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3.13. THE SI UNITS OF MEASURE OF ELECTRIC AND MAGNETIC
QUANTITIES: ELECTRIC FLUX, ELECTRIC
DISPLACEMENT, ELECTRIC RESISTIVITY, MAGNETIC
FLUX, MAGNETIC INDUCTION, MAGNETIC FIELD
STRENGTH.

3.13.1. The Units of Electric Flux and Displacement

In the SI system, the unit of measure of the flux of electric displacement, also called
electric flux, results from relation (3.14) and it is the coulomb, symbol C, the same as for
the electric charge. From the same relation, it follows that the unit of measure of the

electric displacement (electric flux density) is 2m/C . From relation (3.18) it follows that
the unit of measure of the electric polarization is the same as for the electric
displacement.

3.13.2. The Unit of Electric Resistivity

In the SI system, the unit of measure of the electric resistivity results from relations
(1.108) and (1.109). This unit of measure is given by the ratio of lE  and J as follows:

.m1
A1

V1

m/A1

m/V1

][1

][1
][1

2SI
J

E

But in Electrokinetics, the ratio between one volt and one ampere is called ohm,
symbol , thus:

.1
A1

V1

Therefore the unit of measure of the electric resistivity is m , as follows:

.m1][1

3.13.3. The Unit of Magnetic Flux

A definition of the unit of measure of magnetic flux may be given by using the law of
electromagnetic induction in the integral form (3.57):

.
d

d

t
ue

In the SI system of units, the unit of measure of magnetic flux is the weber, symbol
Wb.

The weber is the magnetic flux that cancelling by a linear variation after a time of one
second induces in a single turn linked by it, the electromotive force of 1 V.
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Indeed, for the linear variation with time of the magnetic flux, mentioned above, and
shown in Fig. 3.14, it follows:

.
11

0

d

d 00

t
ue

If the variation of the magnetic flux were not a linear one then the electromotive force
induced at any instant, in the turn, would be given by the derivative of the magnetic flux.
In this case, the value of the magnetic flux is more difficult to be determined than in the
case above.

3.13.4. The Unit of Magnetic Induction

In the SI system of units, the unit of measure of magnetic induction is the tesla,
symbol T. A definition of the unit of measure of magnetic induction can be obtained by
using the defining relation of magnetic flux (3.32):

S

.d SB

In the case of a homogeneous magnetic field, the last relation becomes:

,SB

and if the vector quantity B is perpendicular to the considered surface, i.e., the vectors
B  and S are parallel to each other, it results that:

.SB

The tesla is the magnetic induction of a homogeneous magnetic field (i.e., with a

uniform distribution), the flux of which, through a surface having the area of 2m1 , and
perpendicular to the lines of the magnetic field, is of Wb1 .

Fig. 3.14. Explanation concerning
the definition of the

unit of measure of the magnetic flux.
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3.13.5. The Unit of Magnetic Field Strength

The unit of measure of the magnetic field strength can be obtained by using the
expression of the magnetic field strength at the centre of a circular turn carrying a direct
current:

.
2 a

i
H

This expression will be established in Sub-section 3.15.2.
In the SI system, the unit of measure of the magnetic field strength is the ampere per

metre, symbol m/A .
Ampere per metre is the magnetic field strength at the centre of a circular turn with the

diameter of 1 m, carrying a direct current of 1 A.
The unit of measure of the magnetic tension and magnetomotive force, in the SI

system of units, is the ampere, symbol A, hence the same unit of measure as for the
electric current intensity.

3.13.6. The Units of Electric and Magnetic Constants

The unit of measure of the electric constant, in the SI system of units, can be easily
obtained from relation (3.6). The unit of measure of the left-hand side of this relation is

that of the product of the quantities E , S and 0 , hence 0
2m)m/V( , thus

0mV . The unit of measure of the right-hand side of the same relation is that of the
electric charge, thus C . By equating the two units of measure, we obtain:

.
m

1

V

C
0

But in Electrostatics, the ratio V/C is defined as farad, symbol F . Therefore the unit of
the electric constant is m/F .

The unit of measure of the magnetic constant can be easily obtained from relation
(2.27 b). From these relations, it follows that in vacuo:

,0 HB

where, for the sake of simplicity, the subscript o indicating the reference frame has been
omitted.

In the last relation, the unit of measure of the left-hand side is that of B . The unit of
measure of the right-hand side of the same relation is that of the product of the quantities
H , and 0 , hence 0)m/A( . But, as shown above, namely by the last relation of

Sub-section 3.13.4, this unit of B can be expressed in the form 2m/Wb . By equating
the two units of measure, we obtain:
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But in Electrodynamics, the ratio A/Wb is defined as henry, symbol H . Therefore the
unit of the electric constant is m/H . The same results could be obtained, e.g., by using
relations (3.23), (3.24) and (3.104), (3.105), respectively.

3.13.7. Remark on the Various Systems of Units of Measure in
Electromagnetism

Before the adoption of the International System of Units of Measure, and the MKSA
which preceded it, two systems of units of measure played an important role, having a
scientific value: The Electrostatic System of Units and the Electromagnetic System of
Units [1, Arts. 625, 628].

The Electrostatic System of Units has been based on the definition of the unit of
electric charge according to the Coulomb formula for electric charges in vacuo, with the
constant of proportionality dimensionless and equal to unity. The two charges occurring
in formula are taken equal to each other. Hence the formula will contain only the
quantities: force, electric charge q  and a length r .

The Electromagnetic System of Units has been based on the definition of the unit of
magnetic charge (i.e., the fictitious magnetic charge) according to the Coulomb formula
for Amperian magnetic charges with the constant of proportionality dimensionless and
equal to unity. Further on, the formula of the electromagnetic force, like that exerted
between two coils carrying electric currents, including one proportionality constant, has
also been established using the same system of units. As shown in [1, Vol. II, Art. 628],
the ratio between the unit of electric charge in the Electromagnetic System of Units, and
that of the Electrostatic System of Units, denoted by indices uem and ues, has the

dimension of a velocity, and was found to be approximately equal to 10103c cm/s. It
is just the velocity of light in empty space (vacuum) or air. The apparatus conceived and
used by Maxwell for the experimental determination can be found in [4, 372].

The same result may be directly obtained by remaking the calculations concerning
formulae (2.22) – (2.24), taking 40 and dimensionless. Using formula (1.113) there
follows:

,][][1;;;
4

111
uesuemuesuem

2
02

0
20 qcqqqcck

cc

and then we obtain the ratio above.
A combination of the two systems of units, called the Gaussian System of Units, has

also been used [3], [7], [8], [11], [22], [23], [24].

3.14. THE LAWS OF ELECTROMAGNETIC FIELD IN THE CASE
OF EXISTENCE OF MAGNETIC MONOPOLES

We shall further examine the modifications occurring in the laws of the theory of the
electromagnetic field, in the case of existence of magnetic monopoles. The existence of
these monopoles has been supposed, but up to now no doubtless experiment has proved
their existence.
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3.14.1. Expression of the Interaction Force between Two
Magnetic Monopoles

The expression of the interaction force between two point-like magnetic charges, i.e.,
monopoles, is assumed to be of the same form as the expression of the interaction force
between two point-like electric charges, hence an expression of the form:
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or
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which is the Coulomb formula for magnetic charges in the case of empty space (i.e.,
vacuum). The quantities introduced by relation (3.160) are called Amperian magnetic

charges, whereas the quantities introduced by relation (3.161) are called Coulombian

magnetic charges. Between these quantities we have the following relation:

.0 Mm qq (3.162)

If for the constant of the right-hand side of relations (3.160), (3.161), other value were
adopted, different units of measure would be obtained for the electromagnetic quantities.

Analogously as for the electric charges, we can consider volume distributions of
magnetic monopoles with the volume density of the magnetic charge vM  or vm ,
respectively, including the suffix M or m. Also, we can consider magnetic charge with
surface distribution with the surface density sM  or sm , and line distribution with the

line density lM  or lm . The monopoles can be at rest or in motion.
Similarly as in the case of electric charges, the following force produced by any point-

like magnetic charge 1mq  placed at any point, called source point, is acting on the point-

like magnetic charge mq  placed at another point, called field point or observation point:

.mmmMm qq HBF (3.163)

If we denote by 12r  the vector having its origin at the source point and its end at the
field point (observation point), it follows:
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.0 mm HB (3.165)

3.14.2. Electric Field Produced by Moving Magnetic Monopoles

We shall consider the same reference frames oK  and 1K , of Sub-section 2.3.2, the

latter moving at the velocity o1v  with respect to the former. At any fixed point, A, in 1K ,

there is a point-like magnetic charge 1mq  (the subscript 1 of 1mq  has no relation with the
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subscript 1 of 1K ), and another magnetic point-like magnetic charge mq , at any point P,

moving at the velocity o2v  relatively to oK . We shall consider the magnetic field

strength produced by 1mq  at the point P, in empty space.
We shall remake the calculations of Section 2.4, but instead of relations (2.18 a, b, c)

which are based on formula (1.112), we shall use the relations based on one of formulae
(3.160) or (3.161). In order to distinguish the field state quantities due to the magnetic
point-like charge, those quantities will have the suffix m. We obtain:

(3.166 a, b);o0o mm ED ;
1

oo12o mm
c

HvD

.
1

oo12o2oo mmmmm
c

qq HvvHF (3.167)

3.14.3. The Expressions of the Laws of the Theory of the Electromagnetic
Field in the Case of Magnetic Monopoles

We shall make derivations similar to those for expressions: (3.5 b), (3.27), (3.47),

(3.68). The calculations include: mo0o µdiv , moocurl H , m
t

o
o

D , moocurl D , in oK .

The field state quantities obtained from the last relations for magnetic charges will be
added, side by side, with those previously obtained for the electric charges, as follows:

;: ooo mDDD   ;: ooo mEEE ;: ooo mBBB   .: ooo mHHH (3. 168)

It results that the form of relations (3.5 b) and (3.27) is not modified, while relations
(3.27) and (3.68) become:

;div o0oo MvB ,curl omagoo JE ,o0
o

o
omag mMv

t
v

B
J ,o1vmv (3.169 a-d)

where magJ  may be called the magnetic current density.

3.15. APPLICATION OF THE BIOT-SAVART-LAPLACE FORMULA
TO THE CALCULATION OF THE MAGNETIC FIELD
STRENGTH

3.15.1. Expression of the Magnetic Field Strength Produced by a
Thread-Like Rectilinear Conductor Carrying a
Constant Electric Current

Let us consider a rectilinear thread-like conductor of length l  and constant cross-
section cs  carrying an electric current of intensity i  shown in Fig. 3.15, in empty space.
In this case, the magnetic field strength is given by relation (2.48). It follows:



The Laws of the Electromagnetic Field 171
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The vector H at the point P is perpendicular to the plane determined by the straight-
line segment and the point P , and oriented so that it enters into the plane of the figure.
We shall consider the modulus of the vector H . According to the symbols of Fig. 3.15,
we have:
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It follows:
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For an infinitely long conductor, i.e., b , we have:

.
2

;
2 21 (3.175)

Fig. 3.15. Explanation to the
calculation of the magnetic field

strength produced by a rectilinear
thread-like conductor carrying an

electric current.
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It results that:

.
2 a

i
H (3.176)

The same result can also be obtained directly, by applying the magnetic circuital law.
The direction of the vector magnetic field strength follows from the Biot-Savart-

Laplace formula. From this expression, without performing computations, we verify that
the vector H at the point P is perpendicular on the plane determined by the rectilinear
conductor and the point P like in Fig. 3.16, and situated so that it lies in the plane of that
figure. From geometrical reasons of symmetry, the lines of magnetic field are circles with
their centre on the rectilinear thread-like conductor and perpendicular to it.

We shall apply the magnetic circuital law for a curve that is just the magnetic field
line passing through the point P as shown in Fig. 3.16. It follows:

.dd
S

SJlH (3.177)

The vectors H and ld are parallel (as shown in the figure), J (oriented like i in the
figure) and Sd are also parallel (both have the direction of the arrow that indicates in the
figure the sense of the current i ). The modulus of the magnetic field strength is constant
along the same line of field. The current i passes only once through the surface S .
Therefore:

,2 iaH (3.178)
whence:

.
2 a

i
H (3.179)

Fig. 3.16. Explanation to the calculation
of the magnetic field strength produced
by a rectilinear thread-like conductor

carrying a constant electric current, by
using the magnetic circuital law.
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3.15.2. Expression of the Magnetic Field Strength Produced at a Point on 
the Axis of a Circular Turn Carrying a Constant Electric Current

Let us consider a circular turn constituted by a thread-like conductor, of constant
cross-section, carrying a constant electric current. Let a be the radius of the turn and i

the intensity of the electric current. For calculating the magnetic field strength produced
by that current, relation (2.48) will be used.

The vector quantity Hd of Fig. 3.17 is perpendicular to the plane determined by the
position vector r and the vector quantity ld , according to the Biot-Savart-Laplace
formula (2.48).

By virtue of geometrical reasons, it results that the vector quantity H has the same
direction as the turn axis, because the perpendicular components to this axis cancel each
other. Also, according to Fig. 3.17, it follows:

sindd HH . (3.180)

Formula (2.48), in this case, can be written in the form:
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4 3r

i
H

rl

(3.181)

2
sindd rlrl . (3.182)

According to Fig. 3.17, it results that:

dd al , (3.183)

Fig. 3.17. Explanation to the calculation of the magnetic field strength
at a point on the axis of a circular turn carrying a constant electric current.
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.
sin

a
r (3.184)

After performing the substitutions and the calculation of the integral, it follows:

.sin
2

sin
d
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33
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i

a

ai
H (3.185)

In particular, the magnetic field strength at the centre of the turn is:

.
22

sin
2

3

a

i

a

i
H (3.186)

The magnetic field strength produced by a circular turn carrying an electric current, at
a point that is not placed on the axis of the turn, can also be calculated by the relation
(2.48). In this case, elliptic integrals occur in calculation [15, p. 30].

3.16. APPLICATION OF BOTH FORMS OF THE LAW OF
ELECTROMAGNETIC INDUCTION FOR MEDIA
AT REST AND IN MOTION

3.16.1. Calculation of the Electromotive Force Induced in a Coil in
Rotational Motion in a Uniform Magnetic Field

A typical example of application of various forms of the law of electromagnetic
induction is the calculation of the induced electromotive forces.

We shall calculate the electromotive force induced in a coil in rotational motion in a
magnetic field having the magnetic induction uniformly distributed in space. Firstly, let
the coil be constituted by a single turn.

Let

,sin 11 tBB M (3.187)

be the expression of the magnetic induction that varies with time, in a sinusoidal form,
with the angular frequency 1 . The considered configuration, composed of the inductive
pair of poles that produces the magnetic field and the turn in rotational motion, is shown
in Fig. 3.18. The turn is in rotational motion, about one of its symmetry axes, with an
angular velocity (speed) . The sizes R  and l  of the turn are shown in Fig. 3.18.

The electromotive force induced in the turn can be collected by a system of rings and
brushes. We shall denote by  a curve taken along the conductor (wire) of which the turn
is made.

The law of electromagnetic induction for media at rest will be utilized. The reference
frame will be taken fixed to the turn in rotational motion (Fig. 3.18 a). In accordance with
relation (3.118), we can assume that in the adopted moving reference frame, the magnetic
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Fig. 3.18. Explanation to the calculation of the induced
electromotive force in a coil in rotational motion.
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induction has the same value as in the reference system considered at rest. We can
arbitrarily adopt the travelling direction along the curve , and the direction of the
positive normal to the surface S will be associated according to the right-handed screw

rule. The angle determining the initial position of the turn has been denoted by 0 .
The magnetic flux linked by the turn is:

,cos2 BlR (3.188)

,0t (3.189 a)

,cossin 011 ttM (3.189 b)

.2 MM BlR (3.189 c)

By using relation (3.50), it follows:

.sinsin
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Me lE
(3.190)

Further on, we shall use the law of electromagnetic induction for moving media. The
reference frame will be considered fixed to the inductive poles (Fig. 3.18 b).

By applying relation (3.134) to this case, it follows:

lttBv
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(3.191)

or

,sinsin2

coscos

011

0111

ttlBv

ttSBue

Mr

Me
(3.192)

where

.;2 RvlRS r (3.192 a, b)

If the coil of Fig. 3.18 had w turns instead of one turn, then all the induced
electromotive forces would be w  times greater.

From relation (3.134), it follows that the induced electromotive force (e.m.f.) has two
components: The first is a transformation component and the second is a moving
component (in this case a rotation component). In Fig. 3.18 b, the moving component of
the electric field strength has been denoted by BvE rb . Also, from Fig. 3.18 b, it
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follows that, in the front parts of the coil, the vector of the moving component of the
electric field strength bE  is perpendicular to the conductor, hence:

,0dd lBvlE rb (3.192 c)

so that it does not contribute to the electromotive force.

3.16.2. Calculation of the Electromotive Force Induced by the
Rotation of a Magnet about Its Axis

Another typical example of application of the law of electromagnetic induction is the
calculation of the electromotive force induced between two points of one cylinder of a
material with magnetic and conducting properties (permanent magnet), and which turns
about its axis.

Fig. 3.19. Explanation to the
calculation of the electromotive

force induced by the rotation of one
permanent magnet in the form of a

cylinder.
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The corresponding configuration is shown in Fig. 3.19. As it can be seen in Fig. 3.19,
the two points C and A are situated one on the axis of the cylinder, the other on one of
its generating straight lines. The electromotive force induced between the two points can
be collected by a system of sliding contacts.

Let be the angular velocity of the rotational motion, and r the cylinder radius. We
shall consider a reference frame at rest relatively to which the cylinder is in rotational
motion and a moving reference frame fixed to the cylinder. At any instant, we consider a
closed curve composed of a portion CO along the cylinder axis, a radius OA and a line
that closes along a conductor placed in air between the two points A  and C .

At any point of the reference frame at rest, the magnetic induction does not vary. In
this case, according to formula (3.134), it follows:

,dddd lBvlBvS
B

lE r

S

re
t

ue (3.193)

where rvr . If the magnetic field is assumed to be uniform, it follows:

.
2

1
average

2 BrvBrue re (3.194)

After the discovery of the law of electromagnetic induction (examined in Sub-section
3.5.4 and Section 3.11), many discussions took place, especially in the 19th century,
relatively to the possibility of interpreting the phenomenon of electromagnetic induction,
in the case of a right circular cylindrical permanent magnet which turns about its axis as
being determined by the fact that the lines of magnetic field turn together with the
magnet. According to the mention of Section 2.5, that the lines of field are only an
auxiliary notion and not material forms, such an interpretation is not justified.

3.17. ELECTRODYNAMIC POTENTIALS

The general equations of the electromagnetic field in local form, established above,
are:

,curl
t

B
E (3.195 a)

,div vD (3.195 b)

,0 PED (3.195 c)

,curl
t

D
JH (3.195 d)

,0div B (3.195 e)

.0 jMHB (3.195 f)
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The equations above are called the equations of the theory of electromagnetic field for

media at rest or the Maxwell equations.
In many cases, for solving this system of equations, it is convenient to introduce

certain substitution functions namely: Electrodynamic scalar potential and vector
potential, respectively. This introduction is not arbitrary, it results from the examination
of the equations above. Concerning the fifth equation, it can be remarked that the
divergence of any vector that is a curl of a field vector is always zero. Hence:

0curldivdiv AB (3.196)

and

.curl AB (3.197)

The quantity A  is called vector electrodynamic potential.
From the equation (3.195 a), it follows:

.0curlcurlcurlcurl
ttt

A
EAE

B
E (3.198)

In the last equation, the derivative operator with respect to t , and the operator curl that
contains the derivatives with respect to co-ordinates can be replaced one by the other,
because the two operators refer to different variables.

Concerning the last equation, it can be remarked that the operator curl of any vector
that is a gradient of a scalar field is always zero. Hence:

.0gradcurlcurl V
t

A
E (3.199 a)

It follows:

V
t

grad
A

E (3.199 b)

and

.grad
t

V
A

E (3.200)

The quantity V  of the last relation is called scalar electrodynamic potential.
It is worth noting that in relation (3.199 a) we have introduced the sign minus like in

the case of potential produced by point-like charges at rest. Indeed, if the state quantities
do not vary with time, the relations (3.200) and (1.119) must coincide.
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3.18. THE SCALAR AND VECTOR ELECTRODYNAMIC
POTENTIALS PRODUCED BY ONE POINT-LIKE ELECTRIC
CHARGE MOVING AT CONSTANT VELOCITY

Let oK  be a reference frame assumed at rest, 1K  a moving reference frame with

respect to the previous one and a material point, with a point-like electric charge 1q ,

fixed in the reference frame 1K  at its origin. The velocity of the reference frame 1K  and

that of the point-like electric charge 1q , fixed in the same reference frame, is assumed to

be constant .consto1o1 xviv  The medium will be considered empty space (vacuum).

The electric field strength produced by the point-like charge 1q  at any point

PPP zyxP 111 ,,  in the reference frame 1K  is:
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The electric field strength produced by the same point-like charge 1q  at the same

point PPP zyxP ooo ,,  in the reference frame oK , according to relation (2.21), is:

.111o zyx EEE kjiE (3.202)

According to relation (2.26), the magnetic induction will be:

,0oxB
(3.203 a)
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According to expressions (3.203 a, b, c), it results that, in this case, the quantity oB

has components only along the oo yO and oo zO  axes. According to relation (3.203 a) and
(3.197), we can write that the vector potential A  has a single component, namely along
the oo xO - axis. We obtain successively:

;curlcurl oooo AiAB (3.204 a)
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At the initial moment, both reference frames are supposed to coincide. The point-like
charge 1q is fixed at the origin of the reference frame 1K . The observation point denoted

by P  is fixed in the reference frame oK . After a time ot , the origin of the reference

frame 1K  will be on the oo xO - axis at the distance oo1 tv x  from the origin of the

reference frame oK . The distance between the point-like charge fixed at the origin of the

reference frame 1K  and the point P  marked in the same reference frame will also be
modified.

Let or  be the distance between the point-like charge at the initial moment and the

point P  marked in the reference frame oK . Also, let ot  be equal to the time necessary
for the field wave starting from the material point with a point-like charge that initially is
at the origin, to reach the point P .

Hence, we can write:
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At the same time, we can write the relations:

oo1oo11 tvxx xPP , (3.206 a)
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Hence:
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Therefore, relation (3.204 c) becomes:
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From the expression (3.200) of the electric field strength in terms of the scalar and
vector potential, we obtain:
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The expression of oV  can be obtained easily from relations (3. 209 b, c):
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It follows:
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The relations (3.210 a, b) yield:
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It follows:
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If we omit the index referring to the reference frame, we can write:
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The last two relations represent the expressions of the scalar and vector
electrodynamic potential, respectively, at any observation point, also called field point, in
empty space (vacuum).

The field wave starting from the point-like charge is propagated with the velocity c .
Let the point-like charge be at any point M  at the moment of observation. The vector or

in formula above has its end at the observation point P , but its origin is not at the point
M  at which the point-like charge is at the same moment but at the point at which the
point-like charge was at a previous moment, say N . In the calculation above, this
previous point N  was chosen at the origin. The distance from the point N  to the point
P  is equal to the distance covered by the field wave during the time necessary to the
point-like charge for moving from the point N  to the point M . Therefore the
perturbation at point N  manifests at any point P  not at the same moment, but later, and
for this reason, the potentials obtained above are referred to as retarded potentials.

The scalar and vector potential above, produced by a moving point-like charge are
also referred to as LIÉNARD-WIECHERT potentials.

3.19. THE SCALAR AND VECTOR ELECTRODYNAMIC
POTENTIALS PRODUCED BY ONE POINT-LIKE ELECTRIC
CHARGE MOVING AT NON-CONSTANT VELOCITY

Let us consider a set of two material points, with the electric charges q  and 1q ,

namely point-like electric charges, in the same inertial reference frame, say oK . We

suppose that the charge q  has the velocity rvv o2  and the charge 1q  has the velocity

1o1o1 viv v . Firstly, we shall suppose that the point-like charge that produces the
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electromagnetic field is moving at a constant velocity 1v . The equation of motion of a

material point of inertial mass m , with the electric charge q , in the electromagnetic field,
giving the expression of the force acting upon the material point, established for the case
in which const,1v  is:

BvEvF rr qm
td

d
(3.215 a)

or
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(3.215 b)

where V  and A  are the retarded electrodynamic scalar and vector potentials, also called
Liénard-Wiechert potentials produced by one moving point-like electric charge that we
could term source electric charge. As shown above by relations (3.213) and (3.214), the
expressions of these potentials at an observation (field) point, in the case in which the
source charge is moving with constant velocity, can be brought to the form:
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where r  is the vector having its origin (source point) at the point N , as explained after
relation (3.214), and its end at the observation point (field point) P , at any moment t .
Therefore, the quantities V  and A  of the left-hand side are given at any moment t  by

the point-like electric charge 1q  considered at the position it had at the moment 
c

r
t .

The forces acting upon a moving point-like charge q  can be obtained from the

Lagrange equation, where the generalized co-ordinates ks  are used:
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For a system of n  material points that contains k  connection conditions, there are
knf 3  equations. Let the Lagrange function be adopted in the form:

,AvrqVqTUTL (3.218)

with
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v
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In the case above, the Lagrange function of the system of material points with electric
charge (3.218) is equal to the difference of two terms. The first one is the Lagrange
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function T  of the material point with the electric charge q  when the electromagnetic
field is zero. The second one is the supplementary Lagrange function U  of the same
material point with the electric charge q  due to its interaction with other electric charges.

The quantity T  represents, in the case of small velocities, the kinetic energy, apart
from a constant, in other words, within to a constant. This remark can be obtained as a
result of the expansion in McLaurin series of the root square. The quantity U  represents
the potential energy. These two terms do not depend on acceleration.

It can be added that, instead of the previous expression of the quantity T , also another
expression could be used, for example:
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however, the further results will not be affected.
Now, we shall consider the case in which the velocity 1v  of the point-like charge 1q

that produces the electromagnetic field is not constant with time. The Lagrange function
is assumed to not depend on acceleration. As a consequence, in the case in which the
electric charge 1q  that produces the electromagnetic field has a variable velocity 1v , the
expression of the term U  of relation (3.218) remains the same as in the case of a constant
velocity above. Therefore, the expressions of the quantities V  and A  (3.216 a, b) remain
valid in this case.

It is possible to show that for given values of the quantities V  and A , the force acting
upon a moving charge in electromagnetic field depends only on the derivatives of these
quantities, regardless of the form of variation of 1v .

The derivation of this force can be achieved by adopting, under a certain modification,
the derivation of the work [50, Vol. I, Ch. V, Par. 60]. The modification is constituted by
the utilization of another expression of the term T  and by the consideration that the
inertial mass of the point-like charge q is depending on its velocity.

We shall consider only the system of co-ordinates of the reference frame oK .
Therefore, no index will be used for indicating the reference frame. The Lagrange
equation, in the known form is:
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where the over-script dot denotes the derivative.
We shall denote by mkp  the component of the momentum mp  corresponding to the

co-ordinate kx . The components of the momentum are given by the known relation:
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From relations (3.218), (3.219) and (3.221), we obtain the following partial derivative:
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The derivative of the momentum is:
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In the case in which 1k  then, xx1 , xAA1  and we obtain:
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From the Lagrange equations (3.220) and (3.221), we obtain:
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We shall assume that the term T  does not depend on the quantities of the form kx  but

only on kx . In the case in which 1k  then, as above, xx1 , xAA1  and we get:
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By equating the right-hand sides of relations (3.224) and (3.226), we obtain:
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The force is:
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By adding up, side by side, the relations for the three axes, it follows:
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Therefore, in accordance with relations (3.200) and (3.197), we have the expressions:

;curl;grad AB
A
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V (3.230 a, b)

where V  and A  are the expressions of retarded electrodynamic potentials, given by
relations (3.213) and (3.214) which have been considered to be valid for any variation
with time of the velocity 1v . The expressions of the quantities E  and B  given by the
last two expressions (3.230 a, b) and (3.228) yield relation (2.30) which represents the
expression of the force acting upon a point-like electric charge in electromagnetic field.
Therefore, there are reasons to assume that the laws established for a constant velocity 1v

may also be considered valid for a varying velocity.



General Theory of the Electromagnetic Field188



4. THE ENERGY OF THE ELECTROMAGNETIC FIELD

We recall that, the energy of a physical system in any state, with respect to one
reference state, arbitrarily chosen, is the sum of the equivalent work of all actions exerted
upon the other systems, when the examined physical system passes, in any manner, from
the state under consideration to the reference state.

Also we are recalling that the equivalent work of any action is the work necessary to
produce the respective action, or the work that would be obtained by suppressing the
respective action.

The energy satisfies a conservation law as follows. The same value of the energy of a
physical system in the actual state (present state), with respect to the reference state, will
be obtained, regardless of the sequence of transformations undergone by the physical
system when passing from the reference state to the actual state (final state). Therefore,
the energy of a physical system can be expressed only in terms of the state quantities that
determine the actual state (final state) and the reference state.

4.1. THE EXPRESSION OF THE ENERGY OF THE
ELECTROMAGNETIC FIELD.  POYNTING VECTOR.

We shall establish the expressions of the energy of the electromagnetic field in terms
of macroscopic quantities.

From a macroscopic point of view, let us consider the electric charge having a volume
distribution with the volume density v . The set of particles of the volume element vd  is

charged with the quantity of electricity vq v dd . We consider that the centre of mass
of the set of particles electrically charged of the volume element is moving at the velocity

rv  in the electromagnetic field of a domain  of Fig. 4.1. The macroscopic state
quantities of the field will be denoted by E  and B . The force acting upon the volume
element containing the electric charge qd  is given by relation (2.30):

,dd BvEF rlq (4.1)

where

,il EEE (4.1 a)

,dd vq v (4.1 b)

and

.dd vvrl BvEF (4.2)
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Fig. 4.1. Explanation concerning the
derivation of the expression

of the energy of electromagnetic field.

The solenoidal component of the electric field strength at a point and the magnetic
induction, are produced by the electrically charged particles in motion relatively to the
respective reference frame.

The work done by the field forces, in the case of the displacement of the system of
particles with the charge qd , along the line element ld , in the time interval td , is:

.ddddd2 tW rvFlF (4.3)

From relations (4.3) and (4.2), if follows:

tvW rlrv ddd2
BvEv (4.4)

or, after performing the calculations:

,ddd2 tvW lrv Ev (4.5)

because the product of vectors Bvr and rv is zero, the vectors being perpendicular to
each other, thus producing no work.

Taking into account relation (4.5), (1.18 c) and (1.70), it follows:

.ddddd2 tvtvW il EEJEJ (4.6)

The work done for the whole volume is:

.ddddddd vtvtvtW

V

i

VV

l EJEJEJ (4.7)

Relation (3.86) yields:

.curl
t

D
HJ (4.8)

From relations (4.7) and (4.8), it results that:

d d qF = ( ) ( E v B+ + )rl

v r

d q
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.ddcurld vt
t

W

V

iEJ
D

EHE
(4.9)

Taking into account the vector relation:

,curldivcurl EHHEHE

it follows:

.ddcurldddivd vt
t

vtW

V

i

V

EJ
D

EEHHE
(4.10)

Taking into account relation (3.53):

,curl
t

B
E

we have:

,dddddddivd
V

i

V
V

vtvt
tt

vtW EJ
B

H
D

EHE
(4.11)

or, performing the transformation of a volume integral into a surface integral (Gauss-
Ostrogradski theorem), the preceding relation yields:

.ddd
d

d

V

i

V

vv
ttt

W
EJ

B
H

D
ESHE

(4.12)

In the case of an isotropic and linear medium, we have the relations (3.24), (3.105):

,; HBED

and relation (4.12) gets the simpler form:

.dd
2

1

2

1
d

d

d

V

i

V

vv
tt

W
EJBHDESHE (4.13)

In relations (4.11), (4.12) and (4.13), the following symbols will be used:

,HE (4.14)

vW

V

e d
2

1
DE (4.15 a)

or
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,dd

0

D

D

DE vW

V

e (4.15 b)

vW

V

m d
2

1
BH (4.16 a)

or

,dd

0

B

B

BH vW

V

m (4.16 b)

,meem WWW (4.17)

.d SrP (4.18)

Using the symbols above, relation (4.13) becomes:

V

i
me v
t

W

t

W

t

W
.dd

d

d
EJS (4.19)

By equating the expressions of 
t

W

d

d
 from relations (4.7) and (4.19), it follows:

t

W

t

W
v me

VV

SEJ dd (4.20)

or

.
d

d
d r

me

V

i P
t

W

t

W

t

W
vEJ (4.21)

In the relations above, only macroscopic quantities occur.
In the case of bodies moving with any velocity sv  relative to the reference frame, the

quantities J  and E  of relation (4.20) can be replaced by using relation (3.124) and
(3.118). Hence, it is possible to highlight terms of the form vs dvBJ  that represent
the work done in the unit of time, by the force produced by the magnetic field and which
acts upon the volume element vd . This work is different from zero if vectors J  and sv

are not in the same direction.
In the case in which microscopic quantities are considered, relations of the same type

will be obtained, with the mention that the macroscopic quantities have to be replaced by
the microscopic ones. If no special mention is made, it will be assumed that the
macroscopic energy is considered.

If the domain contains the whole space, and the electric charges, at rest or in motion,
that produce the electromagnetic field are at finite distance, then the state quantities on
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the surface  at infinity are zero and the term given by relation (4.18), in relation (4.19),
vanishes. The simple case in which the strength of the impressed electric field is zero,
hence 0iE , will be considered. In this case, relation (4.19) represents the law of
energy conservation for the physical system of domain , which can be expressed as
follows. The work of the forces produced by the electromagnetic field, done in the unit of
time, is equal to the decrease of the energy of the electromagnetic field, given by relation
(4.19), in the unit of time.

In the case in which the strength of the impressed electric field is different from zero,
the relationship of the sentence above has to be correspondingly completed.

The energy of the electromagnetic field emW  contains a term eW  that contains only

state quantities of the electric field, given by relation (4.15), and a term mW  that contains
only state quantities of the magnetic field, given by relation (4.16). For this reason, the
first term eW  of relation (4.17) is called energy of the electric field, and the second term

mW  of relation (4.17) is called energy of the magnetic field.
It is interesting to be added that if the energy of electromagnetic field of any domain is

expressed in two inertial reference frames, the obtained values are not equal each other
[11, p. 412].

As previously mentioned, the expressions of the macroscopic energy of the
electromagnetic field and of the microscopic energy have the same form. As shown in
Sub-section 1.6.6, by calculating the average values of the microscopic state quantities of
the electromagnetic field, the macroscopic state quantities of electromagnetic field will be
obtained. In the expression of the microscopic energy of electromagnetic field, the
product of two microscopic quantities occurs. Hence, it is no more possible to state that,
in general, by calculating the average value of this product, the above expression of the
energy in terms of the macroscopic state quantities will result. For this reason, in general,
the macroscopic energy will not be obtained by calculating the average value of the
microscopic energy.

The relation (4.19), for 0iE , expresses, generally, the law of energy conservation
of the physical system of the domain , which can be enounced as follows. The decrease
of the energy of the electromagnetic field in the unit of time is equal to the work done by
the forces produced by the electromagnetic field in the unit of time, plus a supplementary
term that depends only on the state quantities on the domain boundary surface, and which
represents the radiated energy through the surface in the unit of time.

The vector HE  is termed flux density vector of the electromagnetic energy or
Poynting vector.

According to relations (4.15 a), (4.16 a) and (4.17), the volume density of the

electromagnetic energy (for linear media) is:

.
2

1
BHDEemw (4.22)

The quantities

,d
V

j vP EJ (4.23)
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and

EJ
vt

W
p j dd

d2

(4.24)

represent the power and the volume density of the same power transferred to the bodies of
the domain, due to the action of the forces of electromagnetic nature of the field.

The relation (4.21) represents the theorem of electromagnetic energy, for linear media.
This theorem can be expressed as follows.

The decrease speed of the electromagnetic field energy of a domain bounded by a
closed surface, plus the power delivered by the sources of the impressed electric field is
equal to the sum of the power transferred to the bodies contained inside the domain (due
to the work of the forces of electromagnetic nature) and the flux of electromagnetic
power through the domain boundary surface.

It is no possible to give an exact and general expression of the macroscopic
electromagnetic energy in the case of substances with irreversible electric or magnetic
polarization because, in this case, the polarization process is accompanied by local non-
electromagnetic transformations.

The case of media containing substances with reversible polarization will be
considered. Also, it will be assumed that 0iE . In this case, relation (4.11) yields:

.ddddddd
VV

vvtW BHDESHE (4.25)

The last two terms of the right-hand side of relation (4.25) represent the increase of the
internal energy if the transformations take place at constant entropy, but it is more
convenient to consider transformations at constant temperature; then the respective terms
represent the increase of the free energy (12, tome 3, p. 222).

From relations (4.25) and (4.7), the following two relations can be obtained:

,ddd
d

d
d

d

d

00

v
tt

W

V

SS

BHDES (4.26)

,ddd
d

d
dd

00

v
t

v

V

SSV

BHDESEJ (4.27)

where the corresponding integrals are calculated starting from the values that characterize
the reference state denoted by 0S .

The reference state for the electromagnetic energy is generally characterized, by the
values zero of the state quantities of the electromagnetic field.

In order to bring a physical system from this reference state to another state (present
state or actual state, i.e., final state) that differs from the reference state only by the
quantities of the local state of the electromagnetic field, it is necessary to do, from the
exterior of the system, actions, the equivalent work of which must be equal to the
electromagnetic energy in present (final) state.



The Energy of the Electromagnetic Field 195

In accordance with the concept of field, the electromagnetic energy is distributed
throughout the space with a certain volume density that depends on the values of the local
state quantities of the electromagnetic field.

The reference state for calculating the macroscopic electromagnetic energy is chosen
according to the properties of the medium.

In media in which the couple of vector quantities E , D and H , B , respectively,
cancel simultaneously (i.e., in media with temporary reversible polarization or in vacuo),
the reference state is characterized by the following values of the state quantities 0E ,

0D , 0H , 0B .
In media with permanent polarization, the reference state is characterized by the

following values of the field state quantities: 0E , 0H , 0D , 0B . In the right-
hand side of expression (4.27), the first term represents the expression of the radiated
power; the first term within square brackets represents the energy of the electric field, and
the second term, within the same brackets, the energy of the magnetic field.

4.2. THE THEOREM OF IRREVERSIBLE TRANSFORMATION OF
ELECTROMAGNETIC ENERGY IN THE CASE OF
HYSTERESIS PHENOMENON

The case of bodies submitted to an electric or magnetic irreversible polarization, like
in Fig. 3.2 and Fig. 3.9 will be considered. In this case, a part of the energy is transformed
irreversibly in internal energy of the body. The volume density of the energy qw that is

transformed into internal energy of a body submitted to an electric or magnetic
polarization cycle, also termed loop, is proportional to the area of the loop, i.e., the area
of the hysteresis loop, as follows:

,dd
MCycleECycle

BHDEqmqeq www (4.28)

where the symbols Cycle E and Cycle M mean the cycle (also called loop) of electric and
magnetic polarization, respectively. In relation (4.28), each integral is proportional to the
area of the corresponding hysteresis loop.

The relation (4.28) expresses the theorem of irreversible transformation of

electromagnetic energy due to polarization loops. This theorem is also called Warburg

theorem [22, p. 464].

4.3. THE THEOREM OF IRREVERSIBLE TRANSFORMATION
OF ELECTROMAGNETIC ENERGY INTO HEAT

From the microscopic point of view, using a simplified model, when an electric
current flows in a metallic body, for instance along a conducting wire, the forces acting
upon the moving charge carriers of the current, i.e., the electrons, do an internal work.
The electrons cede energy by collision to the crystalline lattice of the body, and therefore



General Theory of the Electromagnetic Field196

the thermal agitation of ions and atoms of the crystalline lattice will increase and a
thermal effect occurs.

The expression of the electromagnetic power converted into heat can be obtained
using formulae (4.6), (1.108), (1.109). We shall consider the case in which no other
phenomenon exists, the electric current flowing in a conducting metallic body excepted.
The formulae (1.108) and (1.109) can be written in the form:

.JEl (4.29)

Formulae (4.6) and (4.29) yield:

.ddddd 22 tvtvW l JEJ (4.30)

We introduce the symbol JP  in relation (4.30) for the energy converted in the body,
per unit of time, i.e., the power, into heat and we get:

.dd
d

d
dd 2

2

vv
t

W
Pvp lJJ JEJ (4.30 a)

It results that the electromagnetic energy converted into heat per unit of time, i.e., the
power converted when an electric conductive body of volume V  carries electric
currents, is given by the expression:

,d2

V

J vP J (4.31)

and the volume density of this power is given by the relation:

.2
JJp (4.32)

The two last formulae express the integral form and the local form of the law of the

electro-heating effect or electro-calorific effect. This law is referred to as the Joule law
and is also known as the Joule-Lenz law.

The examined transformation is an irreversible one.
The law above can be derived in the framework of the microscopic theory by

calculating directly the collision forces and the corresponding work [23, Vol. II, p. 46].

4.4. THE THEOREM OF ELECTROMAGNETIC MOMENTUM

Let us consider a system of n  bodies or particles each of mass km  and velocity

).,..,2,1(, nkkv , electrically charged and which are moving in empty space, in any
electromagnetic field. Let us denote by  any closed surface that contains the system of
bodies or particles. We shall calculate the resultant force acting upon the system of
particles. In order to simplify the relations we suppose that the impressed field does not
exist, i.e., 0iE . If impressed fields existed, the final relation could be correspondingly
completed.
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If the considered system contains conducting bodies, the macroscopic quantities have
to be introduced. However, the form of relations will be the same.

We shall denote by rv  the velocity of the substance from the volume element, in

which the volume density of the electric charge is v .

By relation (4.2), for 0iE , we obtain:

,d v

V

rvv BvEF (4.33)

but according to relation (1.70), rv vJ . Hence, relation (4.33) can be written:

.d v

V

v BJEF (4.34)

By replacing the force by the derivative of momentum, it follows:

,d
d

d

1

vm
t

V

v

n

k

kk BJEv (4.35)

or

.

,d
d

d

1

BJEf

fv

v

V

n

k

kk vm
t (4.36)

By replacing the vector quantity J  with its expression from relation (3.86), it follows:

B
D

HEf
t

v curl

or

.curl B
D

HBEf
t

v (4.37)

The case of empty space, i.e., vacuum, will be considered; according to relations
(3.24), (3.105), we have ED 0  and HB 0 .

Relation (4.37) becomes:

.curl 00000
tt

v

H
EHEHHEf (4.38)

By using relation (3.53), it results that:

BEEEBHEf
t

v 00 curlcurl (4.39)
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or, by using relation (3.16), we obtain:

.curl
1

curldiv 0
0

00 BEBBEEEEf
t

(4.40)

Taking into account relation (3.31) applied to the present case in which HB 0 , we
can write:

.curldivcurldiv 0000 HEHHHHEEEEf
t

(4.41)

By replacing expression (4.41) into relation (4.36), we obtain:

,ddd
d

d
321

1 VVV

n

k

kk vvvm
t

fffv (4.42)

.

,curldiv

,curldiv

003

02

01

HEf

HHHHf

EEEEf

t

(4.43 a, b, c)

We shall examine the first integral of the right-hand side of relation (4.42):

.d11 v

V

fF (4.44)

This integral can be transformed into a surface integral. For this purpose, we multiply
both sides of relation (4.44) by any constant vector C , and we obtain:

.d11 v

V

fCFC (4.45)

The quantity under the last integral can be written:

.curldiv01 EECEECfC (4.46)

We shall take into consideration the vector relation (A.1.70) for this case:

.graddivdiv aCaaaCaaC

But, taking into account that the vector C  is constant, relation (A.1.74) yields:

.curlgrad aCaCaC

Hence:

.curldivdiv aCaaCaaaCaaC



The Energy of the Electromagnetic Field 199

But

.grad
2

1 2
aCaCa

Therefore:

aaCaCaaCaaC curlgrad
2

1
divdiv 2

or

.
2

1
graddivcurldiv 2

aCaaCaaCaaC

But, according to relation (A.1.70), taking into account that const,C  we have:

.
2

1
div

2

1
grad 22

aCaC

It follows:

.
2

1
divdivcurldiv 2

aCaaCaCaaC (4.47)

By using the vector relation (4.47), relation (4.45) becomes:

vv

V
V

d
2

1
divd 2

01 ECEECfC

or

.d
2

1
d

2

1
d 2

0
2

01 Sv

V

nCEnEECSECEECfC

It results that:

.d
2

1
d 2

001 Sv

V

nEEnECfC (4.48)

It follows:

.d
2

1
d 2

001 Sv

V

nEEnEf (4.49)

The second integral of the right-hand side of relation (4.42) can be analogously
modified:
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.d
2

1
d 2

002 Sv

V

nHHnHf (4.50)

The third integral of the right-hand side of relation (4.42) cannot be transformed into a
surface-integral.

By replacing relations (4.49) and (4.50) into relation (4.42), we obtain:
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(4.51)

Also, it follows:

,d
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kk nHEHnHEnEGv

(4.52)

and

,d
d

d

1

Sm
t

n

k

kk tGv (4.53)

where

VV

vv ,dd 00 HEgG (4.54 a)

,00 HEg (4.54 b)

.
2

1

2

1 2
0

2
000 nHEHnHEnEt (4.54 c)

The quantity G  is termed electromagnetic momentum or electromagnetic quantity of

motion, and the quantity g  is called volume density of the electromagnetic momentum.
The quantity t  is called density of the surface tension (also called the Maxwell stress

tensor) with two components, an electric one (which contains only electric state
quantities) and another magnetic one (which contains only magnetic state quantities).

The quantity given by relation (4.54 a) can be physically interpreted taking into
account the following considerations. Let us consider the system of bodies or particles
together with the corresponding electromagnetic field as representing an isolated physical
system. In this case, the surface-integral of the right-hand side of relation (4.53) vanishes.
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It follows that for the isolated system constituted by bodies or particles, the conserved
quantity is not the mechanical momentum, like in Classical Mechanics, but the sum of the
mechanical momentum and the quantity G , which can be interpreted as a momentum
associated with the electromagnetic field, called total momentum.

Relation (4.52) or (4.53) represents the theorem of electromagnetic momentum. It
follows that, for a system of bodies or particles together with the field, the sum of the
tensions on the surface  which contains this system is equal to the velocity of the

decrease of the total momentum (mechanical plus electromagnetic), i.e., 
n

k

kkm
1

Gv ,

located within the volume V .
A detailed and general analysis of the theorem of energy and electromagnetic

momentum (also called quantity of motion) for electrically and magnetically polarized
media can be found in works [59], [60].
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APPENDIX 1

VECTOR CALCULUS

In this Appendix, we shall recall some definitions and certain more used relations. At
the same time, certain more important parts of the proofs will be given.

A.1.1.  VECTOR ALGEBRA

A quantity that can be characterized by a single number, in any system of units, is
called scalar quantity.

The most typical scalar is an abstract number. Other examples: temperature, mass,
density, energy.

A vector is a quantity characterized by a number, termed its magnitude, expressed in
certain units of measure, and a certain direction in space that includes a certain orientation
(sense). There are also other definitions of vector quantities [54].

The simplest example of a vector is constituted by a straight-line segment denoted AB

having its magnitude equal to its length (i.e., the length of AB ) and a direction oriented
from the point A  towards the point B  as shown in Fig. A.1.1.

Other examples of vector quantities: the force, the velocity (speed), the acceleration. A

vector may be denoted by one of the following symbols: AB , a , a or a . We shall use
the second one. The magnitude of a vector is called the modulus of the vector and is
denoted:

.aa (A.1.1)

According to their application point, the vectors can be grouped into three categories:
free vectors, sliding vectors and bound vectors.

The free vectors have a given magnitude and direction, but their application point is
arbitrary, for instance: the moment of a couple of forces.

The sliding vectors have a given magnitude and direction, but their application point
can be arbitrarily chosen along a given straight line called support straight line the
direction of which coincides with that of the vector, for instance a force.

Fig. A.1.1. Representation of a vector.

A

B
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The bound vectors have a given magnitude, direction, and application point. For
instance, a vector field, (field of vectors) is a field of bound vectors.

For the analytical definition of a vector in space, it is necessary to know the following
data. For a free vector: 3 quantities, namely its projections along the axes of co-ordinates.
For the sliding vectors: 5 quantities, the projections along the axes of co-ordinates and the
parameters of the direction of the support straight line. For the bound vectors: 6
quantities, the projections along the axes of co-ordinates and the co-ordinates of the
application point.

The vector having its magnitude equal to unity is called unit vector. The unit vector of
any vector has its magnitude equal to unity, the same direction as the considered vector,

and has no physical dimension. The unit vector of a vector a  can be expressed as 
a

a
.

Two vectors a  and b  are equal to each other if their magnitudes are equal and their
unit vectors have the same direction.

A vector can be expressed in a three-orthogonal rectilinear system of co-ordinates
(Cartesian system of co-ordinates) in the form:

,zyx aaa kjia (A.1.2)

where the quantities i , j , k  are the unit vectors of the axes of co-ordinates Ox , Oy ,

Oz , and the quantities xa , ya , za  are the components of the vector a  along the axes of

co-ordinates Ox , Oy , Oz .
a. The scalar product ba  of vectors a  and b :

,zyx aaa kjia (A.1.3)

zyx bbb kjib (A.1.4)

is:

.,cos zzyyxx babababa baabba (A.1.5)

b. The vector product ba  of vectors a  and b  is the vector perpendicular to vectors
a  and b  and having its modulus equal to the area of the parallelogram constructed on
these vectors, hence:

;,sin baba ba (A.1.6)

;xyyxzxxzyzzy

zyx

zyx babababababa

bbb

aaa kji

kji

ba (A.1.7)

.abba (A.1.8)

The orientation (sense) of the vector ba  is determined from the condition that the
vectors a , b  and ba  to constitute a right-handed system, like in Fig. A.1.2.
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Fig. A.1.2. The vector product bac .

The three-orthogonal rectilinear systems of co-ordinates utilized in the present work
are right-handed co-ordinates systems.

The direction of the vector bac can be obtained by means of the right-handed

screw rule as follows: The right-handed screw will be placed perpendicular to the plane
formed by vectors a and b their points of application being brought to the same point.
The screw fixed to the vector a will be turned so that the vector a will turn towards the
vector b along the shortest way. The direction in which the right-handed screw moves is
just the direction of the vector bac .

c. The triple scalar product (the scalar product of three vectors), called also mixed

product (of three vectors) of vectors a , b , c is a scalar, numerically equal to the volume
of the parallelepiped constructed on these vectors:

,

zyx

zyx

zyx

ccc

bbb

aaa

bacacbcba (A.1.9)

and it also follows:

.bcaabccabcba (A.1.9 a)

As it can be seen, the expressions (A.1.9) and (A.1.9 a) can be deduced one from the
other by circular permutations of letters a , b and c disposed, for instance round a circle,
in the sequence of the trigonometric sense.

d. The triple vector product (of three vectors), also called double vector product (of
three vectors) of vectors a , b , c  is:

.baccabcba (A.1.10)

a

b

a +b
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e. Calculation of the derivative of a vector with respect to a parameter. If the vectors
are functions of a scalar variable, by applying the usual rules of differentiation, it follows:

,
d

d

d

d

d

d

ttt

ba
ba (A.1.11 a)

,
d

d

d

d

d

d
a

a
a

ttt
(A.1.11 b)
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ttt
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(A.1.11 c)
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d

d

d

d

ttt

b
ab

a
ba (A.1.11 d)

A.1.2.  VECTOR ANALYSIS

A.1.2.1.  Scalar and Vector Fields

By a scalar or a vector field, is meant a domain of space where a scalar or a vector
quantity is associated with every point. Each point of space is determined by the position
vector. Therefore, the characterization of a scalar or vector field is equivalent with the
adoption of a scalar function r  or a vector function ra  that are depending on the
position vector r . A scalar field and a vector field can also be referred to as a field of
scalars and a field of vectors, respectively. For scalar and vector, the plural form has been
used since, at every point of the considered domain, there is a certain scalar and vector,
respectively. The functions r  and ra  can depend apart from the position vector r ,

also on other scalar arguments, for example on time. The functions r  and ra  are
considered continuous and differentiable with respect to all arguments. We shall consider
the scalar function zyx ,,r . Examples of such fields: the temperature field of a
body non-uniformly heated, the density field of a non-homogeneous body, the field of an
electrostatic potential, the field of a magnetic potential.

A domain is called connected domain, if any two points belonging to the domain can
be joined by a continuous curve that belongs in totality to this domain.

A domain is called simply connected domain, if any closed curve that belongs in
totality to this domain can be reduced to a single point by continuous deformations
without overstepping the domain. The domains that have not this property are called
multiply connected domains (doubly connected, triply connected, etc.).

Examples of simply connected domains: the interior of a sphere, the interior of a
cylinder of finite length, the exterior of a cylinder of finite length.

Examples of multiply connected domains: the exterior of a cylinder of infinite length,
the interior of a torus.
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A.1.2.2. The Derivative of a Scalar Function in Regard to a Given
Direction

We shall consider a spectrum composed by the lines of field, represented by
continuous lines, and traces of potential surfaces, represented by dashed lines, like in
Fig. 1.3, where the direction (sense) in which we have chosen to travel the lines of field
has been represented by an arrow.

Let us consider that the scalar function has the value 0 at any point 0M and after

one displacement sMM 0s along the direction of a vector s , the point goes from the

point 0M  to the point sM , where the scalar has the value s , like in Fig. A.1.4.
The increment of the quantity , after this displacement, is:

.0s

The limit of the ratio of this increment to the magnitude of the displacement s is

denoted by
s

and is called the derivative of the scalar at the point 0M in regard to

the direction s :

.lim 0

0 ss

s

s
(A.1.12)

The value of this derivative depends on the direction of the vector s .
For this reason, the derivative of a scalar function along a given direction must not be

confused with a usual partial derivative with respect to any variable s .

Fig. A.1.3. Plane section perpendicular
to a configuration with plane parallel
symmetry, spectrum: lines of field –

continuous lines; traces of equipotential
surfaces – dashed lines. 0

0

0

0 2

M

M 1

0
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Fig. A.1.4. Explanation to the
calculation of the derivative of a
scalar function with respect to

a certain direction.

In order to study the dependence of the value of the derivative
s

on the direction of

differentiation s , we shall consider the points of the field at which the function has the

same value for instance 0 . In the general case, the set of these points forms a surface
that is termed level surface or equipotential surface. This surface has the equation:

.,, 0zyx (A.1.13)

Fig. A.1.3 shows one section made by a plane through a set of equipotential surfaces
corresponding to certain values of the function equal to 0 , 0 , 20 .

A.1.2.3. The Gradient

We shall denote by n the unit vector of the normal to the level surface 0 , at a

point 0M of Fig. A.1.4, oriented in the direction assumed as corresponding to the

ascending values of the function . We shall show that in the case, in which the value of

the derivative
s

with respect to the direction of this normal is known, it is possible to

calculate the value of the derivative of the scalar function with respect to any direction
s . We consider the equipotential surface having the ordinal number 1 that passes through
the point sM situated on the direction s , like in Fig. A.1.4.

Let us consider two neighbouring points zyxM ,,0 and zzyyxxM ,,0 ,

both on the equipotential surface const,, 0zyx . Then, we have:

,0,,,, zyxzzyyxx (A.1.14)

both functions of the left-hand side having the same value, since they are taken for two
points belonging to the same equipotential surface.

Therefore, the expression of the total (exact) differential of the function 0 ,

calculated at any point zyxM ,,0 , as the three quantities x , y , z tend to zero, is:

0M

M 1

0

sM s

n s

1

0



Appendix 1.  Vector Calculus. 211

.0ddd z
z

y
y

x
x

(A.1.15)

The last expression can be considered as the scalar product of two vectors:

,
zyx

kjia (A.1.16 a)

.ddd zyx kjib (A.1.16 b)

Since the scalar product of the two vectors is zero, it follows that the two vectors are
perpendicular to each other. The second one is a very small vector contained by the
surface const.,, 0zyx Therefore, the first vector is perpendicular to the second

one. The second vector, with the origin at the point zyxM ,,0 , can have any direction,

provided it remains contained by the surface const,, 0zyx . According to
relation (A.1.15), it follows that the first vector is perpendicular on the surface

const,, 0zyx  at the point zyxM ,,0 ; hence it has the direction of the positive
normal to the surface at the same point. The positive direction is considered that along
which the value of the function zyx ,,  is assumed to increase. This vector, denoted
above by a , is called the gradient of the function . The usual symbol is:

.grad
zyx

kji (A.1.17)

Let us calculate the derivative of the function zyx ,,  at the same point zyxM ,,0

like above along any direction s . The expression of this derivative is:

,lim 0

0 s

MM

s

s

s
(A.1.18 a)

where:
,sss

(A.1.18 b)

,,, 0zyxM r
(A.1.18 c)

.,, sss zzyyxxM srr (A.1.18 d)

Therefore:

,
,,,,

lim
0 s

zyxszsysx

s

zyx

s
(A.1.18 e)

where the vector s  is the unit vector of s .
By expanding in a series and retaining only the small quantities of the first order, we

get:
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.
d

d

d

d

d

d

s

s

zs

s

ys

s

xs

zyx (A.1.19 a)

Therefore:

.sksjsi
zyxs

(A.1.19 b)

Hence:

.grad skjikji zyx sss
zyxs

(A.1.19 c)

From the last relation, it follows that the greatest value of the left hand-side, at a point,
of this relation is obtained in the case in which the vector s  has the direction of the
gradient vector, hence the one of the normal at the same point of the surface, thus ns .
Therefore:

;grad n
n

.grad n
n

(A.1.20 a, b)

Therefore:

.sn
ns

(A.1.21)

It follows that the greatest value of the derivative of a function of point is obtained if
the derivative of that function is calculated along the direction of the positive normal to
the equipotential surface that passes through the considered point. Otherwise, the value
would be smaller, because the scalar product sn  is a cosine.

The vector n
n

 oriented along the normal to the equipotential surface in the

direction of the increasing values of the function , as said above, is called the gradient

of the scalar function  and is expressed by the relation above.
Therefore, the derivative of the function  with respect to the direction s  is equal to

the projection of the vector grad  along the direction s .
In a three-orthogonal rectilinear system of co-ordinates, according to relations

(A.1.20) and (A.1.21), it follows:

,grad;grad;grad
zyx

zyx (A.1.22 a, b, c)

hence:

.grad
222

zyx
(A.1.22 d)
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From expressions (A.1.20 a) and (A.1.20 b), it follows that the vector grad does not
depend on the choice of the system of co-ordinates; hence it is one invariant with respect
to the system of co-ordinates.

The gradient of a scalar function may be also expressed in other types of systems of
co-ordinates. From relation (A.1.21) it follows that the direction along which the scalar
function  has the most rapid increase is the direction of the normal n  to the level
surface passing through the point under consideration.

If the scalar field  is known, then at every point of this field, the vector grad  can
be determined and it is perpendicular to the level surfaces of this field. Let us consider a
set of lines perpendicular to the level surfaces, i.e., a set of orthogonal trajectories of the
level surfaces; at every point of the field, the direction of the gradient will coincide with
the direction of one orthogonal trajectory. For this reason, the orthogonal trajectories of
the level surfaces are termed gradient lines or lines of field.

If the level surfaces are represented like in Fig. A.1.3 so that the value of the scalar
function  on the respective consecutive surfaces should be 0 , 0 , 20 , it

is possible to write for  small enough:

,grad nn
n

(A.1.23)

and in the case in which  is constant:

.
const

grad
n

(A.1.24)

Therefore, if we represent a level surface, with a constant variation of the scalar
function between two neighbouring surfaces, the density of the level surfaces gives an
approximate indication about the numerical value of the gradient. Therefore, in a region
of space in which the level surfaces are denser, the value of the gradient is greater.

At the same time, it is important to be noted, that the calculation of the derivative of a
scalar  that is a function of another scalar , with respect to any variable, gives:

.gradgrad ss
ss

(A.1.25)

Hence, in the case of the gradient, the usual rule of the calculation of a derivative of a
function of function is maintained.

A.1.2.3.1. The Gradient of the Magnitude of the Position Vector

The magnitude of the position vector r  is a scalar function that is depending on the
position of two points: The origin and the extremity (end) of the position vector. The
former of these points is called source point and the latter observation point or field point.

Two cases will be considered:  1. The calculation of the gradient with respect to the
field point, say N , denoted rNgrad .  2. The calculation of the gradient with respect to

the source point, say O , denoted rOgrad .
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We shall take into account that the function under consideration is:

.,, 2

1
222

ONONONNNN zzyyxxrzyx
(A.1.26)

Likewise, let us denote:

.ONONON zzyyxx kjir (A.1.27)

In the first case, we have to calculate the derivative with respect to the co-ordinates of
the point N . We obtain:

.grad
r

rN

r
(A.1.28)

In the second case, we have to calculate the derivative with respect to the co-ordinates
of the point O . We obtain:

.grad
r

rO

r
(A.1.29)

A proof of the relations above, based on geometrical considerations for the calculation
of the gradient is also possible [23, Vol. I, p. 461].

A.1.2.4.  The Flux of a Vector through a Surface

Let us consider the surface-integral of a field vector ra  through any open or closed
surface.

The flux d  of any vector a  of a field of vectors ra , through the surface element
Sd , is the quantity given by the expression:

,ddd,cosdd Sanana SSaSan (A.1.30)

where the quantity a  is the value of the vector at a point of the surface element Sd  (e.g.,
at its middle), the quantity na  is the component of the vector a  along the direction n ,
and the normal n  to the surface element Sd  has the positive direction. In the case of any
closed surface , the direction of the normal is considered as positive if it is oriented
outwards the surface, like in Fig. A.1.5 a. In the case of a simply connected open surface
S , for a travelling sense of the closed curve  by which the surface is bounded, the
normal is considered as positive if it is associated with the sense of travelling, according
to the right-handed screw rule, like in Fig. A.1.5 b. The flux of a vector a  through a
surface S , closed as well as open, like in Fig. A.1.5 c, is the sum of the fluxes through
the surface elements and it is given by the relation:

.dd

;ddd

S

SSa

SSS

n

nS

Sana

(A.1.31)
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Fig. A.1.5. The flux of a vector through a surface: a – the positive normal in
the case of a closed surface; b – the positive normal in the case of an open surface;

c – explanation to the calculation of the flux through a surface.

A.1.2.5. The Gauss-Ostrogradski Theorem.  The Divergence of a Vector.

Let us consider the surface-integral of the vector a  through a closed surface situated
in a field of vectors ( )ra :

.dd ∫∫
ΣΣ

⋅=⋅ SanSa (A.1.32)

The surface-integral of relation (A.1.32), where Σ  is a closed surface, can be transformed
into a volume integral.

Σ

a b

c

n

n

n

a

Γ

Γ

S Γ

S Γ∆S
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Fig. A.1.6. The flux of a vector field through a parallelepiped surface.

The transformation relation represents the GAUSS-OSTROGRADSKI theorem (formula).
Let us consider this transformation for a right infinitely small parallelepiped of surface

v . A field of vectors raa is considered. We shall calculate the surface-integral of
the normal component of vector a over the surface v . The surface-integral will be
calculated for the six faces of the parallelepiped with reference to Fig. A.1.6.

We shall denote by 0x , 0y , 0z the co-ordinates of the centre of the parallelepiped.
Firstly, we consider the pair of faces perpendicular to the Ox - axis indicated by the
ordinal numbers 1 and 2. The quantity 000 ,, zyxa represents the vector a at the centre
of the parallelepiped. The flux of the vector a  through the surface 2 is:

,,,
2
1

00022 zyzyxxaSa xx (A.1.33 a)

where the quantity xa2 is the mean value (average) of the component along the Ox - axis
of the vector na  on the face with the ordinal number 2, or the value at its middle.

The flux of the vector a  through the face 1 is:

,,,
2
1

00011 zyzyxxaSa xx (A.1.33 b)

where the quantity xa1 is the mean (average) value of the component along the Ox - axis
of the vector na  on the face with the ordinal number 1, or the value at its middle.

The total flux through the faces 1 and 2 is:

x

y
y

O

z

x

z

M x y z( , , )

nn

a

0 0 0



Appendix 1.  Vector Calculus. 217

,,,
2

1
,,

2

1
000000 zyzyxxazyxxa xx (A.1.33 c)

and this sum, established with a precision up to small quantities of the third order, is
equal to:

,
0

21 zyx
x

ax
(A.1.33 d)

where the index 0 shows that the derivative is calculated at the centre of the
parallelepiped.

For the pairs of faces perpendicular to the Oy  and Oz  axes, and indicated by the
ordinal numbers 3, 4, and 5, 6, respectively, the following sums of fluxes are obtained:

zyx
y

ax

0
43 (A.1.33 e)

and

zyx
z

ax

0
65 . (A.1.33 f)

Summing up, side by side, the preceding expressions, the total flux is obtained:

.d zyx
z

a

y

a

x

a
Sa zyx

n

v

(A.1.34)

The sum within parentheses is called the divergence of the vector a  or the divergence
of a  and is denoted:

.div
z

a

y

a

x

a zyxa (A.1.35)

The volume element will be denoted by:

.dddd zyxv (A.1.36)

With this symbol, the expression of the flux through the surface of an infinitely small
rectangular parallelepiped can be written:

.ddivd va (A.1.37)

We shall consider a domain of volume V  bounded by any closed surface . This
domain can be decomposed by three sets of parallel planes, perpendicular to each other,
in a set of rectangular infinitely small parallelepipeds. The marginal volume elements
neighbouring the surface  are not in general of parallelepiped form. However, by a very
fine decomposition, it is possible to make the marginal elements to coincide with the
required precision with the surface . Calculating the flux of the vector a  through the
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surface of each parallelepiped inside the surface  and adding up, side by side, the
obtained expressions, it follows:

,ddivddivd vv

VVV

aa (A.1.38)

the summation is extended over all volume elements, and namely over their surfaces.
In the sum 

V

d , the flux of vectors through each internal surface occurs twice,

namely the first time in the calculation of the flux through the surface of the
parallelepiped situated on one side of this face, and the second time, in the calculation of
the flux through the surface of the parallelepiped situated on the other side of this face.
Since the positive normal of the considered face belonging to the first parallelepiped is of
opposite direction with regard to the positive normal of the same face belonging to the
second parallelepiped, the fluxes through this surface are of opposite sign. Therefore, all
the terms of the sum above, which refer to the internal faces, cancel each other and the
sum reduces to the sum of fluxes of vectors a  only through the marginal surfaces of the
parallelepipeds that coincide with the elements of the surface .

Hence:

.ddivd v

V

aSa (A.1.39)

For the relation (A.1.39) to be valid, the vector function must be continuous and
differentiable at all the points of the domain V .

The relation (A.1.39) expresses the Gauss-Ostrogradski theorem and can be enounced
as follows: The flux of a vector a  through any closed surface  is equal to the volume
integral of the divergence of the same vector over the volume bounded by this closed
surface.

If the surface  is so small that at all points of its inside the quantity adiv  may be
assumed as constant, then, in relation (A.1.39) the quantity adiv  can be placed before the
integral sign.

Hence:

,div va (A.1.40)

where the quantity v  represents the volume of the domain V . It results that:

,

d

limdiv
0 v

v

v

Sa

a
(A.1.41)

and this expression can be considered as the definition of the divergence of a vector.
From expression (A.1.41), it results that adiv  does not depend on the choice of the
system of co-ordinates.

The divergence of a vector can be expressed also in other systems of co-ordinates [12,
tome I, p. 44].
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A.1.2.6. The Line-integral of a Vector along a Curve.  Circulation.

Let us consider the line-integral around an open curve C or a closed curve situated
in a field of vectors ra . The curve will be decomposed into very small line elements

l the direction of which coincide with the travelling sense considered as positive of the
curve. We shall express the scalar product of each element ld and the vector a at the
corresponding point:

.dd lalla (A.1.42)

The limit of the sum of the products of relation (A.1.42) along the curve is called the
line-integral of the vector a  along the curve C :

,dd
C

l

C

lala (A.1.43)

where la  is the component of the vector a  along the direction of ld .
The line-integral of the vector a along the curve C is referred to as the circulation of

vector a along that curve. That curve may be an open curve or a closed one [52, p. 138],
[54, p. 123].

A.1.2.7.  The Stokes Theorem.  The Curl of a Vector.

Let us consider the line-integral of the vector a around a closed curve situated in a
field of vectors ra :

.dd lalla (A.1.44)

The line-integral of relation (A.1.44), where is a closed curve, can be transformed
into a surface-integral. The transformation relation represents the STOKES theorem.

Let us consider this transformation for an infinitely small rectangle. A field of vectors
raa is considered. We shall calculate the line-integral of the vector a along the

contour of a rectangle, perpendicular to the Oz - axis, hence in the plane xOy , like in Fig.
A.1.7. We have to calculate the line-integral decomposed for the four sides of the
rectangle with reference to Fig. A.1.7.

The travelling sense along the curve has been chosen associated, according to the
right-handed screw rule, with the positive direction of the Oz - axis, hence, in the figure,
the counter-clockwise sense.

We shall denote by 0x , 0y , 0z  the co-ordinates of the centre of the rectangle.

The quantity 000 ,, zyxa represents the vector a at the centre of the rectangle. The
line-integral of the vector a  along the side 1 is:

,,
2

1
, 00011 xzyyxaaC xx li (A.1.45 a)
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Fig. A.1.7. Circulation of a vector around a curve  of a rectangle.

where the quantity xa1 is the mean value of the component along the Ox - axis of the
vector a  on the side having the ordinal number 1, or the value at its middle.

The line-integral along the side 3 is:

,,
2
1, 00033 xzyyxaaC xx li (A.1.45 b)

where the quantity xa3 is the mean value of the component along the Ox - axis of the
vector a  on the side having the ordinal number 3, or the the value at its middle.

The line-integral along the sides 1 and 3 is:

,,
2
1,,

2
1, 00000031 xzyyxazyyxaCC xx (A.1.45 c)

and after expanding in a series, it results that the sum including the small quantities of the
second order, is equal to:

,
0

31 yx
y

a
CC x (A.1.45 d)

where the index zero denotes that the derivative is calculated at the centre of the
rectangle.

The line-integral along the sides 2 and 4 is:

x

O x

a

1

z

y

3

24
M (x y z, , )

y

A B

CD

0 0 0
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.
0

42 xy
x

a
CC

y
(A.1.45 e)

By summing up, side by side, the relations established above, the following expression
of the integral is obtained:

.
0

yx
y

a

x

a
C xy

(A.1.45 f)

It can be added that the quantity Cd  is not a total differential of C . We consider the
face having the normal n  parallel with the Oz - axis. Denoting the area of the rectangle
by yxSzd , i.e., after passing to limit, it follows:

.dd z
xy

S
y

a

x

a
COz lan (A.1.46 a)

Analogously, for rectangles perpendicular to the other two axes, the following
relations are obtained:

,dd x
yz S

z

a

y

a
COx lan (A.1.46 b)

.dd y
zx S

x

a

z

a
COy lan (A.1.46 c)

The combinations of the derivatives of the components of the vector a  of expressions
(A.1.46 a, b, c) are considered to be the components of a vector called curl or rotational of
the vector a  or curl of a  and denoted acurl .

In this case, it follows:

,curl
z

a

y

a yz
xa (A.1.47 a)

,curl
x

a

z

a zx
ya (A.1.47 b)

.curl
y

a

x

a
xy

za (A.1.47 c)

The vector acurl  can be put in the form of a symbolic determinant:
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.curl

zyx aaa

zyx

kji

a (A.1.48)

By the aid of the symbol (A.1.48), the expressions (A.1.46 a, b, c) can be written in
the form:

,dcurld SaC (A.1.49)

where the unit vector n of the vector Sd is the positive normal to the surface Sd ,
associated with the travelling direction along the contour of the surface, according to the
right-handed screw rule. Making successively the vector n parallel with the axes Ox ,
Oy , Oz , the expressions (A.1.46 a, b, c) are obtained. Hence, for a rectangle in each of
the three positions, relation (A.1.49) is valid.

A simply connected surface bounded by a closed curve is considered. Let us take three
sets of parallel planes, each plane of a set is parallel to one plane of the three planes of the
three-orthogonal rectilinear system of co-ordinates. The planes of each set are distanced
by the steps x , y , z , respectively. If only the planes nearest the surface are
considered, a surface constituted only by rectangles will be obtained. If the steps are very
small and tend to zero, the surface constituted by rectangles tends to the given surface.

But for each rectangle of the surface formed by rectangles, relation (A.1.49) is valid.
The relation (A.1.49) will be written for each rectangle, and these relations will be
summed up, side by side. At each margin of two neighbouring rectangles, the common
side will be travelled twice in opposite directions, like in Fig. A.1.8, so that the sum

la d  will contain the two terms of the form:

B

A

la d      and ,d
A

B

la (A.1.50)

the sum of which is zero. Hence, the sum la d becomes equal to the sum of terms
corresponding only to the external boundary of the surface, hence to the integral of the
vector a  along the contour of the surface. It follows:

.dcurld
S

C Sala (A.1.51)

For the relation (A.1.51) to be valid, the vector function a must be continuous and
differentiable at all the points of the surface S . Relation (A.1.51) expresses the theorem
of transformation of a line-integral into a surface-integral, called Stokes theorem that can
be enounced as follows: The circulation of an arbitrary vector a along a closed curve
is equal to the flux of the curl of this vector through the surface S bounded by the curve

.
From relation (A.1.51), it follows that in the case in which S  is a closed surface:
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Fig. A.1.8. The travelling of a vector
along the elements of an open

surface bounded by a curve of any form.

S

,0dcurl Sa (A.1.52)

because if S  is a closed surface, the contour reduces to a point and:

.0d la (A.1.53)

In the case in which S is a surface small enough for to be considered plane, and for
all its points the quantity acurl to remain constant, the quantity acurl may be brought
out of the integral sign. Hence:

,curl SaC (A.1.54)

where S  represents the area of the surface S .
In this case, relation (A.1.54) can be written:

,curl SC na (A.1.55)

where the quantity nacurl is the component of the vector a along the positive normal

to the surface S . Therefore:

.

d

limcurl
0 SS

n

la

a
(A.1.56)

From expression (A.1.56), it results that the vector acurl does not depend on the
choice of the system of co-ordinates, hence it is an invariant with respect to the system of
co-ordinates.

The curl of a vector can also be expressed in various types of systems of co-ordinates
[12, tome I, p. 44].
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A.1.2.8. Nabla Operator. Hamilton Operator.

Previously it has been established that the gradient of a scalar function is a vector

oriented along the direction of the maximal increase of the function , with the
magnitude equal to the derivative of the function along this direction. Among the various
symbols of the gradient, one of the most utilized is .

The sign is read nabla or also del and it denotes a differential operator. With this
symbol, it is possible to write:

.
zyx

kji (A.1.57)

From this expression, it can be seen that the operator can be considered as a
differential operator:

,
zyx

kji (A.1.58)

that, being applied to the scalar function , gives the quantity grad . This operator can
be considered as a symbolic vector and it is also called the Hamilton operator.

A.1.2.9. The Derivative of a Vector along a Direction

Let us consider an arbitrary point rM in a field of vectors ra like in Fig. A.1.9.

Let srM be another point in the same vector field. In particular cases, the arbitrary
point M can be considered on a curve the tangent of which at the point M has the
direction of the unit vector s , but it is not a condition. The unit vector s  can be written:

.zyx sss kjis (A.1.59 a)

Fig. A.1.9. Explanation to the
calculation of the derivative of a vector

along a given direction.
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The limit of the ratio

s

rasra
(A.1.59 b)

as 0s , is termed the derivative of the vector a  along the direction of the unit vector
s  at the considered point M  and is denoted:

.lim
0 ss s

rasraa

(A.1.60)

Introducing the co-ordinates, we obtain:

.
,,,,

lim
0 s

zyxzzyyxx

s s

aaa
(A.1.61 a)

By expanding in a series, and retaining only the small quantities of the first order, we
obtain:

,
d

d

d

d

d

d

s

z

zs

y

ys

x

xs

aaaa
(A.1.61 b)

where

.
d

d
;

d

d
;

d

d
ksjsis zyx s

s

z
s

s

y
s

s

x
(A.1.61 c)

It follows that:

.
zyxs

a
ks

a
js

a
is

a
(A.1.62)

Since we have 1s , the last relation is the scalar product as  of the following

scalar operator:

zyx
ksjsiss (A.1.63 a)

and the vector a , and gives just 
s

a
, so that the symbol as  appears as justified.

Now, the more general case is examined, in which in expression s  instead of the
unit vector s , any vector v  will be considered. Hence, the scalar operator obtained by
performing the scalar product of the arbitrary vector vsv  and the symbolic vector ,
is:
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.

,

v

z
v

y
v

x
v

sv

ksjsisv
(A.1.63 b)

Therefore:

,
zyx

v
a

ks
a

js
a

isav (A.1.63 c)

.;; kskvjsjvisiv vvvvvv zyx (A.1.63 d)

Hence:

z
v

y
v

x
v zyx

aaa
av (A.1.64)

or, in another compact form:

.

,

v

s
v

sv

a
av

(A.1.64 a)

In the case in which 1v , the operation above represents the derivative of the vector
a  with respect to the direction of the vector v . Hence, the expression av  represents
the derivative of the vector a  with respect to the direction of the vector v  multiplied by
the modulus of the last vector.

A.1.2.10. Expressing the Divergence and the Curl of a Vector
by Means of the Nabla Operator

The divergence can also been expressed, formally, as the scalar product of the
symbolic vector  by the vector a :

.zyx aaa kjia (A.1.65 a)

By performing this product according the formula of the scalar product of two vectors

,zzyyxx abababab (A.1.65 b)

and putting

,;;
z

b
y

b
x

b zyx (A.1.65 c)

it follows:
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.
z

a

y

a

x

a zyxa (A.1.66)

Analogously, the curl of a vector can be considered as the vector product of the
symbolic vector  by the vector a :

,curl

zyx aaa

zyx

kji

aa (A.1.67 a)

.curl
y

a

x

a

x

a

z

a

z

a

y

a xyzxyz kjiaa (A.1.67 b)

A.1.2.11. Differential Operations by the Nabla Operator

The differential operator:

zyx
kji (A.1.68)

is constituted by three partial derivatives relatively to the axes of co-ordinates. In the case
in which it is applied to a product, the operation is the same as in the case of the
calculation of the derivative of a product. The first term will be calculated considering the
first factor as variable and the other factors as constants. The second term will be
calculated considering the second factor as variable and the other factors as constants, etc.
In the case of the application of the operator , always when confusions could appear,
all the vectors that will be considered momentary to be constant, will be denoted by the
index c  (constant). The computing method by the operator  can be explained as
follows. All vectors occurring in the expression under consideration, excepting one
considered as variable are supposed as being constant. Then, the expression will be
transformed, so that, all constant vectors may be arranged before the operator , and the
one considered as variable, after this operator. If from the point of view of Vector
Algebra two variants are valid, the variant giving a result different from zero will be kept.

Sometimes, the derivation of the relations by using the operator , due to its formal
character, could be considered as being rather a mnemonic rule than a rigorous proof. For
this reason, the usage of the symbolic operator requires certain precaution.
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Derivatives of Products

1.

.gradgradgrad

;grad cccc

(A.1.69)

2.

.graddivdiv

;div

aaa

aaaaaa cccc

(A.1.70)

3.

.gradcurlcurl

;

curl

aaa

aa

aa

aaaa

cc

cc

cc

(A.1.71)

4.

.curlcurldiv

;

div

baabb

abbaabab

abba

babababa

cccc

cc

cc

(A.1.72)

5. ;grad cc babababa (A.1.73 a)

but

.

;

BCABCABAC

BACCABCBA

(A.1.73 b)

By substituting

;;; bBaAC c (A.1.73 c)

it follows

.bababa ccc (A.1.73 d)

Analogously:

.ababba ccc (A.1.73 e)

Therefore:

.curlcurlgrad

;

abbaabbaba

abbaabbaba

(A.1.74)
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6. ,curl cc babababa (A.1.75 a)

but

.CABCABBACCABCBA (A.1.75 b)

By substituting

;;; bCaBA c (A.1.75 c)

it follows:

.bababa ccc (A.1.75 d)

Analogously:

.ababba ccc (A.1.75 e)

Therefore:

.divdivcurl

;

baababbaba

abbaabbaba

(A.1.76)

The utilization of the nabla operator simplifies much the calculation of the derivatives

of the first, second and higher orders of scalar and vector quantities. In this way,
important relations of higher orders can be obtained as follows.

Analogously to the relations of Vector Algebra as 2bbb , for b , the
following relations can be obtained:

;graddiv 2 (A.1.77 a)

but

.2

zzyyxx
(A.1.77 b)

Therefore:

.graddiv
2

2

2

2

2

2
2

zyx (A.1.78)

By applying relation (A.1.78) for 
r

1
, where r  is the modulus of the position

vector, it follows:

1.

222

2 ;0
1

zyxr

r (A.1.79)
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and

.
r

r
r

(A.1.80)

2.
.divgrad

z

a

y

a

x

a

zyx

zyxkjiaa (A.1.81)

3.
.

2

2

2

2

2

2
2

zyx

aaa
aa (A.1.82)

4.
.grad

222
22

zyx
(A.1.83)

Analogously to relations of Vector Algebra:

5. abbabbabbabbbb ,0,0

and for b , the following relations are obtained:

;0gradcurl (A.1.84)

;0curldiv aa (A.1.85)

.divgrad 2
aaaaa (A.1.86)

All relations above can be verified by direct calculation, using the co-ordinates of a
three-orthogonal rectilinear system of reference.

A.1.2.12. Integral Transformations Using the Nabla Operator

1º Scalar integral relations. GREEN theorem. In relation (A.1.39) that expresses the
Gauss-Ostrogradski theorem:

,dddiv Saa v

V

the following substitution will be performed:

,grada (A.1.87 a)

where  and  are two arbitrary scalars and:

.b (A.1.87 b)

It follows:

.graddivdiv cccc bbbba (A.1.87 c)
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Hence:

.gradgradgraddivdiv a (A.1.87 d)

Therefore:

.dgradddddiv 2 Svv

VV

nSaa (A.1.87 e)

But:

.grad
n

n (A.1.87 f)

It follows:

.dd2 S
n

v

V
(A.1.88)

Analogously, replacing the quantities  and  by each other, it follows:

.dd2 S
n

v

V
(A.1.89)

By subtracting the two last relations, it follows:

.dd22 S
nn

v

V
(A.1.90)

The relations (A.1.88), (A.1.89) and (A.1.90) are the three forms of the Green
theorem.

2º Vector integral relations. The following volume integral will be calculated:

.dcurl v

V

a (A.1.91 a)

For this purpose, this integral will be multiplied by any constant vector c :

.dcurldcurl vv

V

acac (A.1.91 b)

According to formula (A.1.72), taking into account that const,c  it follows:

.curldiv acca (A.1.91 c)
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The two last equations yield:

.dcurlddiv vv

VV

acca (A.1.91 d)

The last relation, taking into account relation (A.1.39), becomes:

,dcurld v

V

acSca (A.1.91 e)

and hence:

.dcurld vS

V

acnca (A.1.91 f)

The last relation, taking into account relation (A.1.9 a), becomes:

.dcurld vS

V

acanc

Taking into account that the last relation holds whatever the constant vector c  would
be, it follows:

.dcurld vS

V

aan (A.1.92)

A.1.2.13. Substantial Derivative of a Scalar with Respect to Time

In a reference frame supposed to be at rest, let us consider any point rM  moving at

velocity rv  relatively to this frame, and the scalar function tf ,r  that is depending on
the point M  and that is varying with time.

In various cases, it is necessary to calculate the derivative of the form:

,,
d

d
tMf

t
(A.1.93)

in another reference frame that is moving at the same velocity rv  as the point M  and
hence with respect to which the point is at rest. In cases of interest, the point M  is fixed
to the surrounding substance that is moving together with the point M . For this reason
the considered derivative is referred to as substantial derivative.

The variation with time of the function f  in the moving reference frame is
determined by two causes:  a. The modification of the position of the point M  in the
reference frame at rest; b. The variation with time of the function at each point of the
reference frame at rest.

The derivative is obtained from the expression:

.,,,,,,
1

lim,
d

d
0

tzyxfttzzyyxxf
t

tMf
t t

(A.1.94)
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It follows:

t
t

f
z

z

f
y

y

f
x

x

f

t
tzyxf

t t d

d

d

d

d

d

d

d1
lim,,,

d

d
0

(A.1.95)

or

,
d

d

d

d

d

d

d

d
,,,

d

d

t

f
v

z

f
v

y

f
v

x

f
tzyxf

t
rzryrx (A.1.96)

where the components of the velocity at which the point zyxM ,,  is moving relatively

to the reference frame at rest have been denoted rxv , ryv , rzv . Therefore:

.grad
d

d
,

d

d
f

t

f
tf

t
rvr (A.1.97)

A.1.2.14. Substantial Derivative of a Volume Integral of a Scalar
Function with Respect to Time

In various cases, it is necessary to calculate the derivative of the form:

,d
d

d

V

vf
t (A.1.98)

where tftMff ,, r  is a scalar function with space, i.e., depends on the moving

point M . In the most general case, when both the function f  and the volume V  are
varying with time, the derivative of the given form is referred to as substantial derivative
with respect to time. The reason of the usage of the term substantial has been mentioned
above.

As in the preceding Sub-section, the derivative can be decomposed as follows:

.d
d

d
d

d

d
d

d

d

constconstV
f

V
V

V

vf
t

vf
t

vf
t

(A.1.99)

By differentiating the first term of the right-hand side, it follows:

,dgrad

d
d

d

d

d

d

d
d

d

d

const

V

r

VV
V

vf
t

f

v
t

z

z

f

t

y

y

f

t

x

x

f

t

f
vf

t

v

(A.1.100 a)
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where rv  represents the velocity of both the moving point and the substance relatively to
the reference frame at rest.

The second term of the right-hand side will be differentiated considering the variation
of the volume. The final value of the volume after the time interval t  is:

,d tVV r Sv (A.1.100 b)

where Sv dr  represents the volume described by the surface element Sd  in the unit of
time.

Using the relation (A.1.39) for rva , the last relation becomes:

.ddivd
V

rr vvSv (A.1.100 c)

Relations (A.1.100 b) and (A.1.100 c) yield:

,ddiv vtVV rv (A.1.100 d)

.VVV (A.1.100 e)

It follows:

.ddivlimd
d

d
d

d

d
0

const V V

r
t

f
V

vf
t

VV
fv

t
fvf

t
v (A.1.100 f)

By substituting expressions (A.1.100 a) and (A.1.100 f) in relation (A.1.99), it
follows:

.ddivgradd
d

d

V

rr

V

vff
t

f
vf

t
vv

(A.1.101)

Finally, it follows:

.ddivd
d

d
vf

t

f
vf

t
V

r

V

v
(A.1.102)
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A.1.2.15. Derivative with Respect to Time of the Flux through a Moving
Open Surface

Let us calculate the derivative with respect to time of the flux of a vector t,rG

through a simply connected open surface bounded by any closed simple curve , when
the surface S  is moving relatively to a reference frame considered at rest.

The velocity of any point of the surface S  or of the curve  will be denoted by rv

and may have various values at different points. It is assumed that at any point of the
considered domain, the vector t,rG  is differentiable with respect to time and with the
co-ordinates of the reference frame. The corresponding flux is:

.d,
S

t SrG (A.1.103)

The variation with time of the quantity  will be determined by two causes: a. The
variation with time of the vector t,rG , at each point of the reference frame at rest;

b. The modification with time of the position and sizes of the surface S . After an

interval of time t , the surface S  occupies another position and becomes the surface

S , as can be seen in Fig. A.1.10.
The derivative with respect to time of the flux  is given by the expression:

.,d,
1

limd,
d

d

d

d
0

SS
t

S

ttt
t

t
tt

rGSrGSrG (A.1.104)

The first integral of the last side, if only the small quantities of the first order are kept, can
be expanded in the form:

.d
,

d,d,
SSS

t

t
tttt S

rG
SrGSrG

(A.1.105 a)

In the last integral of the right-hand side, which is a small quantity of the first order, the
influence of the variation of S  will be neglected producing a small quantity of higher
order. It results that:

.d,d,
1

lim

d
,

d,
d

d

0
SS

t

S
S

tt
t

t

t
t

t

SrGSrG

S
rG

SrG

(A.1.105 b)

It follows that the derivative with respect to time of the flux of a vector through an
open surface that is moving relatively to a reference frame (supposed at rest) is given by
the sum of two terms:  a – the derivative of the flux supposing the open surface at rest
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relatively to the reference frame; b – the derivative of the flux supposing that the vector
that produces the flux does not vary with time but the position and dimensions of the
surface are modified with time. The first term has been directly obtained from calculation.
The second term will be further calculated.

It can be remarked, in Fig. A.1.10, that the surfaces S and S together with the

lateral surface latS form a closed surface latSSS . The flux of the vector

t,rG  through the closed surface , according to relation (A.1.38), is:

,d,divd, vtt

V

rGSrG (A.1.105 c)

where Sd represents the element of the closed surface .
But the term of the left-hand side of the last relation can be decomposed, and taking

into account the positive sense of the normal adopted in Fig. A.1.10, it follows:

Fig. A.1.10. Explanation to the calculation of the
derivative of the flux through an open surface.

S
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v r t
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( ) ( ) ( ) ( ) . d , d , d , d , 
lat 

lat ∫ ∫ ∫ ∫ 
Σ ′ 

+ ⋅ + ⋅ − = ⋅ 
Γ ′ Γ S S S 

t t t t S r G S r G S r G S r G (A.1.105 d) 

The element of the surface  lat S , with the symbols of Fig. A.1.10, is:  

. lat t r ∆ × ∆ = ∆ v l S (A.1.105 e) 

The volume element of the domain  Σ V , with the symbols of Fig. A.1.10, is:  

( ) . S v ∆ ⋅ ∆ = ∆ t v r (A.1.105 f) 

From relations (A.1.105 d)  and (A.1.105 e), it follows:  

( ) ( ) ( ) 

. d , 

d , d , d , ∫ ∫ ∫ 

Γ 

Σ ′ 

× ⋅ ∆ − 

− ⋅ + ⋅ − = ⋅ 
Γ ′ Γ 

l v r G 

S r G S r G S r G 

r 

S S 

t t 

t t t 

(A.1.105 g) 

From relations (A.1.105 c), (A.1.105 f), (A.1.105 g), it follows:  

( ) ( ) ( ) ( ) 

( ) ( ) ( ) . d , 

d , div d , d , ∫ ∫ ∫ 

Γ 

′ 

× ⋅ ∆ 

+ ⋅ ∆ = ⋅ − ⋅ 
Γ Γ Γ ′ 

l v r G 

S r G v S r G S r G 

r 

S S 
r 

S 

t t

t t t t 

(A.1.105 h) 

Relations (A.1.105 b) and (A.1.105 h) yield:  

( ) ( ) ( ) [ ] 

( ) 

∫ 

Γ 
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⋅ + 

+ ⋅ × − ⋅ 
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l r G v S r G S r G 
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t 
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t t 
t 

r 

S 
r 

S (A.1.106) 

+



General Theory of the Electromagnetic Field238



APPENDIX 2

EXPRESSIONS OF THE DIFFERENTIAL OPERATORS IN
CURVILINEAR CO-ORDINATES

A.2.1. GENERAL CONSIDERATIONS

In applications, besides the three-orthogonal rectilinear system of co-ordinates, other
systems of co-ordinates are also of importance. Further on, the expressions of the
differential operators for various systems of co-ordinates will be recalled [12, tome I,
p. 44].

In the three-orthogonal system with rectilinear axes, the position of any point is
determined by the distances of that point to the planes determined by the axes of co-
ordinates.

Hence, any point MMM zyxM ,,  can be considered as the intersection of the planes:

,,, MMM zzyyxx (A.2.1 a, b, c)

parallel with the planes yOz , zOx , xOy , respectively.
The intersection of planes consty and constz represents the line of variation of

the quantity x . The line 0y ; 0z represents the line of co-ordinate x . Analogously,
the lines of the co-ordinates y and z can be obtained. The three lines obtained in this
way are straight lines.

The quantities zyx ,, represent the co-ordinates of the three-orthogonal system of co-
ordinates with rectilinear axes.

Generally, if the following three sets of surfaces are considered:

,,,,,,,,, 332211 CzyxxCzyxxCzyxx (A.2.2 a, b, c)

and if various values are given to the constants 321 ,, CCC , it can be considered that
each point M of the space is determined by a set of three values corresponding to the
three constants.

The intersection of the surfaces 22 Cx and 33 Cx represents the line of variation

of the quantity 1x . The line 02x ; 03x represents the line of the co-ordinate 1x .

Analogously, it is possible to obtain the lines of variation of the quantities 2x  and 3x .
In the general case, the lines of variation are not straight lines but curvilinear ones. For

this reason, in the general case, a system of curvilinear co-ordinates is obtained as in
Fig. A.2.1.

The quantities 321 ,, xxx represent the co-ordinates of a curvilinear system of co-
ordinates.
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Fig. A.2.1. Curvilinear system of
co-ordinates.

Between the co-ordinates 321 ,, xxx of a curvilinear system of co-ordinates and the
co-ordinates zyx ,, of a three-orthogonal rectilinear system of co-ordinates, there are the
following relations:

.,,;,,

;,,;,,

;,,;,,

321333

321222

321111

xxxzzyxfx

xxxyzyxfx

xxxxzyxfx

(A.2.3 a, . . ., f)

The position of a point M  can be defined by the corresponding position vector r .
At any point 321 ,, xxxM of the curvilinear system of co-ordinates, it is possible to

construct three fundamental vectors 1e , 2e , 3e , tangent to the lines of co-ordinates

321 ,, xxx , and each of them having the length equal to unity. Hence, the three
fundamental vectors above are unit vectors. The three vectors form a trihedron that can
have a different position at each point. In addition, it should be noted that the unit vectors

1e , 2e , 3e , tangent to the lines of co-ordinates, are oriented in the sense in which the co-

ordinates 321 ,, xxx increase.
The chief difference between the curvilinear system of co-ordinates and the rectilinear

system of co-ordinates resides as mentioned in the fact that, in the case of a curvilinear
system, the directions of vectors 1e , 2e , 3e depend on the point at which these vectors
are taken.

The expression of a vector in this system of curvilinear co-ordinates is:

.332211 aaa eeea (A.2.4)

Further on, we shall consider only those systems of curvilinear co-ordinates for which
the three fundamental vectors are perpendicular to each other. These are called

O

e

e

e

3

2

1

x

x

x 2

3

1
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rectangular or orthogonal systems of curvilinear co-ordinates. In this work, only systems
of co-ordinates the fundamental vectors of which form a right trihedron are used. They
are termed right-angled systems of co-ordinates.

The displacement of a point 321 ,, xxxM  at a variation 1d x , of the co-ordinate 1x ,

the other two co-ordinates being constant, is 1d s .

Analogously, the following variations will be obtained: 2d s  at a variation 2d x  and

3d s  at a variation 3d x . The expressions for the length of the element of arc, the area of
the surface elements and the volume of an element, taking into account that the system is
orthogonal, and neglecting the small quantities of higher order, are:

.dddd 2
3

2
2

2
1

2 ssss (A.2.5)

.ddd

,ddd

,ddd

213

132

321

ssS

ssS

ssS

(A.2.6 a, b, c)

.dddd 321 sssV (A.2.7)

We shall take into account that the partial derivative of the position vector r  with
respect to the co-ordinate 1x  (the co-ordinates 2x  and 3x  remain constant) is:

,11
1

h
x

e
r

(A.2.8)

where:

.1
1

h
x

r
(A.2.9)

It follows:

,ddd 1111
1

11 xhx
x

s e
r

e (A.2.10)

hence:

.dd 111 xhs (A.2.11)

Analogously, it is possible to obtain the corresponding expressions of 2d s  and 3d s .
The following expressions are obtained:

.dddd 2
3

2
3

2
2

2
2

2
1

2
1

2 xhxhxhs (A.2.12)

;ddd;ddd;ddd 212131313232321 xxhhSxxhhSxxhhS (A.2.13 a, b, c)
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;dddd 321321 xxxhhhV (A.2.14)

;
i

i
x

h
r

(A.2.15)

.
222

iii
i

x

z

x

y

x

x
h (A.2.16)

The quantities of the form ih  are called LAMÉ coefficients.
We shall express the differential operators taking into account the relations above. The

gradient of a scalar function 321 ,, xxx  has the expression:

.
111

grad
33

3
22

2
11

1
xhxhxh

eee (A.2.17)

The divergence of a vector 321 ,, xxxa  has the expression:

.
1

div 213
3

132
2

321
1321

hha
x

hha
x

hha
xhhh

a (A.2.18)

The curl of a vector 321 ,, xxxa  has the expression:

.
1

11
curl

11
2

22
121

3

33
1

11
313

222
3

33
232

1

ha
x

ha
xhh
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x
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xhh
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x

ha
xhh

e

eea

(A.2.19)

The Laplace operator applied to a scalar function, 2 , has the expression:

.
1

33

21

322

13

211

32

1321

2

xh

hh

xxh

hh

xxh

hh

xhhh

(A.2.20)

A.2.2. FORMULAE FOR THREE-ORTHOGONAL RECTILINEAR,
CYLINDRICAL AND SPHERICAL CO-ORDINATES

Further on, the following three-orthogonal systems of co-ordinates will be considered:
Three-orthogonal rectilinear system of co-ordinates, cylindrical system of co-ordinates,
spherical polar system of co-ordinates.
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Fig. A.2.2. System of cylindrical
co-ordinates.

Fig. A.2.3. System of spherical polar
co-ordinates.

Besides these, also other systems of three-orthogonal systems are used, for instance
the elliptical system of co-ordinates.

For a three-orthogonal system of co-ordinates with rectilinear axes, it follows:
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(A.2.21 a, . . ., g)

For a cylindrical system of co-ordinates (Fig. A.2.2), it follows:
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For a spherical system of co-ordinates (Fig. A.2.3), it follows:
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The relations of differential operators in cylindrical co-ordinates:
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The relations of differential operators in spherical co-ordinates:
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A.2.3. ELLIPSOIDAL CO-ORDINATES

We shall recall some more important results concerning the ellipsoidal co-ordinates.
The relation between ellipsoidal co-ordinates and those of a right three-orthogonal

system of co-ordinates with rectilinear axes is given by the equation of a surface of the
second order:
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2
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2

2

=
+

+
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+
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ub
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ua

x

( ).cba >> (A.2.32)

Relation (A.2.32) represents an equation of the third degree with respect to u . This
equation has for each point of co-ordinates x , y , z , three real distinct roots ξ , η , ζ
situated respectively within the intervals:

[ ),,2 ∞+−∈ξ c (A.2.33 a)

[ ],, 22 cb −−∈η (A.2.33 b)

[ ]., 22 ba −−∈ζ (A.2.33 c)

The geometrical meaning of the roots ξ , η , ζ  consists in the following. The surfaces
corresponding to equation (A.2.33), in which the quantity u  is successively replaced by
one of the quantities ξ , η , ζ , represent ellipsoids, hyperboloids with a sheet,
hyperboloids with two sheets. These surfaces of the second order are confocal with the
ellipsoid given by equation (A.2.32) for .0=u

Through each point of the space, one of the surfaces belonging to the three families is
passing. The three surfaces are orthogonal to each other. The relations for passing from
the ellipsoidal co-ordinates to those of the three-orthogonal system of co-ordinates with
rectilinear axes are obtained by solving the system of three equations with three
unknowns x , y , z , which is obtained by replacing in equation (A.2.32) the quantity u

successively by ξ , η , ζ . It follows:
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To each point of co-ordinates x , y , z , of the three-orthogonal system of co-ordinates

with rectilinear axes, there corresponds a point of co-ordinates ξ , η , ζ , in the ellipsoidal
system of co-ordinates.

The length element expressed in ellipsoidal co-ordinates is:

( ) ( ) ( ) ,dddd 2222222 ζ+η+ξ= ζηξ hhhs (A.2.35)

where the following symbols have been used:
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The expression of the quantity V2∇  in ellipsoidal co-ordinates is:
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APPENDIX 3

GENERAL RELATIONS DEDUCED FROM THE
SPECIAL THEORY OF RELATIVITY

In this Appendix, we shall first recall some basic relations of the Theory of Special
Relativity concerning Mechanics. Then, starting from these relations, we shall deduce
certain general relations concerning forces in various reference frames. These relations
can be used in the Theory of Electromagnetic Field as well as in the case of other fields of
forces. The derivation is based on previous papers of the author [23], [40], [41].

A.3.1. RELATIONS OF MECHANICS IN THE SPECIAL
THEORY OF RELATIVITY

Let us consider the inertial reference frames oooo ,, zyxK  and 1111 ,, zyxK

having the corresponding axes of co-ordinates parallel to each other. Three-orthogonal
rectilinear (Cartesian) right-handed systems of co-ordinates are used.

The time in two reference frames will be denoted by ot  and 1t , respectively. The unit

vectors of the two systems of co-ordinates can be denoted by the sets ooo ,, kji , and

111 ,, kji , respectively.
In the case in which the axes of co-ordinates of the two systems are parallel with each

other, since the unit vectors are dimensionless, both sets of unit vectors can be denoted by
the same set of symbols, namely kji ,, .

The components of any vector, in the reference frame oK , for instance oF , along the

three axes of co-ordinates can be denoted by 
ooo ooo ,, zyx FFF . If no confusion may

appear, for the sake of brevity, the last suffix may be suppressed and then the components
become zyx FFF ooo ,, .

The components of any vector, in the reference frame 1K , for instance 1F , along the

three axes of co-ordinates can be denoted by 
111 111 ,, zyx FFF  or zyx FFF 111 ,, , according

to the case, as explained above.
The components of the velocity o1v  of the reference frame 1K  with respect to the

reference frame oK , along the three axes of co-ordinates, can be denoted by

ooo o1o1o1 ,, zyx vvv  or zyx vvv o1o1o1 ,, , according to the case, as explained above.

The used symbols are given at the end of this appendix. At the initial moment 0t ,
the two systems of co-ordinates above are assumed to coincide.

If no mention is made, the medium is the vacuum (i.e., empty space).
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In order to facilitate the understanding of the treatment, firstly we shall recall the
relations of Mechanics in the Special Theory of Relativity, brought in a convenient form,
in accordance with the following treatment.

We consider the relation in the Special Theory of Relativity as being obtained directly,
hence without resorting to the equations of Electromagnetism.

A.3.1.1. General Relations of Mechanics in the Special Theory of
Relativity

Between the quantities of Mechanics given in the list of symbols at the end of this
appendix, the relations below have been established and will be given using three-
dimensional vectors (Fig. A.3.1). For the sake of simplicity, we denote 11 rr A , oo rr P .

If no mention is made, we shall also assume xvv o1o1o1 iiv . The quantities in the

reference frame 1K , expressed in terms of the quantities of the reference frame oK , are:
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The last two relations can be brought in a form sometimes suitable in applications, for
instance the latter:
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Fig. A.3.1. The systems of co-ordinates oooo ,, zyxK , 1111 ,, zyxK ,
and a position vector.
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where the quantity m is the relativistic mass in the reference frame oK of a material

point moving at the velocity o2vu relative to this reference frame, whereas 1m is the

relativistic mass in the reference frame 1K , and 0m is the mass of the material point at

rest in oK .
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We assume that there is a certain inertial reference frame oK  that has the following

property. The force acting in this reference frame upon a particle p  that is moving at any

velocity const,pnv  relative to the reference frame nK  is independent of the velocity

pnv .

For instance, in the given reference frame 1K , the force 
1

F  can be independent of the

velocity 21v . Such an example occurs in the case in which there is a point-like electric

charge 1q  at rest in the reference frame, and 1F  is the force exerted upon any point-like

charge 2q  moving at the velocity 21v  relatively to the reference frame 1K . The value of

a force in the reference frame nK  and for instance in the reference frame 1K  in the
example above is referred to as proper value of the force.

The forces in any reference frame, say 1K , can be expressed in terms of the forces in a
certain reference frame, say, by means of a relation of the type (A.3.10).

At the same time, we assume that all the geometrical elements (lines, surfaces) have
their proper dimensions (sizes) in the reference frame nK . The geometrical dimensions

(sizes) in the reference frame nK  can be expressed in terms of the geometrical
dimensions (sizes) of any other reference frame by means of the relations above (A.3.2)
and (A.3.3).

With the usual denominations, the geometrical dimensions are contravariant
quantities, whereas the forces are covariant quantities. When writing various relations, it
is useful to take into account this remark.

It is possible to express the relation between the differential operators when passing
from one reference frame to another [23, Vol. I, p. 504]. These operators concern
gradient, divergence, curl and derivative with respect to time.

Remark. In the case in which o1v  is not of the form xv o1i , any vector oooo ,, zyxr

or 1111 ,, zyxr  can be decomposed into three components: One parallel to the direction

of o1v  and the other two components perpendicular to the direction of o1v , chosen so

that, together with the component parallel to the direction of o1v , they form a Cartesian

right-handed reference frame. Then, the transformation relations can be applied for each
component. Therefore, the relations of Sub-section A.3.1.1 subsist.
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A.3.2. RELATIONS CONCERNING THE FORCE VECTORS IN
VARIOUS REFERENCE FRAMES

A.3.2.1. Transformation of the Force when Passing from a Reference
Frame to Another

By multiplying both sides of relation (A.3.6 a) by 
2

o1

c

v
 and adding the unity to both

sides, we can obtain:

.
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1
1

o1o2o1
o121o1 (A.3.12)

Taking into account relation (A.3.12), expressions (A.3.10) and (A.3.11) can be
written in the form:
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The derivation of the last two formulae, namely relations (A.3.13), (A.3.14) can be
achieved starting from relations (A.3.10), (A.3.11) as follows. We consider relation
(A.3.13) and deduce it starting from relation (A.3.11). The aim is to express the last term
of that relation in terms of the velocity o2v  instead of 12v . Hence, we have as a factor the
velocity of the point-like charge subjected to that force with respect to the reference
frame in which the force is expressed.

The concerned factor of relation (A.3.11), taking into account relation (A.3.12),
becomes:
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From relation (A.3.6 a), it results that:
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or:
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Taking into account relation (A.3.15), the first term of relation (A.3.11) can be
written:
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Similarly, the second term of relation (A.3.11) can be written:
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Having in view relations (A.3.18), (A.3.19), (A.3.16 b), relation (A.3.11) becomes:
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The vector oF  will be considered to be composed of two terms:
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At this stage, the calculations can be shortened as follows. Let us assume xv o1o1 iv .
In this case, along the Ox - axis, from relation (A.3.21), we obtain:
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Similarly, along the Oy - axis, from relation (A.3.21), we obtain:
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since:

.11 2
o1

2
o1 (A.3.24 a)

Similarly, we obtain

.1o1oI zz FF (A.3.25)

Finally, we have:

,oIoIoIoI zyx FFF kjiF (A.3.26 a)

zyx FFF 1o11o11oI kjiF (A.3.26 b)

or in compact form:
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Consequently, the sum of the expressions (A.3.27) and (A.3.22):

oIIoIo FFF (A.3.28)

will give just the expression (A.3.13).

A.3.2.2. Expressions of the Force Acting on a Material Point Moving
in Any Reference Frame

Each of the two relations (A.3.13) and (A.3.14) can be modified as shown below. For
instance, first, the former becomes:
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c

FFF zyx (A.3.29)

We assume that, in the reference frame 1K , the force acting upon a material point

moving at the velocity const,21v  is 1F . The force in the reference frame oK  will be

denoted, as above, by oF . The expression of the force oF  in the reference frame oK  can
be written in the form:

,ooo vr FFF (A.3.30)

where:
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and

.1o12
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v (A.3.32 a)

Multiplying the first both sides of relation (A.3.31) by o1v , we get:

.1o1o1oo1 FvFv r (A.3.32 b)

Hence, according to relations (A.3.31), (A.3.32 b), (A.3.30):
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We denote:
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and it follows:
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.oo2oo br GvFF (A.3.35)

If in a certain reference frame 1K , the force vector 1F  acting upon a material point is

independent of the velocity 21v  then, in any reference frame oK , the components roF

and boG  will also be independent of the velocity 12v  of the material point.
Analogously to relation (A.3.35), the expression (A.3.14) can be written in the form:

.11211 br GvFF (A.3.36)

The components r1F  and b1G  are:
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A.3.2.3. Derivation of the Components Entering into the Transformation
Expressions of the Force Acting on a Moving Material Point
when Passing from a Reference Frame to Another

The aim of this Sub-subsection is to establish the relations (A.3.37) and (A.3.38),
between the quantities roF and r1F  and also between roG  and r1G , respectively. We
shall give a direct derivation, this way being more conclusive in comparison with other
ones.

We suppose that the vector oF  in the reference frame oK  is given and, as shown, it
can be expressed in the form:

.oo2oo br GvFF (A.3.39)

We shall replace this expression into relation (A.3.14) written in the form:

.
1

oo1212o1oo1oo1o1 FvvkjiF
c

FFF zyx (A.3.40)

We obtain:

.
1

oo2oro1212o1

oo2oo1oo2oo1oo2o1

b

zbrybrxbr

c
GvFvv

GvFkGvFjGvFiF

(A.3.41)

We consider the case, further called case A, in which we assume that:

,oo rxr FiF (A.3.42 a)
.oo bxb GiG (A.3.42 b)
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Taking into account that, in this case, the vector boo2 Gv  has components only along
the Oy  and Oz  axes, hence the two terms containing the two components of the

corresponding force when passing from the reference frames oK  to 1K  will contain the

factor o1 . The component along the Ox - axis vanishes, hence 0oo2 xbGv . Since

the vector boo2 Gv  has components only along the Oy  and Oz  axes, the vector o2v

will occur only with the last two terms of relation (A.3.6 c).
In this case, denoted case A, relation (A.3.41) yields successively:

,
1

oo2oo1212o1

oo2oo1oo2oo1o1A

br

zbrybrrx

c

F

GvFvv

GvFkGvFjiF

(A.3.43 a)

.
1

oo2oo1212o1oo2o1o1A brbrx
c

F GvFvvGviF (A.3.43 b)

After the substitution of expression (A.3.6 c) into the last relation, and taking into
account that in this case xv o1o1 iv , 0oo1oo1 bxxb Gv iiGv  and

0oo1oo1 rxxr Fv iiFv , it follows:

,
1

1

1 o1211o

oo121
oo1212o1

o1211o

oo121
o1o1A

ivv
Fvv

ivv
iF bx

r
bx

rx

G

c

G
F

(A.3.44)
and further:

.
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1 o1211o

o21
o1212o1

o1211o

o21
o1o1A

iv
vv

iv
iF bxbx

rx

G

c

G
F

(A.3.45)

The last relation can be written:

.
1

1

1 o1211o

o21
o1212o1

o1211o

o21
o1o1A

Gv
vv

Gv
iF bb

rx
c

F

(A.3.46)
By transforming the expressions inside braces, we get:

.
1

1

1 o1211o

o121ooo121
212o1

o1211o

o21
o1o1A

vvGGvv
v

Gv
iF bbb

rx
c

F

(A.3.47)

Within the braces of the last term of relation (A.3.47), the term containing in
numerator 21v  can be cancelled because 02121 vv . Therefore, we obtain:

.
1

1

1 o1211o

o121o
212o1

o1211o

o21
o1o1A

vvG
v

Gv
iF bb

rx
c

F (A.3.48)
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By summing up the factors preceded by 21v  and containing bxb Goo iG , we get:

.
1

1

1 o
o1211o

o121o
2o1

o1211o

o
o1 b

bb

c
G

vvGG
(A.3.49)

Therefore:

.o21o1A bxrx GF iviF (A.3.50)

We consider the case, further called case B, in which we assume that:

,oo ryr FjF (A.3.51 a)

.oo byb GjG (A.3.51 b)

In this case, denoted case B, relation (A.3.41) yields:

.
1

oo2oo1212o1

oo2o1oo2o1oo1oo21B

byry

zbyybyryxby

GF
c

GGFG

jvjvv

jvkjvjjjviF

(A.3.52)

We shall replace o2v  in the form:

,o2o2o2o2 zyx vvv kjiv (A.3.53 a)

and

.12122112122112 111 zyxzyx vvvvvv kjikjiv (A.3.53 b)

According to relation (A.3.6 c), we get:

.
111 o112o1

21

o112o1

21

o112

o121
o2 kjiv zyxx vvvv

(A.3.54)

From relations (A.3.53) and (A.3.54), we obtain:

.
11 o112

oo121

o112o1

o21
oo2 kijv

byxxbyz
by

GvvGv
G (A.3.55)

From relations (A.3.52) and (A.3.55), we obtain:
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oo2o1212o1oo1212o1

o121

oo1
o1

o121

o21
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F

jvvvjvv

kkijF

(A.3.56 a)
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and:
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jvv
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(A.3.56 b)

By substituting in the last relation xv o1o1 iv , we obtain:
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jvv

kkijF

(A.3.57)

For obtaining the result in a compact form, we shall express the various terms as
follows.

1º  The term having as coefficient the quantities i , byGo , zv21 .

The corresponding factor is:

,
1

1

11

11

o1
o121o1

2
o1

2
o1o121

2
o1

o121

2
o1o121

o1
o121o1

(A.3.57 a)

since

.12
o1

2
o1

2
o1

2º  The term having as coefficient the quantities k , byGo , xv21 .

The corresponding factor is:

.
11

1
o1

o121

o121
o1

o121
o1 (A.3.57 b)
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3º  The term having as coefficient the quantities k , byGo , xv o1 .

The corresponding factor is:

.
11

1
o1

o121

o121
o1

o121
o1 (A.3.57 c)

By replacing the terms corresponding to factors given by relations (A.3.57 a, b, c) into
expression (A.3.57), it follows:

.

1

oo1o1o21o1

o21o1oo1212o1oo11B

byxbyx

byzryry

GvGv

GvF
c

F

kk

ijvvjF
(A.3.58)

By introducing the vector products, the last relation can be written in the form:

.
1

oo12o1oo121oo1o1oo11B rybybyry F
c

GGF jvjvjvjF

(A.3.59)

Therefore:

.12111B br GvFF (A.3.60)

Similarly, we can obtain:

.
1

oo12o1oo121oo1o1oo11C rzbzbzrz F
c

GGF kvkvkvkF

(A.3.61)

Hence:

.12111C br GvFF (A.3.62)

By summing up, side by side, the relations (A.3.50), (A.3.59), (A.3.61), it follows:

.
1

oo12o1oo1oo1o21

oo1o1oo1oo1o1

rbzbybx

brzryrx

c
GGG

FFF

Fvkjiv

GvkjiF

(A.3.63)

Therefore:

.12111 br GvFF (A.3.64)

By comparing relations (A.3.63) with (A.3.64), it follows that the quantities r1F  and

b1G  are expressed in terms of the quantities roF  and boG  just by the relations (A.3.37)
and (A.3.38).
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A.3.3. INTEGRAL AND LOCAL FORMS OF RELATIONS
CONTAINING THE VECTORS IN VARIOUS REFERENCE
FRAMES

A.3.3.1. The Fluxes of Vectors roF  and r1F  through a Surface

We may consider as known the resultant force 1F in the reference frame 1K acting

upon a moving material point and we assume that it is independent of the velocity 21v .

Hence, according to relation (A.3.36), the vector b1G is zero.

We need to calculate the flux of the vectors roF and r1F through a given surface,

open or closed, in the reference frames oK and 1K , respectively. Firstly, we shall

calculate the flux in the reference frame 1K .

For obtaining the surface element 1S , we start from the quantity oS in the

reference frame oK where the flux has to be calculated. For calculating the vector roF ,

we start from the vector 1F in the reference frame 1K where the resultant force has been
considered. In this way, as we shall show immediately, the flux remains unchanged in the
two reference frames. The conservation of the flux through a surface is equivalent with
the geometrical interpretation that the number of lines of field, through the considered
surface, remains unchanged.

In the reference frame oK , we obtain the flux:

.oo SF r (A.3.65)

Taking into account relation (A.3.36) and 01bG of above, it results that r11 FF .

Hence, in the reference frame 1K , we obtain the flux:

.
1

1 1o1oo12
o1

o1o1o111 FvSvSFSF
v

r (A.3.66)

But in the reference frame oK , as shown above, by relation (A.3.31), we have:

.
1

1 o11o12
o1

o11o1o vFvFF
v

r (A.3.67)

Multiplying both sides of the last equation by oS , it follows:

.oo11 SFSF rr (A.3.68)

For a closed surface, we obtain:

,dd

o1

oo11 SFSF rr (A.3.69 a)

in integral form, and:
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,divdiv ooo111 rr FF (A.3.69 b)

in differential (local) form, respectively. The index of the operator div  indicates the
reference frame in which this operator has been calculated.

A.3.3.2. The Flux of the Vector boG  through a Closed Surface

We need to calculate the fluxes of vectors boG  given by relation (A.3.34) through a

given surface, a closed or open one, in the reference frame oK :

.
1

1
1

11

o1o1o12

oo1o112
o1

o11o1o12oo1o2oo

SFv

SvvFFvFvSSG

c

vcc
rb

(A.3.70)

Taking into account relation (A.3.3) and that 0o11o1 vFv , it follows:

.
1

1
1

1

1
1

11

11o12

o1oo12
o1

o1oo11o12

oo1o112
o1

o11o1o12ooo12oo

SFv

vSvSFv

SvvFFvSFvSG

c

vc

vcc
rb

(A.3.71)

It follows:

,dcurl
1

d
1

d

11o

111o1211o12oo

V

b V
cc

FvSFvSG (A.3.72)

in integral form, and

,curl
1

div 11o12ooo1 FvG
c

b (A.3.73)

in differential (local) form. The indices of the operators div  and curl  indicate the
reference frame in which these operators have been calculated.
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A.3.3.3. The Circulation of the Vector roF  along a Closed Curve in the
Case of a Field of Vectors with Central Symmetry

We need to calculate the circulation of the vector roF round a closed curve in the

reference frame oK . We consider the case of any field of forces with central symmetry in

the reference frame 1K . We also assume the same condition as at the beginning of Sub-

section A.3.3.1, and hence 01bG . As previously, we adopt the axes of the system of co-

ordinates in a convenient manner, namely so that the vector velocity o1v be parallel and
of the same direction with the Ox - axis. The general expression of the forces in the
considered case is:

,111 APAPf rrF (A.3.74)

where the position vector APAP rr1 has the origin at any point AAA zyxA 111 ,, , source

point, and the extremity at the point ooo ,, zyxP , observation or field point, at which the

mentioned force has to be calculated at any moment 1t in the reference frame 1K . The
position vector can be expressed in the form:

,1o1o1oo1oo11 AAAxAP zzyyxtvx kjir (A.3.74 a)

or, generally, for any direction of o1v :

.1 12
o1

o1
oo1oo1o1oo1o1 AAP

v
tt r

v
vrvvrr (A.3.74 b)

We shall use the expression of the force (A.3.31) in the form:

.1o11o11o zyxr FFF kjiF (A.3.75)

The circulation of the vector roF  round a closed curve  is:

,dcurld

oo

oooo
S

rr SFlF
(A.3.76)

where
o

S is a simply connected open surface bounded by the curve o . It is assumed

that on the surface
o

S the function 1o rF r is differentiable at each point. Taking into

account the relations (A.3.74), (3.75), (A.3.76), after performing the calculations of
components of the curl applied to that function, we obtain:

.
11

0curl oo12zoo12
o

oo ryxrxr Fv
c

Fv
ct

kjiF (A.3.77)

Hence, taking into account relation (A.3.34), we get:
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.
1

curl o
o

oo12
o

oo brr
tct

GFvF (A.3.78)

Since the operator ocurl and the time ot are invariant with respect to the
transformation for passing from one three-orthogonal rectilinear system of co-ordinates to
another three-orthogonal rectilinear system co-ordinates at rest relative to the first one, it
follows that relation (A.3.78) remains valid for any direction of the velocity o1v . Since

relations (A.3.77), (A.3.75), (A.3.74) are linear relatively to vectors roF , boG , 1r , it
follows that relation (A.3.78) is valid also in the case in which the right-hand side of
relation (A.3.74) is a linear combination of terms of the same form. It follows:

,dd

oo

oo
o

oo
S

br
t

SGlF (A.3.79)

in integral form, and

,curl o
o

oo br
t

GF (A.3.80)

in differential (local) form.
It can be remarked the analogy of the two last relation with the expression of the law

of electromagnetic induction.

A.3.3.4. The Circulation of the Vector boG  along a Closed Curve in the
Case of a Field of Vectors with Central Symmetry

We need to calculate the circulation of the vector boG round (along) a closed curve in

the reference frame oK . We consider the case of a field of vectors of central symmetry in

the reference frame 1K  and under the same conditions as in Sub-section A.3.3.1.

The circulation of the vector boG  along any closed curve o  is:

,dcurld

oo

ooooo
S

bb SGlG
(A.3.81)

where
o

S is the open surface bounded by the curve o . Taking into account relation

(A.3.34), we can write:

.
1

div
11

curlcurl ooo12ooo12oo12ooo rrrb
ccc

FvFvFvG (A.3.82)

Taking into account relations (A.3.74), (A.3.75), after performing the calculations of
the components of each vector, we shall obtain:
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.
11

o

o
2ooo12 tcc

r
r

F
Fv (A.3.83)

Therefore, relation (A.3.82) becomes:

.
1

div
1

curl o
o

2ooo12oo rrb
tcc

FFvG (A.3.84)

The operator ocurl , the operator odiv , and the time ot are invariant with respect to
the transformation from one right-handed three-orthogonal rectilinear system of co-
ordinates to another right-handed three-orthogonal rectilinear system of co-ordinates, at
rest relative to the first one. It follows that relation (A.3.83) is valid for any direction of
the velocity o1v . For similar reasons to those of Sub-section A.3.3.3, relation (A.3.84) is
valid also in the case in which the right-hand side of relation (A.3.74) is a linear
combination of terms of the same form. It follows:

,d
1

ddiv
1

d

ooo

oo2
o

oooo12oo
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r

S

rb
ctc

SFSFvlG (A.3.85)

in integral form, and

,
1

div
1

curl
o

o
2ooo12oo

tcc

r
rb

F
FvG (A.3.86)

in differential (local) form.
It can be remarked the analogy of the two last relation with the expression of the law

of magnetic circuit.

A.3.3.5. The Relation between the Volume Densities of a Scalar Function
when Passing from One Reference Frame to Another

We consider the volume density of a scalar function the magnitude of which does not
change when passing from one inertial reference frame to another. This is the case of the
electric charge. In any reference frame, the volume density of the electric charges is
expressed in terms of the volume density of the electric charges of the reference frame in
which there are at rest. We consider the reference frames oooo ,, zyxK , 1111 ,, zyxK ,

2222 ,, zyxK . We shall have in view that the value of the electric charge of any body is
invariant with respect to the transformation of the axes of co-ordinates in the reference
frame and we shall suppose that the electric charges are at rest in the reference frame oK .
We express the conservation of the electric charge of a volume element:

.ddd oo12 12
VVV vvv (A.3.87)
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For an observer in the reference frame 2K , taking into account expression (A.3.4), the
following relations can be written:

.ddd oo221 12
VVV (A.3.88)

The two last relations yield:

.
11

o
o2

1
21

2 vvv (A.3.89)

Having in view the expressions of the quantities of the form ij  and ij , relation

(A.3.89), as shown below, yields:

.
1

1

11
o

o2
1

o1o2o2o1
2 vvv (A.3.90)

Therefore, the relation between the volume densities is:

.1 oo1o2o11 vv (A.3.91)

A.3.3.6. The Derivation of the Relation between the Volume Densities of a
Scalar Function when Passing from One Reference Frame to
Another

We have to calculate the coefficient 21  of the preceding formula (A.3.89) for the

case o1o1o1 vv xiv . This quantity is:

.
1

1
2
21

21 (A.3.92)

From relation (A.3.6 a) written in the same form as (A.3.6 c), it follows:
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Hence:
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(A.3.94)

But:
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2
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2
o1 x (A.3.94 a)

Consequently, we obtain successively:
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(A.3.95 b)
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o1o2o1

2
21

21 (A.3.96)

A.3.3.7. The Relation between the Densities of the Flow Rate of a Scalar
Quantity when Passing from One Reference Frame to Another

We consider the flowing rate of a scalar quantity, namely of a quantity that does not
change when passing from one inertial reference frame to another. This is the case of the
vector electric current density. Let us consider the reference frames oK  and 1K . We

suppose that a set of electric charges is moving at the velocity 21v  relatively to the

reference frame 1K . The electric current density in the reference frame 1K  is:

.2111 vJ v (A.3.97)

Taking into account relations (A.3.6 a, c), (A.3.91) and (A.3.97), it follows:

.1 o1o12
o1

o1o2
o1oo2o1 vvJ vv (A.3.98)
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A.3.4. RELATIONS BETWEEN THE DIFFERENTIAL OPERATORS
WHEN PASSING FROM ONE REFERENCE FRAME TO
ANOTHER

We consider the inertial reference frames oK  and 1K . The general relation between
the differential operators when passing from one reference frame to another can be
obtained by assuming, for instance, that the velocity of the reference frame 1K  relative to

the reference frame oK  is parallel and of the same direction with the axes oo xO  and

11xO . Since o1o1o1 vv x iiv , we obtain:
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(A.3.99 a, . . ., h)

and for a differentiable function oooo ,,, tzyxf :
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(A.3.100 a, . . ., d)

We shall establish the relations between the differential nabla operators expressed in
the two reference frames, namely:
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o
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kjikji (A.3.101 a, b)

Taking into account that: o11o vv , it follows:
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(A.3.102 a, b)

For example:
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Also, it is useful to mention that for a scalar or vector function that depends only on 
111 ,, zyx , for example ( )111 ,, zyxf  or ( )111 ,, zyxA , we obtain: 
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A.3.5. APPLICATION TO THE TRANSFORMATION OF SCALAR 
AND VECTOR POTENTIALS WHEN PASSING FROM 
ONE REFERENCE FRAME TO ANOTHER 

 

The aim is to establish the relation between the pairs 1V , 1A  and oV , oA , 
respectively. Let oK  and 1K  be reference frames and the considered vectors: 
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and for the reference frame oK , according to formula (3.200), of Chapter 3, we have: 
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(A.3.106 a, b, c)

 

As above, we have taken o1o1o1 o
vv x iiv == . 
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Now, we consider the Ox - axis. From relations like (3.200), we obtain: 
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According to equation (A.3.105 b), we need ooo1oo1 curl AvBv ×=× . As previously, 
we take o1o1o1 o

vv x iiv == . We get: 
 

( ) .0oo1 =×⋅ Bvi  (A.3.107 c)
 

By replacing expressions (A.3.107 a, b, c) into relation (A.3.105 b), we get: 
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Using relations (A.3.99 a, . . ., h) and (A.3.100 a, . . ., d) with other indices, we get: 
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After replacing the expressions (A.3.109), (A.3.110), into relation (A.3.108), and 
performing the calculations, it results that: 
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By equating the derivatives with respect to the same variables of both sides of the last 
relation, we have: 
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Now, we consider the Oy - axis. From relation (3.200), we get: 
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According to equation (A.3.105 c), we need ooo1oo1 curl AvBv . As previously,

we take o1o1o1 o
vv x iiv .

We get:
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By replacing expressions (A.3.113 a, b, c) into relation (A.3.105 c), we have:
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Using relations (A.3.99 a, . . ., h) and (A.3.100 a, . . ., d), we get:
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After replacing the expressions (A.3.115 a, b), (A.3.116), (A.3.117) into relation
(A.3.114), and performing the calculations, it results that:
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Therefore:
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By equating the derivatives with respect to the same variables of both sides of the last
relation, we get besides relations (A.3.112 a, b):
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A similar relation can be obtained for the Oz - axis of the reference frames.
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Hence, in compact form

( )

.

;

o2
o1

oo11

oo11oo11

⎟
⎠

⎞
⎜
⎝

⎛
−α=

⋅−α=

V
c

VV

v
AA

Av

(A.3.122 a, b)

List of Symbols Used in Appendix 3

21a – acceleration in the reference frame 1K  of a material point at rest with respect to
reference frame 2K ;

oA – vector potential in the reference frame oK ;

1A – vector potential in the reference frame 1K ;

ooxA – component of the vector oA  along the oo xO - axis;

11xA – component of the vector 1A  along the 11xO - axis;
c – velocity of light in vacuo;

ld – vector length element;

iF – force acting in the reference frame iK  upon a material point j  that is moving
with the velocity jiv  with respect to the reference frame iK ;
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irF – rest component of the force iF corresponding to the case in which the material

point would be at rest with respect to the reference frame iK ;

ivF – motion component of the force iF arising in the case in which the material

point is moving with the velocity jiv with respect to the reference frame iK ;

iK – symbol of an inertial reference frame, where the space co-ordinates have been
denoted ix , iy , iz , and the time it ;

m – relativistic mass of the material point in motion with the velocity u , with
respect to any inertial reference frame K ;

0m – rest mass of a material point, at rest with respect to any reference frame K ,
expressed in the same reference frame; if no other mention is made, then by
mass is understood the rest mass;

q – electric charge of a point-like body;

or – position vector of a point in the reference frame oK , with its origin at the

origin of the same reference frame;

1r – position vector of a point in the reference frame 1K , with its origin at the

origin of the same reference frame;

ot – time in the reference frame oK ;

1t – time in the reference frame 1K ;
u – velocity of a material point in any reference frame K ;
v – velocity of any reference frame relative to the reference frame K ;

o1v – velocity of the reference frame 1K relatively to the reference frame oK ;

o2v – velocity of the reference frame 2K or of a material point denoted by 2,

relatively to the reference frame oK ;

jiv – velocity of a point denoted by j or of any reference frame jK relatively to the

reference frame iK ;

oV – scalar potential in the reference frame oK , p. 268; volume, p. 248;

1V – scalar potential in the reference frame 1K , p. 268; volume, p. 248, 261;

ooo ,, zyx – co-ordinates in the system of co-ordinates of oK ;

111 ,, zyx – co-ordinates in the system of co-ordinates of 1K ;

;
1

1

1

1
22
ijij

ij

c

ij
ij

v
;

iS – vector surface element in the reference frame iK ;

vi – volume density of the electric charge in the reference frame iK .

The symbols with one index refer to a certain reference frame, for instance 1K .

The symbols with two indices refer to quantities concerning two systems, for instance o2v

represents the velocity of the reference frame 2K relatively to the reference frame oK .



 
                                                                                       
                     
 

APPENDIX 4 
 
 

DEDUCING THE GENERAL RELATIONS 
OF THE SPECIAL THEORY OF RELATIVITY  

 

In this Appendix, we shall present a deduction of certain basic relations of the Theory 
of Special Relativity concerning Mechanics, which we have used in Appendix 3. The 
deductions differ from the usual ones and are closed to the concerned applications. 
 
 

A.4.1. DERIVING THE CO-ORDINATE TRANSFORMATION 
RELATIONS FOR PASSING FROM ONE SYSTEM 
OF CO-ORDINATES TO ANOTHER ONE 

 

We shall consider two systems of Cartesian co-ordinates, denoted K and 'K . The axes 
of co-ordinates of the two systems are parallel to each other. The time and space  
co-ordinates of K will be t, x, y, z, and c will represent the velocity of light in vacuo, and 
will be assumed to be constant. The system K will be considered as fixed and the system 

'K  will be considered in translation motion, with the constant velocity v, along the 
Ox - axis of K. At the first moment, i.e., at 0=t , we shall suppose that the origins O and 
O′  of the two systems of co-ordinates coincide. 

The fundamental relation assumed in the Special and General Theory of Relativity is 
represented by one invariant, namely the constant value of the space-time interval: 
 

[ ] ;;;;;3,0;ddd 32102 zxyxxxctxixxgs ji
ij ====∈∀=  (A.4.1 a-e)

 

where ijg  represents the general term of the fundamental tensor, regardless of the system 
of reference. The relation (A.4.1) is called the fundamental time-space relation or 
fundamental form of the metric relation of the considered space. 

In the case of a Galilean system of co-ordinates: 
 

( ) [ ] ;;;;3,1,ddd 3212222 zxyxxxixtcs i ===∈∀−=  (A.4.2 a-d)

 

and then, the corresponding quadratic form (A.4.1) becomes (A.4.2) and is called normal 
or quasi-Euclidean form.  

Since we have considered the motion only along the Ox - axis, we shall take into 
consideration, apart from the time co-ordinate, only the x co-ordinate involved in the 
motion, whereas the co-ordinates y and z are not affected. The co-ordinates of the system 

'K  will be denoted like those of K, but with the sign prime. 
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We shall look for the relations between the co-ordinates in the two systems of co-
ordinates of above. So far, in the previous published works, these relations have been 
usually obtained through relatively complicated geometrical deductions, which we shall 
avoid. For this purpose we shall express the involved co-ordinates of the system K versus 
those of 'K , namely x and t. 

A linear dependence will be assumed, as follows: 
 

.
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 (A.4.3 a, b)

 

From the condition of the constant value of the space-time interval (A.4.2 a), we get 
the following relation: 
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By identifying the coefficients, there follows:  
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By replacing p and q from (A.4.5 a) and (A.4.5 b) into (A.4.5 c), we get:  
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For the square root, we have taken the sign plus and we shall examine further the case 
which corresponds to the chosen sign. 

We shall consider any point fixed in the system K ′ , for instance the origin O′ , with 
,0=′x  its velocity in the system K will be v along the direction of the increasing values 

of the co-ordinate 'x . 
Considering relations (A.4.3 a, b), and replacing ,0=′x  there follows: 
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Using relations (A.4.3) and (A.4.7), and including also the relations containing the   
co-ordinates unaffected by the co-ordinate transformation, there follows: 
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For the inverse transformation, by solving the system given by (A.4.8), we obtain: 
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where we can remark the change of sign. From these sets of relations, it results directly 
that simultaneous events in frame K ′  are not simultaneous in frame K, and conversely. 

Also, from relation (A.4.8 b), it follows that for a clock located at any fixed point of 
the frame K ′ , one obtains tt ′∆α=∆ , hence tt ′∆>∆ , so that we deal with a dilation of 
time. 

In addition, from relation (A.4.9 a), it follows that, for a ruler placed in K ′  along the 
xO ′′  - axis, at any given time t, one obtains xx ∆α=′∆ , hence xx ∆>′∆ , so that we now 

deal with a contraction of length. 
 
 

A.4.2. DERIVING THE EXPRESSION OF THE ADDITION 
OF VELOCITIES 

 

Further on, in order to give more suggestive explanations, we shall denote the 
reference frames K and K ′ , by oK  and 1K , respectively, where the original frame K, 
assumed as immobile, is indicated by the upright subscript o, whereas the moving frame 
is indicated by the subscript 1. We shall similarly denote the quantities belonging to these 
systems. The constant velocity of 1K  relatively to oK  will be denoted xv o1o1 iv = . 

Let us consider a point P, moving with the velocity 21v  relatively to the reference 
frame 1K . At any time, if 1x  is the co-ordinate of a point in 1K , the corresponding 
co-ordinates in oK  are consequently:  
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The velocity xv o2  of point P in oK  will be obtained by using relations (A.4.8 a, b) 
with the modified symbols as explained above: 
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 (A.4.11 a, b)

Further on, we shall take into account that no difference occurs between oy  and oz  
relatively to 1y  and 1z . 

As previously shown for xv o2 , there follows: 
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 (A.4.12 a-c)

 

Calculating the derivatives with respect to time, like previously, we shall get the 
expressions of the accelerations.  
 
 

A.4.3. RELATIONSHIP BETWEEN MASS AND VELOCITY 
 

According to one of the postulates of the Theory of Special Relativity (Chapter 2, 
p. 99), the mechanical momentum (quantity of motion) along any direction perpendicular 
to the direction of motion is kept (conserved) when passing from an inertial reference 
frame oK  to another 1K . Therefore, for any material point 2, with the mass om , we can 
write the following relations: 
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where the factor yv 12  may be simplified. We shall, now, consider the material point at 

rest in the reference frame 1K , and in this case, 021 =xv , and the mass of the material 
point in a reference frame in which the point is at rest, called proper mass, will be 
denoted by 0m (the subscript is zero not o, as for other symbols, o0 mm = ). By replacing 
the value of the velocity 021 =xv , we get:  
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A similar relation may be written for any system of reference. 
 
 

A.4.4. RELATIONS BETWEEN THE FORCES OF TWO SYSTEMS    
OF REFERENCE 

 

The components of the force will be calculated by the derivatives with respect to time 
of the components of the momentum (quantity of motion). 
 

A.4.4.1. Expression of the Components along the Ox - axis 
 

The expression of the force acting on a material point P, along the Ox - axis, will be: 
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where 0m  (the index of m is zero not o) denotes, like above, the proper mass of the point, 
considered as a material point, in a reference frame in which the point is at rest. By using 
relations (A.4.11) and (A.4.12), we shall obtain: 
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For obtaining relation (A.4.16), have had to replace (A.4.11 b), (A.4.12 b), (A.4.12 c) in 
the left-hand side of relation (A.4.16), hence in (A.4.16 a), below: 
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By performing the calculations, we have obtained as an intermediate result the following 
expression:  
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and grouping the terms of the numerator in formula (A.4.16 b), we obtain the right-hand 
side of relation (A.4.16). 
 The component of the force along the Ox - axis in the considered systems of reference 

oK , results as follows: 
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Therefore: 
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There remains to calculate the term R. We can write:  
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(A.4.19)

 

where, for simplicity, we have denoted 
1

21
21 d

d
t

v
v =& . 

The expression of R is, to some extent, similar to that of xF1  but includes a scalar 
product. Therefore, we shall express xF1  using also a vector form: 
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In order to separate a common factor in both expressions, namely (A.4.19) and 
(A.4.20) eliminate 21v& , we multiply the last one by 21v . We shall obtain: 
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By comparing relation (A.4.21) with (A.4.19), it results that: 
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A.4.4.2. Expression of the Components along the Oy - and Oz - axes 
 

The expression of the force acting on a material point P, along the Oy - axis, according 
to formulae (A.4.12) and (A.4.13), will be: 
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 Similarly, we can obtain the expression of zFo . 
 

A.4.4.3. Expressions of All Components  
 

For obtaining compact expressions in view of many applications, we shall use the 
symbols and expressions below: 
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 With these symbols, and assuming that xvi o1o1 =β , relations (A.4.22) and (A.4.23) 
becomes: 
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 Combining the formulae (A.4.24) and (A.4.25), we can write all relations in the 
following vector form: 
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APPENDIX 5 
 
 

THE EQUATIONS OF THE ELECTROMAGNETIC FIELD 
IN THE GENERAL THEORY OF RELATIVITY  

 

In this Appendix, we shall present the equations of the electromagnetic field in the 
Special and General Theory of Relativity. We shall begin with the covariant forms of the 
equations, so that the passage from the Special to the General Theory of Relativity could 
be performed without difficulties. The bibliographic mentions [1]-[12], specific for this 
Appendix, are at the end of this Appendix. Also, a list of symbols is given at the end of 
this Appendix. In the known literature various methods are used [1]-[11]. We shall have 
in view the works [8], [9], which present certain advantages for the purpose of this 
Appendix. 
 
 

A.5.1. THE FOUR POTENTIAL TENSOR OF RANK 1 AND THE 
TENSORS OF RANK 2 

 

From the formulae of the general theory of the electromagnetic field (Chapter 3, 
p. 129, 134, 142, 150, 182), in the usual vector form, we have: 
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We shall rewrite the equations (A.5.1) considering the general case of non-linear 
media: 
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 (A.5.2 a-c)

 

Rearranging the terms of (A.5.2 c), we get: 
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Since only the curl of vector A is imposed, the divergence can be chosen by using the 
L. V. Lorenz (not to be confused with H. A. Lorentz) gauge condition: 
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The last relation may be written in the form: 
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The components along any axis of a Cartesian system of co-ordinates will be: 
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The relations (A.5.1 a, b) may be written using a set of four quantities iA  as follows: 
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A.5.2. ESTABLISHING THE NATURE OF THE TENSORS 
 

A tensor is in fact a geometrical object, the vector being a particular case. By the 
nature of a tensor is meant its character, namely whether when passing from one system 
of reference to another one, the tensor will be transformed as a contravariant or as a 
covariant one. 

If the geometrical object, which will be defined as a tensor, is considered separately, 
with no relation with other tensors, each of the two variants may be chosen. If it is 
considered in relation with other tensors, its nature being established, the situation is 
different. For example, it is necessary to mention that if the product of two tensors yields 
a result of a certain nature, say a scalar (tensor of rank 0), the product should give the 
same result in any other system of reference. 

If the character of one tensor is established and we have to choose the character of a 
geometrical object that will constitute the other tensor, one can use the known 
procedures: the tensor quotient law [5, p. 167] or the theorem of tensor classification  
[10, p. 376]. We shall extend the last one, using integral operators, in order to facilitate 
the procedure.  
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 In order to fix the ideas, we shall establish the nature of the set of four quantities iA  
that may be functions of co-ordinates. Several explanations have been given in literature 
on this subject, some of them referring to formula (A.5.4), but without a precise 
conclusion [12]. 

However, we consider that this analysis may be carried out as follows. We shall refer 
to Section 3.10 where the transition from the system of reference K  to the system of 
reference K ′ , both being inertial systems, is examined. We shall take into consideration 
that 0AV −=  in (3.115) and (3.116 a), of Chapter 3, as in (A.5.6 c). Rewriting those 
relations using the symbols above, and replacing iA  by iAc  for 0≠i , there follows:  
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and:  
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 By comparing the two systems of relations, it follows that the set 3210 ,,, AAAA  and 

the set 3210 ,,, xxxx  change in different manners. Therefore, the latter set being a 
contravariant four-vector, the former will be a covariant four-vector. Then, we can 
renounce the replacement. According to Linear Algebra relationships, if the set 

3210 ,,, AAAA  is a covariant tensor of rank 1, each set obtained from the previous one by 
multiplying each element (component) by any constant factor, will also be a covariant 
four-vector, i.e., hence a tensor of rank 1. Therefore the set [ ]3,0, ∈∀ iAi , is a covariant 
four-vector. 

In general, in any multidimensional continuum (space), in the present case, a four-
dimensional one, any set of four quantities, that is a geometrical object with four 
components (elements), which can be functions of co-ordinates, may constitute a tensor 
of rank 1, provided the transformation formulae when passing from a reference frame to 
another, are like the transformation formulae of the co-ordinates, or opposite. In the 
former case the tensor will be called contravariant tensor, and in the latter one, the tensor 
will be called covariant tensor.  

From the mathematical point of view, we can choose any of those transformation 
formulae. It should be added that regardless of the chosen formulae, the length of the 
tensor will be the same, only the components will differ. From the physical point of view, 
it is useful to choose a transformation, which is in good agreement with the physical 
conditions, and requires the smallest volume of computations. Moreover, it is necessary 
that the nature of tensors entering an equation should be the same, otherwise the equation 
being not valid.  

Having these possibilities in choosing the nature of the geometrical object above, we 
shall consider it as a covariant tensor of rank 1, which is a covariant four-vector. 

We shall make a first verification in order to examine the previous choice. Let us 
consider relation (A.5.1 b), and calculate the flux of vector B through any simply 



General Theory of the Electromagnetic Field 
 

 

286 
 

connected surface bounded by a closed curve Γ in a three-dimensional continuum (space). 
Further on, we shall use an integral form. According to Stokes theorem, we shall replace 
the calculation of the flux, of the right-hand side of the theorem relationship, by the 
calculation of the circulation along that curve, which will be given by the integral of the 
left-hand side of the relation. 

We shall assume that the flux is a scalar. Then, if the covariant vector component iA , 
of the circulation element ii lA d , multiplied with the contravariant component ild , 

remarking that the line-element can be written ild , should yield a scalar, hence in 
accordance with the physical meaning of the considered case. We can add that, according 
to relation (A.5.6 b), for calculating the magnetic flux, the component 0A  does not occur.  

The velocity of light in vacuo, denoted by c is assumed to be constant. According to 
relations (A.5.6 a) and (A.5.6 b), we shall consider two tensors of rank 2, namely ijF  and 

ijG  by which the field state quantities will be expressed in a new general form as 
follows: 
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Therefore, we can write: 
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Introducing the axis coefficients of the Galilean reference frame, iie , we can write: 
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 (A.5.9 a, ..., e) 

and: 
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 It is useful to mention that expression (A.5.8 a) is antisymmetric with respect to 
indices i and j. 
 We shall verify whether ijF  represents a tensor of rank 2. By examining relations 
(A.5.8 a), we can see that ijF  is expressed by two relations, which represent a difference 
of two terms, each of them containing derivatives of vector iA .  
 From the expression (A.6.44), of Appendix 6, for a Galilean system of reference, it 
follows that the expression (A.5.8 a), after the scaling, represents the difference of two 
covariant derivatives, hence of two tensors, therefore it is also a tensor, namely covariant 
and of rank 2, in a four-dimensional continuum. 

 
 
A.5.3. THE FIELD STATE QUANTITIES FOR NON-POLARIZED 

MEDIA 
 

Using the tensor functions above, we can write the following expressions, of the usual 
three-dimensional vectors, along the axes denoted here by subscripts i and k: 
 

[ ];3,1,,;;0 ∈∀=== kjiGGHFE ij
ijkii  (A.5.11 a, b)

and further: 

[ ],3,1,,;1;1
00 ∈∀===ε= kjiF

c
BBG

c
ED ijijkiii  (A.5.12 a, b)

 

here kkii BHDE ,,,  do not represent the components of tensors, but the components of 
the usual three-dimensional vectors. 

It is interesting to be noted that according to the tensor quotient law, the electric 
displacement (electric induction) iD , of (A.5.10 e) is a contravariant tensor of rank 1, as 
it results from the local form of the electric flux law. Indeed the divergence of this vector 
must be a scalar, and hence the vector must be contravariant. 

This result can also be verified by the procedure we have proposed in Section A.5.2, 
expressing the electric flux through a closed surface, and applying the Gauss-
Ostrogradski theorem. In this case, under the integral sign of the left-hand side, there 
occurs the electric displacement iD  considered as a contravariant vector with three 
components, which represent a contravariant tensor of rank 1, multiplied by the product 

kj xx dd  that represents a contravariant tensor of rank 2. Therefore, in the left-hand side 
there occurs a contravariant tensor of rank 3. Under the integral sign of the right-hand 
side, there occurs the divergence of the contravariant vector of component iD , which is a 
scalar, and is multiplied by the volume product kji xxx ddd  that represents a 
contravariant tensor of rank 3. Hence, concerning the type of the vector (tensor of rank 1) 

iD , the result above is confirmed.  
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For the vector electric induction to be contravariant, it is necessary that the covariant 
vector (tensor of rank 1) iE  be multiplied by a contravariant tensor of the second rank. 
We can write: 

[ ] .,3,1,,0
ijij

j
iji ejiED =δ∈∀εδ=  (A.5.13 a, b)

It is to be noted that the tensor iD  is defined using a four-dimensional space, but it 
has only three components, because the components (elements) of tensor ijF  are zero for 
the components of which the two indices are equal to each other, hence for the time 
co-ordinate, i.e., for 0=i . 

The relations (A.5.10 a, e), (A.5.8 c) yield the following tensor relations: 
 

[ ].3,1;; ∈∀−=−= iEEDD i
ii

i  (A.5.14 a, b)
 

The expressions of iE , and kB , from relation (A.5.11 a) and (A.5.12 b), respectively, 
are valid for vacuum as well as for polarized media, while the expressions of iD  and kH , 
from the (A.5.12 a) and (A.5.11 b), are valid only for vacuum. 
 
 

A.5.4. THE FIELD AND SUBSTANCE STATE QUANTITIES FOR 
POLARIZED MEDIA 

 

For a polarized medium, the substance state quantities of electric and magnetic 
polarization, respectively, have to be introduced by symbols P and JM , where we have 
used the index J in order to avoid any confusion with index j above. In this Section, we 
shall consider only the temporary polarization. In addition, we shall indicate in this 
Section, the components of the usual three-dimensional vectors by index k denoting one 
of the three axes. In this case, the respective quantities can be introduced by the following 
relations: 

[ ],3,1,,;;;

;;;

0,J,me,0 ∈∀µ=χ=χε=

===

kjiMMHMEP

HHMMPP

kkjkjkjkjk

ij
k

ij
k

i
k  (A.5.15 a, …, f)

 

where in relations from a to c, in the left-hand side, the usual vector components are 
written, but in the right-hand side, the tensor components are written; while in relations 
from d to f, in both sides, only usual vector components are written. In this manner, the 
components of tensors may be expressed more easily. It follows: 
 

[ ],3,1,,;; ,J0e00 ∈∀+µ==χε+δε= kjiMHBBEED kkijkj
ij

j
iji  (A.5.16 a, b)

 

where jE  may represent the usual vector component as well as the tensor component, 
and ijB , and kB  represent the tensor component, and the corresponding vector 
component, respectively. 
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This subject has been thoroughly analysed in work [6, p. 156, 268]. However, further 
on, we have used, to some extent, another way, in order to allow for including, apart from 
the temporary polarization, also the permanent polarization. 
 
 

A.5.5. THE MAXWELL EQUATIONS IN TENSOR FORM USING THE 
INTRODUCED SYMBOLS  

 
A.5.5.1. The Maxwell Equations for Empty Space  

 

Using the symbols introduced above, we can write the Maxwell equations for empty 
space (vacuum) as follows. We shall consider two sets of equations in the order used by 
H. A. Lorentz, which differs from that of J. C. Maxwell. For the first set, we shall use the 
tensor ijG  and for the second one, the tensor ijF . 

The equations of the first group, using the symbols of the List of symbols, are: 
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∂  (A.5.17)

 

The relations (A.5.17) yield the local (differential) form of the: a) electric flux law 
(after having simplified the factor c of the numerator); b) magnetic circuital law, for each 
axis; as 0=i  or 0≠i , respectively. 

The equations of the second set are: 
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The relation (A.5.18) yields, after having simplified the factor c of the numerator, the 
local (differential) form of the: a) magnetic flux law; b) law of electromagnetic induction 
for each axis; as 0,, ≠kji  or 0=k , respectively. 

We can write an example for the first set: 
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 (A.5.19 a, b)

 

where in the second relation the vector notation has been used. The sign minus before the 
first term of the last equation occurs because of relation (A.5.10 e), and before the third 
term, because of the inversion of the indices. Therefore, the equation of the magnetic 
circuital law, for the first axis, has been obtained. 

We can also write an example for the second set when 0,3,2 === kji : 
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 (A.5.20 a, b)

 

where in the second relation the vector notation has been used. The last equation has been 
obtained after having simplified the factor c of the numerator. 

Therefore, the local (differential) form of the local (differential) equation of the law of 
electromagnetic induction, for the first axis, has been obtained. 
 

A.5.5.2. The Maxwell Equations for Polarized Media  
 

In order to consider the equations for polarized media, it is necessary to introduce the 
polarization tensors of the substance. 

For the first set of equations, we shall complete relations of (A.5.17), according to 
relations (A.5.15 a, b). In order to bring the equation of the first set into a covariant form, 
with respect to any change of co-ordinates, we shall introduce, in the equation above, the 
symbols: 
 

[ ];3,1,: 0
00 ∈∀+δε=+= jPcEcPcGG j

j
jjjjj  (A.5.21)

 

[ ];3,1,: 0
0 ∈∀−δε−= iPcEcG i

i
iii  (A.5.22)

 

[ ];3,1,,: ∈∀−= jiMGG ijijij  (A.5.23)
 

[ ].3,1;0;0; 000 ∈∀==ρ= jMPcJ j
v  (A.5.24 a, b, c)

 

In all definition formulae above, the terms of the form ijG  from the right-hand side 
are those given by relations (A.5.10 c, d). Consequently, equation (A.5.17) becomes: 
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G  (A.5.25 a, …, d)

 

The equations of (A.5.25) correspond to equations of (A.5.17) above. 
For the second set of equations, we shall obtain the same relations as for non-polarized 

media because the occurring quantities are not influenced by considering the polarization: 
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The equation (A.5.26) corresponds to equation (A.5.18) above. 
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A.5.6. THE EXPRESSION OF THE ELECTROMAGNETIC FIELD 

EQUATIONS IN ANY SYSTEM OF REFERENCE 
 

When passing from a Galilean system of reference to any other system of reference, 
we shall use formula (A.5.25 a) above and formula (A.6.74) by which the derivatives 
have to be replaced by the covariant derivatives. Taking into account that the tensor ijG is 
antisymmetric in indices i and j, we can use formula (A.6.76), and there follows: 
 

( ) ,1 iij
j

ij
j JGg

xg
G =−

∂

∂
⋅

−
=∇  (A.5.27)

 

where g is the expression of the determinant formed by the elements ijg  of the 
fundamental (or metric) tensor. Therefore, we have got the general form of the first set of 
equations of the electromagnetic field. 

When passing from a Galilean system of reference to any other system of reference, 
equation (A.5.26) may be written, like equation (A.5.18), hence replacing the derivatives 
by covariant derivatives, in the form: 
 

[ ] .,3,0,,0 kjijiFFF kijjkiijk ≠≠∈∀=∇+∇+∇  (A.5.28)
 

By expanding the expression of the covariant derivative of the tensors, one can remark 
that the terms containing the Christoffel symbols reduce each other, and therefore 
equation (A.5.28) remains unchanged. 
 

Remark. Some general considerations have to be added. The electric field strength is 
a covariant vector, because, multiplied by the co-ordinate variation, a scalar is obtained. 
The electric displacement is a contravariant vector because its divergence is a scalar (law 
of the electric flux). The magnetic field strength is a contravariant tensor of rank 2, 
because its curl, like the density of the electric current, is a contravariant vector (law of 
the magnetic circuital law in local form). The magnetic induction is a covariant tensor of 
rank 2, because its derivative with respect to time is equal to the curl of the electric field 
strength changed in sign (law of the electromagnetic induction), which represents a 
covariant tensor of rank 2. All previous conclusions result as well from the integral form 
of the laws, as shown in the example of Section A.5.2. It is useful to add that the 
preceding observations concern the three-dimensional continuum (space). 

It is to be noted that the replacement of the tensor of the second rank of the magnetic 
induction or of the magnetic field strength, as already mentioned in literature [6], 
represents an approximation by renouncing certain properties of the tensor, and replacing 
it by a polar or an axial vector. The replacement of the axial tensor by a polar one is 
compensated by the system of co-ordinates that may be right-handed or left-handed. 
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List of Symbols Used in Appendix 5 

 

iA  – component of the four-vector potential; 
c  – velocity of light in empty space, supposed to be constant; 

iD  – component of the electric displacement, considered as a usual three-dimensional 
vector; 

iD  – contravariant component of the electric displacement; 

iie  – axis coefficient, for the axis i of the Galilean reference frame, i.e., element of the 
fundamental tensor of this frame; 

iE  – covariant component of the electric field strength, as well as component of the 
electric field strength along axis i as a usual three-dimensional vector; 

iE  – contravariant component of the electric field strength; 

ijF  – component of the covariant tensor of rank 2 yielding ijB ; 

0iF  – component of a covariant tensor, deriving from the previous one, and yielding the 
component iE  of the electric field strength, considered as a usual three-
dimensional vector; 

g  – value of the determinant of the fundamental tensor; 
ijG  – contravariant tensor of rank 2, and yielding ijH ; 

ijG  – covariant tensor of rank 2, and yielding kH ; 

0
0 ,
i
i

G

G
 

– covariant and contravariant components, deriving from the previous one, and 
yielding the component iD ; 

kH  – component of the magnetic field strength along axis k , considered as a usual 
three-dimensional vector; 

i
i JJ ,  – component of a contravariant four-vector representing the density of the 

conduction electric current, along axis i , and of the usual three-dimensional 
vector, respectively; 

ijM  – component of a contravariant tensor of rank 2, yielding kM ; 

kM  – magnetisation along axis k, while the magnetic polarization is kM J , considered 
as a usual three-dimensional vector; 

iP  – contravariant component of the electric polarization; 

kP  – electric polarization along axis k , considered as a usual three-dimensional 
vector; 

V  – electric potential; 
ix  – co-ordinate along axis i ; 

ij
ij δδ ,

 

– symbols equal to unity for equal indices, and equal to zero for different ones 
(Kronecker symbols); 

ε  – electric permittivity, in vacuo it is 0ε ; 
µ  – magnetic permeability, in vacuo it is 0µ ; 

vρ  – volume density of the electric free charge; 
χ  – electric and magnetic susceptibility, according to the index  e or  m. 
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 APPENDIX 6 
 
 

TENSOR CALCULUS 
 

In this Appendix, we shall recall certain definitions and several largely used relations. 
In addition, certain more important proofs will be given. The bibliographic mentions 
[1]-[14] specific for this Appendix are at the end of this Appendix. Also, a List of 
symbols is given at the end of this Appendix. We shall have in view the works [8], [9] 
that present certain advantages for the applications. 
 
 

A.6.1. TENSOR ALGEBRA 
 

The Vector Calculus aims to renounce the systems of co-ordinates, by using vectors, 
which are oriented straight-line segments. The various operations over vectors can be 
performed without resorting to co-ordinates. In the case of more complicated objects, 
when the number of co-ordinates is greater than number three, the use of vectors does not 
suffice. For this reason, it is necessary to use systems of co-ordinates (systems of 
reference, reference frames) [3, p. 25], [14, p. 6], and tensors instead of vectors. 
 

A.6.1.1. Systems of Co-ordinates 
 

 The simplest system of co-ordinates, in the three-dimensional space, is the Cartesian 
system of co-ordinates. The considered system is orthogonal and will be chosen right-
handed. In general, any system of co-ordinates may be used, according to the scope. In 
the Theory of Relativity, taking in view that each event is characterized by its position in 
space and moment in time, a four-dimensional system of co-ordinates is to be used, and 
the corresponding space is called four-dimensional space, four-dimensional continuum or 
space-time continuum. In general, an n-dimensional continuum may be considered. The 
co-ordinates in this continuum are also called Gaussian co-ordinates. 

When passing from a system of co-ordinates to another, the co-ordinates of the first 
will be denoted by ix , and those of the second by ix′ , hence adding the sign prime. The 
quantities referring to the second system will also be indicated by the sign prime. The 
index i written as superscript can take every value of the numbers denoting the co-
ordinates. In accordance with several well-known works, in the case of the Theory of 
Relativity, we shall count the axes of co-ordinates starting with zero (for time). For any 
different case, we shall make mention. The relationship between the co-ordinates of the 
second system will be expressed in terms of those of the first one. The following relation 
will be used:  
 

( ) .,,, 3210 xxxxxx ii =′  (A.6.1)
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The transformation function (A.6.1) must be continuous, and its derivatives of the first 
three orders should also be continuous. In addition, the Jacobian determinant must be 
different from zero, for the inverse transformation to be possible. 

Sometimes, it may occur that the number of axes of co-ordinates of the first system, 
say a Cartesian one, is greater than that of the second system. 

According to the previous assumptions, the total differential of the function given by 
(A.6.1) is: 
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(A.6.2 a)

As a result, one may write: 

.3,0,,dd jixax ji
j

i (A.6.2 b)

A.6.1.2. Tensors of Rank 0 and of Rank 1. Summation Convention. 
Covariant and Contravariant Tensors. Affine transformations. 

In order to fix the ideas, we consider the case where n co-ordinates are necessary. The 
corresponding space is called an n-dimensional space or an n-dimensional continuum. We 
are going to recall that a set containing, for each point of the space, only a scalar, is called 
a tensor of rank (also called order) zero. A set containing, for each point of the space, n
quantities may constitute a vector also called a tensor of rank 1. Any set of n quantities 
may represent a tensor of rank (order) 1, also called vector, but for to be a tensor (vector), 
the set elements must change, when passing (switching) from the first system of co-
ordinates to the second one, according to formulae below: 

,1,0,;; njiAaAAaA j
j

ii
ji

j
i (A.6.3 a, b)

or

njiAaAAaA j
j

ii
ji

j
i ,1,;; , (A.6.4 a, b)

depending on the number attributed to the first axis. We shall use various formulae. 
A set of quantities satisfying a relation of the form (A.6.3 b) is represented by the 

differentials of the co-ordinates as in relations (A.6.2 b). 
In order to simplify the relations, certain authors denote the co-ordinates of the first 

system of reference, in the case in which it is a Cartesian system, by iy  and those of the 

second system by ix , hence renouncing the sign prime, what we also shall do, when the 
case occurs.  

In relations (A.6.2) – (A.6.4), and further on, the summation convention is used, 
namely, if in a term, an index occurs twice, as subscript and superscript, respectively, or 
if two factors of the same term have the same index, regardless of their position (subscript 
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or superscript), it implies the summation of the terms obtained for all values that the 
respective index can take. 

The coefficients of the last relations (A.6.3), (A.6.4), may be expressed as follows: 

.0det;; i
ji

j
j

ij

i
i
j a

x

x
a

x

x
a (A.6.5 a, b)

Among the various possible transformations, one can mention the affine 
transformation and the orthogonal transformation, due to their respective properties. The 
affine transformation preserves co-linearity and ratios of distances. Therefore, in an affine 
transformation all points lying on a line (e.g., a straight-line) remain on the same line 
after transformation. Also, the ratio between the lengths of two portions of a straight-line 
segment keeps the same value after transformation. The affine transformations are linear 
transformations. An affine transformation may be composed of: translation, scaling, 
rotation, shearing and reflection. However the angle between lines may change. The 
orthogonal transformations, also called orthonormal transformations, preserve the length 
of vectors and the angles between them. It may be composed only by rotation or rotation 
and reflection. 

For an orthogonal transformation, the coefficients appearing in (A.6.5) must satisfy 
the relation:

,1det i
ja (A.6.6)

where the transformation for which the plus or minus sign occurs is called a proper or 
improper transformation, respectively.  

In any relation with tensors correctly written, when suppressing the indices denoted by 
the same letters, and occurring as subscript and superscript, respectively, in each of the 
two sides of the relation, the remaining indices in each side will be the same. 

According to the general convention, if the components of a tensor change according 
to formulae of type (A.6.3 a), we deal with a contravariant tensor (with respect to this 
index), whereas if we consider formulae of type (A.6.3 b), we now deal with a covariant

tensor. Each index with respect to which the tensor is contravariant is written as 
superscript, and each one with respect to which the tensor is covariant is a subscript. For 
this reason, the co-ordinates are denoted by using superscripts (except some authors who 
prefer to keep for co-ordinates the index as subscript, in order to avoid the usage of 
parentheses in the case of exponents (powers), but they mention this fact as unusual).  

In the case of the translation, when passing from a Cartesian system of co-ordinates to 
another one of the same type, translated and rotated with respect to the former one, the 
coefficients of relations (A.6.5 a) and (A.6.5 b), are equal. Consequently, then no 
difference appears between the covariant and contravariant tensors. It is an orthogonal 
transformation. In the case of the Cartesian systems of the Special Theory of Relativity, 
which represent Galilean systems of reference, the Lorentz transformation is orthogonal, 
but it is to be noted that the field state quantities do not change like the co-ordinates or 
inversely, because they do not represent four-dimensional vectors.  
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A.6.1.3. Operations with Tensors. Tensors of Rank 2. 

In order to fix the ideas, further on, we shall consider a four-dimensional space, and 
precise some important operations. 

1° Addition. The sum of two tensors of rank 1 may be seen in the example: 

3,0; iBAC iii , (A.6.7)

where the values taken by the index i are also given, so that one finally obtains 4 
relations. The relation above is not casual and corresponds to the addition of the 
components of two vectors. As a result the sum of two tensors is also a tensor.

2° Multiplication. The product of two tensors of rank 1 may be seen in the next 
example: 

.3,0,; jiBAC jiij (A.6.8)

The following components (elements) will be obtained for the indices 0i  and 1i :

.3,0,;;;;

;;;;

3113211211110110

3003200210010000

jiBACBACBACBAC

BACBACBACBAC
(A.6.9)

Similarly, we can write the components for the other values of the index i. Finally, 16 
scalar values will be obtained. In this case, it is necessary to use in the left-hand side two 
indices for obtaining a suggestive representation of all obtained elements. Therefore, we 

shall obtain a set of 24  quantities, which may be a tensor of rank (order) 2, and the 
symbol of the general term (that may also be called component or element) of the tensor 
will have two indices. 
 In this case, the expression of the general term of the tensor, when passing from the 
first to the second system of reference is: 
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x
BAC , (A.6.10)

which, as further shown, is a twice covariant tensor. 
 There follows that the values of the components of the tensor will change when 
passing from a reference system to another one, according to the transformation relation, 
as for the co-ordinates if the respective index is contravariant, and inversely if the index 
is covariant. As shown in the last relation, if the letter of a certain index appearing twice, 
may lead to a confusion, it is convenient to replace it by another letter, as we did, because 
if the index takes the same values, the result will be not affected. 
 From the previous example, there follows that the product of two tensors, in general, 
depends on the order of factors. 
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3° Tensors of rank 2 (Tensors of the second order). Tensors of higher rank.

According to relation (A.6.10), a set containing 2n  quantities (first condition) may be 
a tensor of rank 2 in an  n-dimensional continuum, whether when passing from the first 
system of reference to the second, the general term will change according with the 
character of the respective index contravariant or covariant (second condition), like to the 
co-ordinates or conversely. The form of the general term of a rank 2-tensor shows one of 

the following forms: j
i

ij
ij TTT ,, , namely twice covariant, twice contravariant, mixed 

once covariant and once contravariant. If the tensor is written as a matrix, the letters i and 
j denote the row and column, respectively. Other symbols have been proposed in [7]. 

Any tensor ijC is called symmetric or antisymmetric, in its indices i and j, as the 

relation jiij CC  or jiij CC , respectively, is fulfilled [5, p. 69]. An antisymmetric 

tensor can be built up by the relation: 

3,1,, jiBABAC ijjiij . (A.6.11)

By examining this tensor, we can see that it has 9 components, and only 6 are different 
from zero, the terms with the same double index being zero. From these 6 terms, three of 
them differ from the other three only in sign. Considering three components, we can see 
that they just represent the components of the vector product of two three-dimensional 
vectors.

Any tensor of rank 2, say ijT  may be considered as constituted of two tensors: one 

symmetric ijS , and another antisymmetric ijA , as follows: 

.;
2

1
;

2

1
ijijijjiijijjiijij ASTTTATTS (A.6.12)

Similarly, we can write the general term of a tensor several times covariant and 

several times contravariant, for instance uv
ijkT , which represents the general term of a 

tensor of rank 5, three times covariant and twice contravariant.

 4° Equality of two tensors. Two tensors, ijA  and ijB  are equal to each other if each 

element of one is equal to the corresponding element of the other: 

NjiBA ijij ,, . (A.6.13)

 This property of the tensors is invariant, because if this property is fulfilled in a system 
of reference, it holds in any other system of reference. Consequently, if the components 
(elements) of a tensor are zero in one system of reference, they will also be zero in any 
other system of reference. 

 5° Contraction of a tensor. The operation results from the following example. Let iA

and jB  be two tensors, their product will be j
i

j
i BAC . If one puts ji , the result 

will be: 
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3,1,3
3

2
2

1
1 jiBABABABABA i

j
j

i , (A.6.14)

which just represents the scalar product of vectors iA  and jB . The contracted result will 
be, in this case, a scalar. If the tensors of the product were of higher rank, then the result, 
after the contraction on an index, will lead to a tensor of a rank smaller of two unities. 
This operation is called contraction on an index, in the previous case on index i.

 6° Tensors of higher ranks. The rank or order of a tensor is equal to the number of 
indices. All operations explained above are valid regardless of the rank of the considered 
tensors.
 It is useful to add that if a set of quantities multiplied with a tensor of rank p yields a 
tensor of rank qp , then, the set will be a tensor of rank q. This rule is called the 
quotient law [5, p. 71], or more generally, the theorem of tensor classification 

[10, p. 376].

 7° Covariant equation. Another remark concerns the equations. In Physics, an 
equation must keep the same form when passing from a Cartesian system of co-ordinates 
to another one. This property is expressed saying that the equation is covariant with 
respect to the transformation of the co-ordinates. The property is called covariance of the 

equation with respect to the transformation of co-ordinates. This property may be 
extended to any system of co-ordinates. We should add that in this case, the meaning of 
the word covariant is different from the meaning concerning the type of a tensor. 

A.6.2. TENSOR ANALYSIS 

A.6.2.1. The Metrics of a Space 

 The metrics of a space represents, in fact, the expression of the distance between two 
points very near to each other. The expression may have different forms. In the case of 
the three-dimensional space (Euclidean Geometry), in a Cartesian system of reference, 
the expression will be: 

2322212 dddd xxxs . (A.6.15)

 Also in the case of a Cartesian system of co-ordinates, but with four dimensions, in the 
Theory of Relativity, the following metric relation is used: 

3,1,1;1;,0;3,0,ddd 00
2

ieejieixxes iiij
ji

ij . (A.6.16)

 A system of reference the metrics coefficients of which are given by relations (A.6.16) 
is called Galilean system of reference. 
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A.6.2.2. The Fundamental Tensor. General Systems of Co-ordinates. 

We shall consider anew two systems of co-ordinates, the first being a Cartesian 
system, like above, and the second any curvilinear system. In this case, we shall denote, 

as mentioned after formula (A.6.4), the co-ordinates of the first system by iy , and those 

of the second by ix . We want to express the transformation of the metric relation in the 
second system. The metric relation is assumed invariant when changing the system of co-
ordinates. Indeed, the distance between two points must be the same, regardless of the 
system of co-ordinates. Therefore, we shall equate the metric relation expressed in the 
two systems. We here consider the case with four co-ordinates used in the Special and 
General Theory of Relativity. The following quadratic form may be written as follows: 

.3,0,,dddd

2
222

kix
x

y
exaeyes k

k

i

ii
ki

kii
i

ii (A.6.17)

Expanding the terms of the preceding equation, we shall get: 

3,0,,,ddd 2
lkixx
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x

y
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k

i

ii . (A.6.18)

The relation (A.6.18) may be written in one of the forms: 

;3,1,,dddd2ddd

;3,0,,ddd

0
0

00
00

2

2

xxgxxgxxgs

jixxgs ji
ij

(A.6.19 a, b)

which is a quadratic form, called fundamental form of the metrics, and contains the 
following quantities: 
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egg (A.6.20)

where 1N  represents the number of axes of co-ordinates of the first system. If the 
numbering of axes began with 1, then the index zero would be replaced by 1, and N will 
be the number of axes of the first system. 
 The set of elements ijg  represents a tensor called the fundamental tensor. Indeed, it 

fulfils the first condition from 3º of A.6.1.3, containing 16 components (elements), thus 
2n elements in a space with 4n  dimensions. Concerning the second condition from 3º 

of A.6.1.3, we shall remark what follows. In relation (A.6.19), the product ji xx dd ,
which is the product of two contravariant tensors of rank 1, represents a contravariant 
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tensor of rank 2. The product of this tensor with the tensor ijg  yields a scalar, namely the 

left-hand side of the equation, therefore the set ijg represents a covariant tensor of rank 2.  

In the case of a Cartesian system of co-ordinates, these quantities become: 

;,0;3,1,1;100 jigigg ijii (A.6.20 a) 

where ijij eg , and then the quadratic form (A.6.19) takes the form of the expression in 

(A.6.17) after the first equal sign, and is called normal or quasi-Euclidean form of the 

metrics of the considered space. If no confusion occurs it may be written ix  instead of 
iy . The quantities ije  may also be called axis coefficients. 

If a quadratic form has the coefficients ijg  different from those of formulae      

(A.6.20 a), it is called a Riemannian form of the metric relation of the space defined by 

the co-ordinates ix . If the fundamental quadratic form of any space cannot be reduced to 
the form having the components of formulae (A.6.20 a), that space is considered, by 
analogy with the theory of surfaces, as having a curvature [10], [11]. 

A.6.2.3. Relations between Covariant and Contravariant Vectors 

Consider as given any covariant vector iA . We are now looking for the relation 
between a covariant vector and a contravariant one, in any n-dimensional continuum 
(space). It is possible to obtain a contravariant vector from the covariant one, by using the 
following relation: 

njiAgA j
iji ,0,, . (A.6.21)

The components of the contravariant vector can be obtained by solving the system of 
equations (A.6.21). One obtains: 

ij

ij
ji

i

ij
j ggnji

g

D
gA

g

D
A det;,0,,, , (A.6.22)

where the quantities of the form jiD  are cofactors (minors) corresponding to the element 
ij,  of the determinant D of the quadratic fundamental form made of elements ijg .

 Similarly, we can write: 

njiAgA i
jij ,0,, . (A.6.23)

The operations represented by relation (A.6.21) and (A.6.23), respectively, may be 
referred to as lowering and raising an index, respectively [5, p. 173]. 
 By replacing expression (A.6.22) into (A.6.23), it results that: 
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nji
g

D
gAgA

g

D ij
ji

i
ji

i

ij

,0,;; , (A.6.24)

and, if changing the order of indices, the tensor ijg being symmetric in i  and j  we get: 

g

D
gg

ji
jiij . (A.6.25)

 If considered as matrices, ijg and ije  are the inverse of ijg  and ije . Hence ij
ij ee .

 Similarly, one can transform the character of a tensor, say a contravariant tensor of 

rank 2, denoted ijT , by lowering one index. For this purpose, we multiply the tensor with 
the element kug  of the fundamental tensor, and we shall contract on indices i and u, by 
putting ui , as follows: 

j
kku

ij TgT , (A.6.26)

and a half-height dot was placed instead of the index which vanished, in order to show the 
places of indices on which the tensor was contracted. These dots are used in cases in 
which, for any reason, this mention is required or useful. We obtained a mixed tensor, 
once covariant and once contravariant. The same transformation may appear in the form: 

j
kki

ij TgT . (A.6.27)

 In the case of a Galilean (also called quasi-Euclidean) system of reference, several 
simple relationships can be obtained, as follows: 
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(A.6.27 a-e) 

where, for simplicity we omitted the signs dot. 

A.6.2.4. Relations between the Components of the Fundamental Tensor 

1° First relation. Consider the term below: 

jk
ik

j
i ggg . (A.6.28)

This relation may be obtained from: 

j
j

ij
jk

ikij
jkkk

iki AgAggAAgAAgA ;; . (A.6.29)
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In order to get ji AA , it follows that in relation (A.6.29) the coefficient of the last 

right-hand side should be: 

jigjig
j

i
j

i ,1;,0 . (A.6.30)

2° Second relation. Consider the product below, where the indices j and k do not 
vary. One will get: 

k
j

nk
nj

k
j

k
j

ik
ij ggggggggg ...2

2
1

1 . (A.6.31)

3° Third relation. We shall consider the product above, but we shall put kj . Then, 
we can start from the result above, and j can take successively n values, and for each 
value, that product can be different from zero, and thus equal to unity, only if the two 
indices are equal to each other, hence n times. One immediately obtains: 

nggg
j
j

ij
ij . (A.6.32)

 4° Kronecker symbols. Related to the relations above, the symbols j
i

ij
ij ,, , also 

called Kronecker symbols, have also to be considered. Each of this symbols has the 
property to have the value zero if ji , and the value 1 if ji . Therefore, we can write 

ijij e . The sets ijg , ije and ij  are tensors of rank 2, twice covariant. 

A.6.3. THE LENGTH OF A VECTOR IN ANY SYSTEM OF 
REFERENCE 

In order to express the length of a vector iA  at any point, in any system of reference, 
one can refer to relation (A.6.19), which expresses the square of the element of length. 
The components of the considered vector being along the tangents of the lines of co-
ordinates supposed translated at that point, the use of the mentioned relation is justified. 
Therefore, the length will be obtained from the following relation: 

i
i

j
j

ji
ij AAAAAAgA2 , (A.6.33)

which is like the square of the modulus of a vector in the three-dimensional space. 

The angle between two vectors iA  and jB can be expressed, on similar bases, as 
follows:

i
i

i
i

i
iji

BBAA
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BA ,cos . (A.6.34)
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A.6.4. COVARIANT DERIVATIVE OF A COVARIANT VECTOR 

For the sake of clarity, we shall present a simple deduction of the covariant derivative 
of a covariant vector, avoiding several extensions used in literature, like the parallel 
transport of a vector, gradient of an alternative vector, and other considerations. 
Nevertheless, we shall obtain the same results necessary for calculations. 

Let us consider two systems of reference denoted by GK  (Galilean system) with 

1N  dimensions (the first dimension being denoted by zero and the last by N), and by 
K, any inertial or non-inertial system of reference with four dimensions. In the former 

one, the co-ordinates will be denoted by iy  and in the latter one, by ix . Also, let us 
consider one covariant four-vector, denoted in the former system of reference frame by 

iY  and in the latter by iA . The relation between the vector components is: 

.3,0,,0, iNa
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y
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ai (A.6.35)

The derivative of vector Ai with respect to kx  will be:
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The existence of the two terms of the last relation corresponds to two reasons: a. The 
variation of the vector with the position of the observation point in space; b. The variation 
of the vector components with the type of the system of reference. 

Using the fundamental tensors aae  and uvg  of the two systems of reference, we have 
the relations: 
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By substituting the expression (A.6.37) into relation (A.6.36), we shall obtain: 
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We shall denote: 

,,0,3,0,,,

,
2

Navlki

x

y

x

Y

xx

y

x

y
Age

x

A
A

i

a

k
a

ki

a

l

a

v
vl

aak
i

ik
(A.6.39)

and:
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When passing from the reference frame GK  to the reference frame K, the first factor 
of the last term of equation (A.6.40) changes like a tensor (A.6.3 a, b), therefore the term 
of the left-hand side is also a tensor twice covariant. It is called the covariant derivative of 
a covariant vector. One may say that it corresponds to a gradient calculation. 

We recall the usual symbol of any element of the fundamental tensor (A.6.20): 
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where 1N  represents the number of dimensions of the former system of reference 
denoted by GK . According to (A.6.39), one denotes: 
]
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and also, the known relation: 
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where ikl , and v
ik  are the Christoffel symbols of the first and second kind, respectively. 

The last relation, (A.6.43), resulted by calculating the expression (A.6.42) using the 

expression (A.6.41) and calculate for ,
k
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g
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g . After eliminating four like terms of 

the obtained set of six terms, by a summation and a subtraction, we have obtained a sum 
composed of two identical terms of the form (A.6.42).  

Therefore:

vikl
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k
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ik Ag
x

A
A , , (A.6.44)

which represents the covariant derivative of a covariant vector. 
In the case in which the derivatives of the components of the fundamental tensor are 

zero, like in the case of a Galilean system of reference, the additional term of expression 
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(A.6.44) is zero, and the covariant derivative has the same expression as the usual 
derivative of a vector.  

Sometimes, it may be useful to use the contravariant derivative denoted: 

ip
kp

i
k

p
kpk AgAg ; . (A.6.44 a)

The proof of relations (A.6.38) – (A.6.40) is a direct one, and avoids many complex 
considerations, as it can be seen by comparing to the usual proofs presented in works 
[1, p. 86], [2, p. 314], [3, p. 222], [5, p. 171], [7, p. 70, 94], [10, p. 395, 401], [11, p. 264, 
229, 165, 276]. 

A.6.5. COVARIANT DERIVATIVE OF A CONTRAVARIANT
VECTOR

In this sub-section, we shall present the following deduction, different from the usual 
ones. We introduce the covariant component into relation (A.6.44) in terms of the 
components of the contravariant one of the same vector. It follows: 
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ijk AggAg
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Ag (A.6.45)

According to relation (A.6.43), after multiplying it with vlg  and considering two sets 
of indices of the Christoffel symbol of the first kind, after summing up, we can obtain the 
relation:

.,, ikjjkik
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(A.6.46)

It results that: 
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 From relations (A.6.46) and (A.6.47), it follows: 
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 Further on, we shall use the well-known summation convention: if an index occurs 
twice in the same term, as subscript and superscript, respectively, the summation has to 
be extended over all the values of that index. 
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 In the last term of relation (A.6.48), according to the summation convention, for any 

value of the index v, the product vj
vl gg , is zero, except the case lj , in which it is 

equal to unity. This results by using the expression DDg jiij / , where D is the 

determinant having the elements ijg , and jiD  is the cofactor (minor) of the element jig ,

or directly, by using formula (A.6.30). But then, since jl , the sum of the second term 
and of the last term of the right-hand side vanishes. Therefore: 
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where we have replaced j by l, both taking successively the same values. 

 Multiplying both sides of relation (A.6.49) by irg , where r represents an integer fixed 
value, comprised between zero and 3 inclusive, we get: 
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Considering the summation convention, and making the same remark as before, which 
have led to relation (A.6.49), we obtain: 
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 Finally, we denote: 
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which is called the covariant derivative of a contravariant vector.  

A.6.5.1. Geodesic Lines 

 Let us replace, in relation (A.6.52), the vector rA  by 
s

xr

d

d
, where sxr  and ds

denote the co-ordinates of each point and the element of the arc s of a curve, respectively, 

equate the relation to zero, and multiply the equation with 
s

xk

d

d
. We shall obtain the 

equation of a geodesic curve also called geodesic line. 
 Accordingly, we consider equation (A.6.52) in the form: 
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Since sxr  is exclusively depending on the variable s, we may write: 
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After replacing (6.54) into (6.53), and multiplying with 
s
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, we shall obtain: 
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Finally, we obtain: 
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which represents the equation of a geodesic line.  
 In the case of a Galilean system of reference, the system of co-ordinates being 
Cartesian, the Christoffel symbols are zero, and the last equation represents a straight 
line. For this reason, in any system of reference, the equation (A.6.56) is considered to 
give the shortest line that is no more a straight line.  

A.6.6. COVARIANT DERIVATIVE OF CONTRAVARIANT AND 
COVARIANT TENSORS OF RANK 2 

1° Case of a tensor twice contravariant 

 The expression of the covariant derivative of a contravariant vector as shown  
in Section A.6.5, relation (A.6.52), is: 

,3,0,,, lkiA
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k (A.6.57)

where the symbol k  denotes the covariant derivative with respect to the co-ordinate k.
 The covariant derivative of a tensor of rank 2 is presented using a novel procedure. Let 

jiij GGG  be the element of a contravariant tensor of rank 2. In order to obtain the 
expression of the covariant derivative, we apply the previous formula, and multiplying 
both sides with the same quantity, we obtain: 
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 Similarly, using the same formula, we shall obtain: 
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Finally, by summing up, we may write: 
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which is the expression of the covariant derivative of the contravariant tensor ijG .

2° Case of a tensor twice covariant 
 The expression of the covariant derivative of a covariant vector as shown in 
Section A.6.4, relation (A.6.44), is: 
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 Let jiij GGG  be the element of a covariant tensor of rank 2. Proceeding like above, 

we shall obtain: 
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3° Case of a mixed tensor once covariant and once contravariant
 Let j

i
j

i GGG  be the element of the considered tensor. Performing calculations like 

above, we shall obtain: 

,l
i

j
lk

j
l

l
ikk

j
ij

ik
j

ki
j

ik GG
x

G
GGGGG (A.6.63)

and:

.l
i

j
lk

j
l

l
ikk

j
ij

ik GG
x

G
G (A.6.64)

4° Case of the fundamental covariant tensor 
Let ijg  be the element (component) of the considered tensor. Performing calculations like 

above, we shall obtain: 
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,il
l
jklj

l
ikk

ij
ijk gg

x

g
g (A.6.65)

and according to (6.43): 

., ,, jkv
lvl

jkikv
lvl

ik gg (A.6.65 a)

By replacing the factors l
ik  and l

jk into (6.65), we shall obtain: 

.3,0,,,,,, vkjigg
x

g
g v

ijkv
v
jikvk

ij
ijk (A.6.66)

Taking into account (A.6.30), we shall obtain: 

.3,0,,,,, kji
x

g
g jkiikjk

ij
ijk (A.6.67)

According to relations (A.6.46), (A.6.67) and also (A.6.32), it results that: 

.0;0 ij
kijk gg (A.6.68)

A.6.7. THE DIVERGENCE OF TENSORS OF RANKS 1 AND 2 

 We shall start, in this Section, from the covariant derivative of a vector. The most 
general case will be examined in the next Chapter. The divergence of a vector in a 
Cartesian system of co-ordinates is: 

.3,0;, iik
x

A
A

k

i
i

k (A.6.69)

Indeed, relation (A.6.57) holds for any value of any value of indices i  and k, among 
which, for instance 2i , 2k , and so on, and summing up side by side, we get the 
result. Therefore, the expression of the divergence of a vector in any system of co-
ordinates is obtained starting from the relation (A.6.57), contracted on indices i, k:

,li
lii

i
i

i A
x

A
A (A.6.70)
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in which, in the case of a Cartesian system of co-ordinates the second term of the right-
hand side vanishes. According to relation (A.6.43), where we introduce the indices for the 
present case as follows: ;;; livliv ===  taking into account the contraction on indices 

,, ki  we shall obtain: 
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2
1

, kig
x
g

x
g

x
g

g iv
v
lk

l
kv

k
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lkv
ivi

lk =⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
−

∂

∂
+

∂

∂
=Γ=Γ  (A.6.71)

 

 We now want to calculate: 
 

., kig
x
g

g
x
g iv

v
lkiv

k
lv =

∂

∂
−

∂

∂
 (A.6.72)

 

 Since the indices ik =  and v can take all values from zero to 3, we can replace k by v, 
and v by k in the first term, and the previous expression becomes: 
 

,kv
v
lkvk

v
lk g

x
g

g
x
g

∂

∂
−

∂

∂
 (A.6.73)

 

the value of which is zero. Therefore: 
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2
1

, ki
x
g

gg l
kvkv

lkv
ivi

lk =
∂

∂
=Γ=Γ  (A.6.74)

 

Let us use the following symbols: D – the determinant formed by the elements ijg ; 
ijD  – the cofactor of the element ijg ; g – the value of D. Since the elements ijg  are 

those of the inverse matrix corresponding to the determinant, we express those elements 
by the corresponding formulae. Taking into account the expression of the derivative of a 
determinant, and that of the symmetry property of determinant D, we obtain: 

 
 

[ ],3,0,;;; ∈∀
∂
∂

=
∂
∂
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x
gD

x
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D
Dg kv

l
kv
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and also: 
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∂
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∂
∂
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∂
∂ vkDgki

x
D

Dx
g

D
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x
gg ll

kv
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l
kvkv . (A.6.75 b) 

 

 Therefore, from relations (A.6.74) and (A.6.75 b), it follows: 
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,,1
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∂
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where, for simplicity, we have replaced D by g. 
 From relations (A.6.70) and (A.6.76), it follows: 
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∂
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 Taking into account that in relation (A.6.73), the indices ki =  and l take all values 
from zero to 3, we replace l by ki = in the last term. It follows: 
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2
1 i

ii

i
i

i A
x
g

gx
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∂

∂
⋅⋅+

∂
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=∇  (A.6.78)

 

 The last relation may be transformed using (A.6.79 a), in the final form (A.6.79 a, b): 
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(A.6.79 a, b)

 

where the plus and minus signs from denominator and numerator correspond to each 
other, the sign minus being taken if g is negative. The symbol Div, instead of div, has 
been used in order to emphasize the general system of reference. 
 The expression of the divergence of a tensor of rank 2 may be written similarly, 
starting from formula (A.6.60), contracted on indices j and k: 
 
 

[ ] .,3,0,, jkjiGG
x
GG ilj

lk
lji

lkk

ij
ij

j =∈∀Γ+Γ+
∂
∂

=∇  (A.6.80)

 In the case in which the tensor ljG  is antisymmetric in the superscript indices j and l, 
whereas the factor i

lkΓ  is always symmetric in the subscript indices l and jk = , the first 
term of the right-hand side of (A.6.80) vanishes. It results that: 
 
 

[ ] .3,0,,, ∈∀Γ+
∂
∂

=∇ ljiG
x
GG ilj

ljj

ij
ij

j  (A.6.81)

 

 Similarly as for relations (A.6.70) – (A.6.78), we get: 
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,
1

Div ij

j

ij
j

ij Gg
xg

GG (A.6.82)

where the plus and minus signs are taken as for relation (A.6.79).

A.6.8. CURVATURE TENSOR OF THE SPACE-TIME CONTINUUM

We shall present a deduction of the curvature tensor. Let iA  be any contravariant 
vector, each component of which is continuous and its derivatives of the first two orders 
exist. Also, let us assume that each element of the fundamental tensor is continuous and 
its derivatives of the first three orders exist.  

A.6.8.1. The Expression of the Curvature Tensor 

Let us consider the covariant derivatives: 

,3,0uA
x

A
A ui

urr

i
i

r (A.6.83)

where the left-hand side of each relation is a tensor of rank 2, once covariant and once 

contravariant. We wish to calculate i
rs A . For this purpose, we shall use relation 

(A.6.63) by putting: ri , ij , sk , ql , i
r

j
i GG , where i

rG  is the right-hand side 

of (A.6.83). After rearranging the terms, there follows: 
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(A.6.84 a) 

and
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(A.6.84 b) 

Now, in order to obtain a simple expression, we subtract the last two equations side by 
side, and we further take into consideration that the terms in which certain indices are 
denoted by different letters, but take the same values from zero to 3, are similar terms. 
There follows: 
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The expression (A.6.85) may be written: 

.ui
rsu

i
srrs ARA (A.6.86)

The factor i
rsuR  of expression (A.6.86), is also called the Riemann curvature tensor, in 

which we have separated, by parentheses, two terms: 

q
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i
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i
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i
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xx

R , (A.6.87)

which is a tensor of rank 4, three times covariant and once contravariant. By contracting 
with respect to indices i and r, we obtain: 

q
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q
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r
qsr

r
us

s

r
ur

su
xx

R , (A.6.88)

which is a covariant tensor of rank 2, also called Ricci tensor. 

A.6.8.2. Geodesic Co-ordinates 

The geodesic co-ordinates are those in which Christoffel symbols are zero, but their 
derivatives with respect to co-ordinates may be different from zero. Therefore, the 
covariant derivative of expression (A.6.87) concerns only the first parenthesis and is: 

rk

i
us

sk

i
uri

rsuk
xxxx

R
22

. (A.6.89)

Using relation (A.6.89), and changing the indices, there follows: 

0i
skur

i
krus

i
rsuk RRR , (A.6.90)

which is the Bianchi identity.
Besides the relations above, the geodesic co-ordinate system has been used in certain 

applications [3, p. 232]. We recall, more detailed than usually, that a geodesic reference 
system, generally, can be considered in a small space around any chosen point. The 
elements (components) of the fundamental tensor are assumed to be functions of point, 
the first derivatives of which have, at the chosen point, the value zero, but their 
derivatives of higher orders may exist. If a tensor is zero at that point, it will keep the 
value zero, at that point, in any other system of reference. 
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The corresponding expressions of the co-ordinates when passing from any co-ordinate 
system, to a geodesic system, can be obtained from the formulae of transformation of the 
Christoffel symbols when passing from a system to another one. Also, for this scope, we 
can use the expressions of the covariant derivative of a covariant vector, when passing 
from the former system to the latter.  

It is to be mentioned that at any point there are an infinity of geodesic reference 
systems [5, p. 188], and it is possible to chose the more convenient for the purpose we are 
looking for. 

List of Symbols Used in Appendix 6 

j
ia – transformation coefficient of the co-ordinates, when passing from one system of 

reference to another one; 

iA – component of the four-vector potential; 

i
i AA , – component (element) of a covariant and contravariant vector (tensor of rank 1), 

respectively;
i

i BB , – component of a covariant and contravariant vector (tensor of rank 1), 
respectively;

c – velocity of light in empty space, supposed to be constant; 

ijC – component of a covariant tensor of rank 2 and the contravariant tensor ijC ;

sd – distance between two points very near to each other, in any continuum (space); 
D – determinant formed by the elements (components) of the fundamental tensor; 

jiD – cofactor (minor) corresponding to element jig  of determinant D  of ijg ;

iie – axis coefficient, for the axis i of the Galilean reference frame; 

ije – component (element) of the fundamental tensor of a Galilean system of reference; 

g – value of the determinant of the fundamental tensor; 

ijg – covariant element (component) of the covariant fundamental tensor in any system 
of reference; 

ijg – element (component) of the contravariant fundamental tensor in any system of 
reference;  

ijG – component of the covariant tensor of rank 2, the contravariant tensor is ijG ;

K – any system of reference, a Galilean system of reference is GK ;

N – total number of co-ordinate axes of a Galilean system of reference, if the number 
of the last co-ordinate axis is N when the first is 1, and it is N + 1 when the first 
is 0; 

ijT – component of a covariant tensor of rank 2, the contravariant tensor is ijT ;
ix – co-ordinate along axis i in any system of reference; 
iy – co-ordinate along axis i in a Galilean system of reference; 

i
i YY , – covariant and contravariant vector (tensor of rank 1), respectively, in a Galilean 

system of reference; 

ij
– symbol equal to unity for equal indices, and equal to zero for different ones 

(Kronecker symbol); 
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,l ik
– Christoffel symbol of the first kind;  

v
ik

– Christoffel symbol of the second kind; 

k
– covariant derivative with respect to co-ordinate k;

k – contravariant derivative with respect to co-ordinate k.
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APPENDIX 7 
 
 

THE VARIOUS DIVERGENCE TYPES OF A TENSOR AND 
OF THE CURVATURE TENSOR IN THE GENERAL 
THEORY OF RELATIVITY 

 

In Appendix 6, we have presented the calculation of the divergence of various types of 
tensors that often occurs. Further on, we shall examine the general expressions of the 
differential operator divergence. The bibliographic mentions [1]-[12], specific for this 
Appendix, are at the end of this Appendix. 
 
 

A.7.1.  DIVERGENCE OF A TENSOR 
 

The calculation of the divergence of a tensor occurs in many problems of Physical 
Mathematics. We consider that the notion of divergence of a tensor has not been enough 
defined and analysed in the usual literature. We shall try to establish a consistent 
definition of a tensor including the calculation procedure, and to apply it to the 
calculation of the divergence of the curvature tensor of the four-dimensional continuum 
space-time. 

Several studies on the divergence of tensors have been carried out for a long time, [1]-
[10]. In paper [10], a deep study on the differential operations on tensors has been 
performed without using the tensor calculus, but instead the general method concerning 
the differential quadratic forms, from the classical mathematical analysis, has been 
utilized. The methods used in the other papers will be examined further on. 

In order to facilitate the understanding, and have a uniform system of symbols, the 
paper includes three Sub-sections: the first one containing several tensor formulae 
frequently used in the paper; the second one presenting a relatively simple deduction of 
the Riemann curvature; and the third one containing a very short deduction of the Bianchi 
identity. 
 
 

A.7.2. THE DIVERGENCE OF COVARIANT 
 AND CONTRAVARIANT TENSORS 

 

The calculation of the divergence of a tensor, as known, is based on the calculation of 
the derivative of that tensor.  
 The divergence of a vector in a Cartesian system of co-ordinates is: 
 

[ ].3,0;, ∈=∀
∂
∂

=∇ iik
x
AA k

i
i

k  (A.7.1)
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We recall the symbols of the covariant and contravariant derivatives, namely k∇  and 
k∇ , respectively. Correspondingly, we may use the denominations of covariant and 

contravariant divergence, respectively. 
The expression of the covariant derivative of a contravariant tensor of rank 1, i.e. a 

contravariant vector, is: 
 

[ ],3,0,,, ∈∀Γ+
∂
∂

=∇ kliA
x
AA li

lkk

i
i

k  (A.7.2)

 

where lkv,Γ , and lkv
ivi

lk g ,Γ=Γ  are the Christoffel symbols of the first and second kind 
respectively. The expression of the divergence of a vector in any system of co-ordinates is 
obtained starting from the relation (A.7.2), contracted in indices ki, : 
 

[ ],3.0,, ∈∀Γ+
∂
∂

=∇ liA
x
AA li

lii

i
i

i  (A.7.3)

 

and represents a tensor of rank zero, i.e., a scalar. Relation (A.7.3) may also be written: 
 

( ) [ ],3,0,1Div ∈∀±
∂
∂

⋅
±

=∇= iAg
xg

AA i
i

i
i

i  (A.7.3 a)

 

where g represents the value of the determinant of the fundamental tensor, and the plus 
and minus signs from denominator and numerator correspond to each other, the sign 
minus being taken if g is negative. The symbol Div, instead of div, has been used in order 
to emphasize the general system of reference. 

The covariant derivative of a covariant tensor of rank 1, i.e., a covariant vector, is 
given by the following relation, and its divergence results by contracting the expression in 
indices i and k: 

.,, ikAg
x
AA vikl

vl
k
i

ik =Γ−
∂
∂

=∇  (A.7.4)

 

The contravariant derivative of the same tensor is given by the following relation, and 
its divergence results by contracting the expression in indices i and k: 
 

.,, ikAg
x
AgAgA vpil
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i
k =⎟⎟

⎠

⎞
⎜⎜
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∂
∂

=∇=∇  (A.7.5)

 

 The expression of the divergence of a contravariant tensor of rank 2 may be written 
similarly, starting from the formula of the covariant derivative of a twice contravariant 
tensor ijG , contracted in indices j and k: 
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[ ] .,3,0,, jkjiGG
x
GG ilj

lk
lji

lkk

ij
ij

j =∈∀Γ+Γ+
∂
∂

=∇  (A.7.6)

 Let us consider a covariant tensor of rank 2, the divergence can be expressed in 
several manners, as below: 
 

s
jskj

ks
skjs

ks
kj

k GGgGgG ∇=∇=∇=∇ . (A.7.6 a)

 
Remarks on the calculation of the divergence of a tensor. 
From the relations above, we may realize the following properties: 
a. The divergence of a given contravariant tensor results from the expression of the 

covariant derivative of that tensor, and due to the contraction, the divergence will 
be a tensor of a rank smaller with two unities with respect to that of the 
mentioned expression. In this case, the contraction is performed in each pair of 
concerned indices, one subscript and the other superscript. It may be called 
covariant divergence. 

b. The divergence of a given covariant tensor results like for the preceding case, a, 
but in this case, b, the contraction must be performed for each pair of concerned 
indices placed in the same position, both subscript. It may also be called 
covariant divergence. 

c. For keeping the same manner of contraction as in case a, the divergence of a 
given covariant tensor results from the expression of the contravariant derivative 
of that tensor. It may be called contravariant divergence. The contraction will be 
performed as for case a. The divergences of a tensor, calculated by procedures b 
and c, give results which differ by a factor representing the fundamental tensor.  

d. A convenient manner for simplifying the calculation of the divergence of a 
tensor, in a geodesic system of co-ordinates, in the case in which the fundamental 
tensor occurs as a factor in any term, is the transport of the fundamental tensor 
before or behind the differential operator. However, attention must be paid in 
order to avoid the transport if in the respective term including the differential 
operator, besides the differential operator, there are tensors with the same index 
as the differential operator. If the respective index appears three times or more, 
the transport may produce errors. 

Each of the procedures from b and c may be advantageous in certain applications. 
The calculation of the divergence in the case of a tensor of any rank greater than unity, 

say of rank 2, is not a unique result as in the case of a contravariant tensor of rank 1, 
because the calculation has to be carried out with respect to the pair of indices formed by 
that of the divergence operator and by one of the tensor. Also, by choosing various pairs 
of indices we may obtain different results for the divergence.  
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A.7.3. APPLICATION TO THE CASE OF THE RIEMANN  

CURVATURE TENSOR AND EINSTEIN TENSOR 
 

The equations of the classical General Theory of Relativity contain the Einstein tensor 
developed starting from the Riemann tensor of the four-dimensional continuum space-
time. 

In the work [1], Einstein has directly given the tensor considered to satisfy the three 
required conditions the value zero of the divergence included. Let us consider the 
Einstein tensor: 

,RgaR ijij +  (A.7.7)
 

where Rij is the Riemann tensor of rank 2, also called Ricci tensor, R is given by the 
relation: 

i
iij

ij RRgR == , (A.7.8)
 

and a is a constant. Also, there is added that for the third condition to be satisfied, the 

constant a should be equal to 
2
1−

. The same expression is given in many works, among 

which [3, p. 248], [4, p. 201], [5, p. 99]. 
 
 

7.4.  REMARKS CONCERNING THE CALCULATION OF EXPRESSIONS 
INVOLVING THE RIEMANN TENSOR 

 

In order to clarify the calculation of the tensor divergence, avoiding certain errors, we 
shall consider an example concerning the mixed Riemann tensor of rank four and its 
transformation into a covariant tensor of the same rank. Although well known, we shall 
remake a simple deduction in order to emphasize a very important property accepted but 
never explicitly mentioned in the known works. Let us consider the mixed expression of 
the tensor below and transform it into a covariant one. For the next calculations, we shall 
take into account relations (A.6.28) – (A.6.32). Therefore, we shall start with (A.6.87): 
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Let us look to express into a covariant form the tensor of the right-hand side of the 
formula below: 
 

.....i
rsuiprsup RgR =  (A.7.10)

 

There follows: 
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(A.7.11)

We shall calculate the parentheses, having in view that w
p

iw
ip ggg = , and p being fixed, 

we have 1== p
p

w
p gg . We shall obtain: 

 

( ) ( )

( ),,,

,,,,
,,....

q
usqrw

q
urqsw

iw
ip

priirp
i
uspsiisp

i
urr

usp
s
urpi

rsuip

gg

xx
Rg

ΓΓ−ΓΓ+

+Γ+ΓΓ+Γ+ΓΓ−
∂

Γ∂
−

∂

Γ∂
=

 (A.7.12)

 

and, with the same remark as after (A.7.11), there follows:  
 

( ) ( )

( ),,,

,,,,
,,....

q
usqrw

q
urqsw

w
p

priirp
i
uspsiisp

i
urr

usp
s
urpi

rsuip

g

xx
Rg

ΓΓ−ΓΓ+

+Γ+ΓΓ+Γ+ΓΓ−
∂

Γ∂
−

∂

Γ∂
=

 (A.7.13)
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Replacing the Christoffel symbols, we obtain: 
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After reducing the like terms, we obtain: 
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The relation (A.7.16) contains the components of the fundamental tensor ijg  in the 
system of reference K . These quantities may be obtained by using formula (A.6.20), 
starting from a quasi-Euclidean system of reference GK .  

Some general relations, deduced from (A.6.3 a, b) extended for tensors of rank 2, and 
(A.6.41), could facilitate the understanding: 
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(A.7.16 a-d)

 

where we have deduced the formulae of the contravariant components from the inverse 
matrix of the covariant components, having advantages relatively to those of literature. 

According to formula (A.7.16 a) above, the passage from the quantities ay  to the 
components ijg is always possible, obtaining say 10 components in terms of say 
( ) 41 ≥+N  other quantities. Conversely, for passing from the components ijg  to 

components abe  we have to resort to the formula (A.7.16 c), say 10 equations. But in this 
case, supplementary conditions, namely baeab ≠∀= ,0  hence other 6 other equations, 
must be fulfilled (although previously not imposed) the respective reference frame GK  
being quasi-Euclidean. Finally, we shall have 4 unknowns and 16 equations. There 
follows that the number of equations to be fulfilled is greater than the number of 
unknowns, the solution being, in general, impossible. It follows that the correspondence 
between GK  and K , is not biunivocal, the obtained expression of the curvature being 
valid only for the reference frame K .  
 
 

7.5.  CALCULATION OF THE DIVERGENCE GIVEN BY THE 
AUTHORS USING THE BIANCHI IDENTITY 

 

The majority of the known authors have used the Bianchi identity for this purpose 
[1]-[5], [8]. In this case, they start from a tensor of rank four, in order to establish the 
property of a tensor of rank 2, what seems to be an indirect and more complicated way. 
Further, a set of transformations bring the expression from a vector of rank four to a 
vector of rank 2, namely a mixed vector.  

The proofs, aiming the calculation of the divergence of the curvature tensor are based 
on Bianchi identity and on the usage of the geodesic co-ordinates, like in works [1]-[5].  
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According to relation (A.6.90) and the inversion of indices r  and s , in the last two 
terms, the following identity may be written: 
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i
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i
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By putting i = r, and contracting with respect to index i, there follows: 
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Multiplying the last relation by sug , and taking into account relation (A.6.32), one 
will obtain: 
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s
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s
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and replacing index s by i in the second term of the left-hand side of relation (A.7.19), 
both taking all values from zero to 3, one obtains: 
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s
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From here on, we shall modify the known procedure [4, p. 201], avoiding the 
Kronecker symbol. Starting from relation (A.7.20) and changing the first index of the first 
term, we get: 
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and taking into account (A.7.8), we obtain 
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where the term within parentheses corresponds to that of Einstein tensor, but in a mixed 
form. 
 
 

7.6. THE PROPOSED NEW PROOF 
 

Unlike to the other methods we shall consider the tensor we are looking for as not 
known. Let us start from the general formula of the Riemann curvature in geodesic co-
ordinates expressed as a tensor of rank 2: 
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and s and u are fixed values chosen from the set [ ]3,0 . Then, from formula (A.7.23), also 
using geodesic co-ordinates, we get: 
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and k, s, u are fixed values chosen from the set [ ]3,0 . Therefore, according to formula 
(A.7.23) or (A.7.24), by adding and subtracting the same term, we can write: 
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and k, s, u are fixed values, like in the preceding relation. Consequently:  
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or, with the symbols similar to those of (A.7.24), we have:  
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After rearranging the terms, we obtain:  
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By multiplying both sides with sug , it follows: 
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Therefore: 
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Let us use the contravariant derivative: 
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Taking into account relation (A.7.8), relation (A.7.31) yields: 
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[ ].3,0,0
2
1
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p  (A.7.32)

 

Therefore, we have just deduced the divergence of the Einstein tensor, by a so-called 
inductive way, without resorting to the Bianchi identity. Due to its form, relation (A.7.32) 
may be called contravariant divergence. 
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APPENDIX 8 
 
 

ELECTROMAGNETIC ENERGY-MOMENTUM TENSOR 
FOR NON-HOMOGENEOUS MEDIA IN THE THEORY OF 
RELATIVITY  

 

This Appendix is devoted to an analysis of the energy momentum tensor for 
electromagnetic field. The bibliographic mentions [1]-[18], specific for this Appendix, are 
at the end of this Appendix. Also, a list of symbols is given at the end of this Appendix. 

In Electrodynamics and in the Theory of Relativity, the energy-momentum tensor has 
a very important role as mentioned in references [1]-[9] at the end of this Appendix. 
Besides the widely accepted fact that this tensor allows a compact way of writing the 
conservation laws of linear momentum and energy in Electromagnetism, it permits to 
calculate the energy and stress, in any reference frame in terms of another reference 
frame, and especially in terms of the reference frame in which the substance is at rest. 

The developments of the principles of the concerned mathematical methods, started 
from a relatively long time, are still examined nowadays [10]-[14]. 

Many works have been devoted to this subject. However, in the most treated case of 
empty space as well as in the case of a space filled with substance, the transition from a 
reference frame to another in motion has not been carefully analysed. In this Appendix, 
an approach, especially based on [15]-[18], to the analysis of the tensor will be presented, 
namely, the construction of the tensor, the case of non-homogeneous electrically and 
magnetically polarized substances, and the transition from a reference frame to another 
one, with the involved consideration on the Theory of Relativity. 

In this Appendix, we shall recall certain definitions and several largely used relations. 
In addition, certain more important proofs will be given. All bibliographic mentions 
concern the References [1]-[18] of the end of this Appendix. Also, a list of symbols is 
given at the end of this Appendix. We shall have in view the works [8], [10], [18] that 
present certain advantages for the applications we have had in view. 
 
 

A.8.1. VOLUME DENSITY OF THE ELECTROMAGNETIC FORCE 
 

In the works concerning the Theory of Relativity the analysis of electromagnetic 
forces is achieved from the Lorentz formula of the force, e.g., [5, p. 133]. In the present 
section, we shall start from the general formula of the electromagnetic force acting on a 
substance submitted to an electromagnetic field. It is derived from the principle of 
conservation of energy and the Theory of Relativity, through certain approximations 
[8, p. 157]. The reasoning has led to the following formulae, both also deduced in various 
other manners and accepted by several authors: 
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2
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and 

( ),grad
2
1grad

2
1 22 BDBJHEEf ×

∂
∂

+×+µ−ε−ρ=
tv  (A.8.1 b)

 

where the symbols are the usual ones. In this case, the quantities ε and µ are considered as 
constant locally, but strongly depending on the point of the substance, hence varying in 
space. We shall denote the three axes of a Cartesian system of co-ordinates, by the indices 
i, j, k. In the further analysis, we shall consider formula (A.8.1 a), and we shall mention 
the modification occurring due to the supplementary term, if using formula (A.8.1 b). 
Relations (A.8.1 a) and (A.8.1 b) are considered as having, along each axis, three and four 
terms (components), respectively: 
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where the index k indicates the axis. The four terms are given by the following 
expressions: 
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(A.8.3 a, …, d)

 

 Henceforth, we shall write the expressions of the electromagnetic field state quantities 
by using the scalar and vector potentials V and A, in the well-known form: 
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 The relations (A.8.4 a, b) may be written in a new form, using the relations (A.5.8 a-d) 
– (A.5.10 a-e) from Appendix 5, as follows:  
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 It is useful to mention that the expression (A.8.5 a), like the explanation for (A.5.8 a), 
of Appendix 5 represents a tensor. 
 Further, we shall have in view the two groups (sets) of equations of the 
electromagnetic field (in the order used by H.A. Lorentz, which differs from that of J.C. 
Maxwell) in a four-dimensional continuum space-time, where the symbols are those of 
[10], [11]. For the sake of facility, we shall recall these symbols, firstly in the case of 
empty space (vacuum). The equations of the first group (set) are given by the 
relationships: 
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also 
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where the subscript index k in the relations (A.8.8 d) and (A.8.8 f, g) refers to the usual 
three-dimensional vectors, whereas indices i and j refer, as previously, to tensor 
components. All situations in which the index k has this role will be mentioned. It is to be 
noted that the components of the form iiF  and iiG  vanish. 
 Introducing the axis coefficients of the Galilean reference frame, iie , [11], as shown in 
Sub-section A.6.2.1, of Appendix 6, we can write: 
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 In the case of isotropic, linear, non-homogeneous media, using relation (A.5.21) from 
Appendix 5 and (3.20) from Chapter 3, respectively, we may write: 
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 Similarly, using relations (A.5.23), from Appendix 5, and (3.101 b), from Chapter 3, 
we may write: 
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 The equations of the second group (set) are given by the relationship: 
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In order to emphasize the tensors ijF  and ijG , equations (A.8.3 a-d) can be written in 
the form below, convenient for passing from three to four dimensions. Relations (A.8.6), 
(A.8.7 a-f), (A.8.8 a-g), (A.8.10), (A.8.11) have been considered. For instance, relation 
(A.8.13 c) has been written taking into account relations (A.8.10) and (A.8.11) 
respectively. Hence: 
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and also, we have: 
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 Summing up, side by side, relations (A.8.13 a) and (A.8.13 b), we shall get the 
following more compact expression: 
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relation which, as mentioned, is extended for the four-dimensional continuum since 
indices j and k may take four values. Then, summing up, there follows: 
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A.8.2. EXPRESSION OF THE FORCE COMPONENTS AND OF THE  

  ENERGY-MOMENTUM TENSOR  
 

 We shall now consider the case of a linear isotropic electric and magnetic polarization 
of the considered medium, with the relative permittivity rε  and the relative permeability 

rµ , point functions. In order to express the force component as the derivative of an 
expression, we shall write relation (A.8.16), with the same conditions of indices, as: 
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Now, we shall modify the second term of the right-hand side as follows: 
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 In the following calculations, we shall use the relation: 
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 Summing up the left-hand and the last right-hand sides of the two expressions 
(A.8.18 a, b), and taking into account (A.8.12) and (A.8.19), we shall get: 
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 Replacing (A.8.20) into (A.8.17), and taking into account (A.8.19) we shall obtain: 
 

( ) ( ) [ ] .,3,0,,,12 jikji
x

F
GFG

x
F

x
Gfc k

ijij
ki

ij
jkij

ij

k <∈∀
∂

∂
+

∂
∂

=
∂
∂

=  (A.8.21)

 

By expanding the last term of (A.8.21), there follows: 
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 Initially we shall assume index k  different from zero. 
 Replacing the symbols of (A.8.14 a, b) into (A.8.21), after having divided both sides 
with c , we shall get: 
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 We are now going to calculate the components of kf  which, according to the types of 
the included electromagnetic field state quantities, can be of the following types: electric, 
magnetic, mixed. 
 In order to facilitate the understanding of the formulae, we shall successively use the 
tensor notation and the vector notation. We shall use for indices numbers, instead of 
letters, because it is easier to perform the computation and to avoid the use of the 
summation convention when not allowed. Then, the indices may be subscripts. We shall 
adopt 3=k . We shall not write the terms of the form uuF  and uuG , being zero. 
 We shall express the electric component considering expression (A.8.23). We shall 
take into account the relation:  
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The electric component will be obtained from the expanded relation (A.8.23), having 
in view (A.8.24), and that indices u and v take the same values:  
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and therefore: 
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In tensor form, we have: 
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Then, we shall express the magnetic component considering also expression (A.8.22). 
We need to calculate expressions of the form: 
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By differentiating, we obtain: 
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Therefore, replacing the expression (A.8.26 b), into the considered term of (A.8.23), 
and having in view relations (A.8.20), we shall obtain for 3=k : 
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In case of vector notation for the electric and magnetic components, the vector notation 
has also been used for the co-ordinates x . Rearranging the terms there follows:  
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and 
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or in tensor form, taking into account the tensor form of the derivative of 2Hµ , we have: 
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 Returning to previous letter indices, and summing side by side relations (A.8.25 c), 
(A.8.27 b) or (A.8.27 c), we shall get the sum of electric and magnetic terms calculated 
above: 
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 Summing up relations (8.25 c) and (8.27 d), side by side, we get in tensor form:  
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 We shall now express the mixed components, considering the first term of expression 
(A.8.22), and the expression (A.8.13 d). The first mixed component is given by: 
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and 
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The second mixed component is similarly given by: 
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 Returning to previous letter indices, we get: 
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 Adding up relations (A.8.28 b) and (A.8.29 a), side by side, we obtain: 
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 By summing up, side by side relations (A.8.31) and (A.8.29 b), we get: 
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and after summing up with relation (A.8.13 c), side by side, there follows: 
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If we started from formula (A.8.1 b), we should have also added in the right-hand side 
of relation (A.8.33) the expression (A.8.30 b), and then, the final relation would differ. 

The force expression may be written in a compact and general form as follows: 
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or in a more compact form, as follows: 
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 Finally, the component of the volume density of the force along the k-axis can be 
expressed as:  
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where the expression: 
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represents the energy-momentum tensor, also called tensor of energy and quantity of 
motion. It is possible to express the last relation in other forms, taking into account the 
following relation: 
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Also, we get: 
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 The expressions ijF and ijG , according to the mention for relation (A.8.5 a), represent 
tensors of the second rank. The expression of the form ijW  being the sum of the products 
of two tensors will also be a tensor, and for this reason it is so called. 
 

Remarks 

 1° If the media were not assumed isotropic and had not linear electric and magnetic 
polarization, the previous transformations of relations (A.8.24) and (A.8.26 b), 
respectively, would be no longer possible. 

2° Having established the expression of the tensor in one reference frame, we can 
obtain its expression in any other one. The calculation is to be performed by using the 
group of co-ordinate transformations, for instance the Lorentz transformations. We 
consider useful to make the following remark. The Lorentz transformation group has been 
established for empty space (vacuum), and the involved light velocity is that in vacuo. In 
the present case, we consider that polarization exists, and in this case, also all 
transformations of the quantities are like those established by Minkowski. But a doubt 
appears, namely if the transformations are still valid because in any media the velocity of 
light is different. For this reason, the Lorentz transformation group may be considered as 
an assumption that is so better the smaller will be the space regions filled with substance. 
 It is to be noted that we have established a new form of the tensors used for defining 
the field state quantities, which facilitate the analysis. 
 
 

A.8.3. EXPRESSION OF THE ENERGY-MOMENTUM TENSOR 
 

 1° Component 0
0W . Using formula (A.8.35), and after performing the calculation, 

passing from tensor notation to vector notation, we have got: 
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and summing up the calculated terms, we obtain: 
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which represents the volume density of the electromagnetic energy, and ii DE ,  are 
considered as three-dimensional vector components.  

2° Component j
kW  for both cases jk ≠  and jk = . We use, as above, formula 

(A.8.35), and after performing the calculation, we shall pass from tensor notation to 
vector notation.  
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In the first case, remarking that j and k are different, we should keep only the first term 
of expression (A.8.35). We get: 
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 In the second case, for more clarity, instead of letter indices, we shall use number 
indices, considering a certain case, namely for 2== kj . There follows: 
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and, grouping the terms, we obtain: 
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and the general form, as expected, is: 
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 The results above, expressed by relations (A.8.38 a) and (A.8.38 e), represent the 
Maxwell stress tensors. 
 3° Component jW0 . As previously, we shall use formula (A.8.35), and after 
performing the calculation, we pass from tensor notation to vector notation. We begin 
with one example for 2=j , 0=k , and then express the general form. There follows: 
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and the general form is: 
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which apart from the denominator c, represents the j-component of Poynting vector, i.e., 
the rate of the radiated flux of energy per unit of surface and unit of time. 

 4° The force along the time axis. We shall use formula (A.8.34 a) or (A.8.34 b), 
putting 0=k , and after performing the calculations, we shall pass from tensor notation to 
vector notation. There follows: 
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and: 
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 Considering the first and second parentheses, we shall get: 
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0
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i
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and 
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where, for 2=i , 21211 HGGi == , the vector H being contravariant, and according to 
relation (A.5.15 b), from Appendix 5, 3

1221 HHH −=−= , since 23
1 HH = . Calculating 

the first two parentheses, we get: 
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 (A.8.43 c)

 

Handling similarly the next two parentheses and summing up all terms, there follows: 
 

( ) ( ) ( )
[ ] .,3,0,

,1
2
1div1

000

vuvu

FG
xcxc

f uv
uv

<∈∀
∂
∂

⋅⋅+⋅
∂
∂

+×= DEHE
 (A.8.44)

 

For the last parenthesis we shall obtain: 
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 Replacing (A.8.45) into (A.8.44), we get: 
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hence 
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 The calculation of the derivatives yields the relation: 
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where we shall replace the derivatives with respect to time, with the known Maxwell 
relations, as follows: 
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( ) ( )[ ].curlcurldiv1
0 EHJHEHE ⋅−−⋅+×=

c
f  (A.8.47)

 

 Grouping the terms, we obtain: 

( ) ( )[ ] ,1divdiv1
0 EJEJHEHE ⋅−=⋅−×−×=

cc
f  (A.8.48)

 

which represents the component of the force along the time axis. The same result can be 
also obtained starting from formula (A.8.16) and by putting 0=k . 
 The set kf  represents a four-vector, according to formulae (A.8.34 c), and can also 
result from (A.8.1 a) and (A.8.48), indeed the product of the four force components and 
the four-vector velocity yields a scalar. 
 
 

A.8.4. THE EQUATIONS OF THE ELECTROMAGNETIC FIELD IN 
THE THEORY OF RELATIVITY  

 

 In this Appendix, we shall present the equations of the electromagnetic field in the 
Special and General Theory of Relativity in a form permitting to deduce the energy-
momentum tensor. This subject has been thoroughly treated in Chapter 3 and in Appendix 
5. We shall only recall some important results.  

From the formulae of the general theory of the electromagnetic field (3.107 a), (3. 37), 
(3.200), (3.86), (3.18), (3.99), of Chapter 3, in the usual vector form, we have: 
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 (A.8.49 a-f)

 

We rewrite the equations (A.8.49 d) considering the general case of non-homogeneous 
media. We have: 
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∂
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and by expanding the double curl, there follows: 
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By rearranging the terms, we get: 
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 Since only the curl of vector A is imposed, the divergence can be chosen by using the 
L.V. Lorenz (do not confuse with H.A. Lorentz) gauge condition: 
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The last relation may be written in the form: 
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 (A.8.54 a, b, c)

 

The components along any axis of a Cartesian system of co-ordinates will be: 
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The relations (A.8.49 b, c) may be written using a set of four quantities iA  as follows: 
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(A.8.56 a, b, c) 

 

A new, more general and convenient form may be the following antisymmetric form 
with respect to indices i and j: 
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 Therefore: 
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 (A.8.58 a, …, d)

 It follows that the quantities iE  and ijB  can be expressed as follows: 

[ ].3,1,;1;0 ∈∀== jiF
c

BFE ijijii  (A.8.59 a, b)
 

For expressing the other field state quantities, for the case of empty space (vacuum), 
we may use formulae (A.5.10 a-f) of Appendix 5. 

For expressing the other field state quantities, for the case of a polarized medium, 
formulae (A.5.15 a-f), of Appendix 5, may be used. 

 
 
A.8.5. CONCLUSION  
 

 The aim of this work has been to establish the expression of the energy-momentum 
tensor within the frame of the Theory of Relativity, starting from the general formula of 
the electromagnetic force acting on a substance submitted to an electromagnetic field. 
The case of linear non-homogeneous media has been examined. 

This subject has not been treated in the known papers or works published so far. 
Meanwhile, the analysis carried out has shown that no all-general known formulae are in 
agreement with the tensor energy-momentum expression when passing from a system of 
reference to another one. If the media were not assumed as isotropic and had not linear 
electric and magnetic polarization, the deduction carried out for obtaining the tensor 
would not be possible. 
 The expression of the tensor established in one system of reference can be obtained in 
any other system of reference owing to the group of Lorentz transformation and the 
Minkowski transformation formulae using this group. However, a doubt appears because 
the velocity of light in any media is different, and the Lorentz transformation has been 
established for this case. 
 
 
 

List of Symbols Used in Appendix 8 
 

iA  – component of the four-vector potential; 

A  – electrodynamic vector potential; 

ijB  – twice covariant tensor component of magnetic induction, yielding kB ; 

kB  – component of the magnetic induction along axis k, considered as a usual three-
dimensional vector; 

c  – velocity of light in empty space, supposed to be constant; 

iD  – component of the electric displacement, considered as a usual three-dimensional 
vector; 
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iD  – contravariant component of the electric displacement yielding kD  or iD  
considered as a usual three-dimensional vector; 

D  – electric displacement (electric induction) vector; 

iE  – covariant component of the electric field strength, as well as component of the 
electric field strength along axis i, as a usual three-dimensional vector; 

iE  – 
 

contravariant component of the electric field strength; 
E  – electric field strength vector; 

iie  – axis coefficient, for the axis i of the Galilean reference frame; 

ijF  – component of the covariant tensor of rank 2, yielding ijB  for i and j non-zero; 

0iF  – component of the previous covariant tensor, and yielding the component iE  of 
the electric field strength, considered as a usual three-dimensional vector; 

kf  – four-vector component of the volume density of the electromagnetic (mechanical) 
force; 

ijG  – contravariant tensor of rank 2, yielding ijH ; 
,0iG  

iG0  

– components of the covariant and contravariant tensors, and yielding the 
component iD ; 

kH  – component of the magnetic field strength along axis k, considered as an usual 
three-dimensional vector; 

H  – magnetic field strength vector; 
iJ  – component of a contravariant four-vector, for i non-zero, density of the 

conduction electric current; 
J  – conduction electric current density vector; 
V  – electric potential; 

ix  – co-ordinate along axis i; 

iiδ  – symbol equal to unity for equal indices, and equal to zero for different ones 
(Kronecker symbol); 

ε  – electric permittivity, in vacuo it is 0ε ; 

0µ  – magnetic permeability, in vacuo it is 0µ  

vρ  – volume density of the free electric charge. 
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APPENDIX 9 
 
 
DERIVING THE FORMULA OF THE SAGNAC EFFECT 
BY USING THE GENERAL THEORY OF RELATIVITY 

 

This Appendix is devoted to the analysis of the Sagnac effect from the point of view 
of the Theory of General Relativity. The bibliographic mentions [1]-[8], specific for this 
Appendix, are at the end of this Appendix.  

In [1], we have shown that the experiment carried out by G. Sagnac in 1913, and more 
recently, remade several times using apparatus of high precision, is a very curious one. 
For a long time this phenomenon was considered as being in contradiction with Theory of 
Relativity. In a subsequent paper [2] we have shown that although the phenomenon is not 
in good agreement with the Special Theory of Relativity, it is in good agreement with the 
General Theory of Relativity. In the present Appendix we shall develop the mentioned 
proof. All bibliographic mentions concern the References [1]-[8] of the end of this 
Appendix. 
 
 

A.9.1. THE EXPERIMENT OF G. SAGNAC 
 

In paper [1], we have shown that the experiment carried out by Georges Sagnac in 
1913, and more recently, remade several times using apparatus of high precision, is very 
interesting. The experiment consists in achieving the interference of two light beams 
travelling in inverse directions along the same way. The light source, the interferometer 
and the reflecting mirrors which ensure the desired paths (ways) for the light beams 
(namely a polygonal trajectory), photographic plate, that is, all apparatus are fixed on a 
disc, outside which nothing related to the experiment occurs. The light beams travelling 
around the same way, but in opposite directions, are reflected from the interferometer to a 
photographic plate. The disc can rotate with any angular velocity ω. A thorough 
description of the apparatus used by Sagnac may be found in [1]. 

The experiment has shown that the time for a light beam to travel around a way 
parallel to the disc surface differed, according to whether the travelling direction was with 
or against the rotation sense of the disc. Hence, the light beams had different velocities 
with respect to a reference frame fixed to the disc. The result, referred to as Sagnac effect, 
is not in concordance with the Special Theory of Relativity, in which, in all inertial 
reference frames, the velocity of light beams emitted by any source of light in empty 
space, measured with physically identical gauges and clocks, is assumed as having the 
same value. 

As mentioned in paper [1], several authors stated that the Special Theory of Relativity 
can be applied in the case of a reference frame describing a movement with respect to a 
reference frame considered at rest, not only if the former has a rectilinear movement, but 
also if it has a movement along any polygonal or a circular line. According to the 
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experimental results, as shown in the same paper, this statement appears as no valid. This 
situation results from the circumstance that the Special Theory of Relativity concerns 
only inertial reference frames, a condition not satisfied in the present case. As mentioned 
in paper [1], an attempt to justify the Sagnac formula by the aid of the General Theory of 
Relativity has been made in paper [3]. For this purpose, several assumptions have been 
adopted, among which that the photon rest mass is different from zero, and the 
composition of velocities is performed according to the formula of the Special Theory of 
Relativity. It is useful to add that the Sagnac effect is not only of a theoretical importance, 
but it is used in several applications in measurements, instrumentation and metrology. 

For the reasons above, in the present paper, we shall analyse the Sagnac effect by 
using the General Theory of Relativity, and deduce a formula of the Sagnac type, 
avoiding the above restrictions. 
 
 

A.9.2. RECALL OF CERTAIN FOUNDATIONS OF THE GENERAL 
THEORY OF RELATIVITY 

 
A.9.2.1. General Notions 

 

We shall recall several notions of the theory [4]-[8], necessary in the further analysis. 
The position of a point in space can be defined by using three families (sets) of curves, 
which intersect forming a three-dimensional net [6]. Any point will be defined by the 
intersection of three curves of those families. The space co-ordinates will be denoted by 
certain quantities proportional to the distances along these curves, and denoted: x1, x2, x3. 
In the framework of the General Theory of Relativity, no limitation exists in the choice of 
the systems of co-ordinates. The distance between two infinitesimally neighbouring 
points, in any system of co-ordinates, results from the relation: 
 

( ) ( ) ,dddd2ddd
222 ji

ij
ji

ij
i

ii xxgxxgxgss =+==  (A.9.1)

 

where the usual rule, of summing up the terms in which an index appears twice, has to be 
applied. The running index, in a three-dimensional space, will take all values from 1 to 3. 
Also, jiij gg = . In the term with the coefficient 2, we have ji < . 
 In the case in which we want to define the position of a point in a three-dimensional 
space, as well as the moment at which that point is considered, a supplementary co-
ordinate proportional to time has to be added. This co-ordinate will be denoted by 

tcx =0 , where t denotes the time and c the velocity of light in vacuo, assumed to be 
constant. Several other symbols are also used, according to the author. 

In the same case, of the three-dimensional net of above, a clock is imagined as 
existing at any node of the net. The time recorded by each of these clocks is assumed to 
show a small difference with respect to that recorded by the neighbouring ones. In this 
way, a four-dimensional space of a different type is defined [6, p. 364]. 
 Using the symbols above, an event, e.g., the emission of a light beam from a point, can 
be marked by a point with four co-ordinates, indicated by one of the four index numbers, 
from 0 to 3. Therefore, the point, referred to as a world point or a point of the universe, is 
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defined in a four-dimensional space. The distance between two such points, also referred 
to as the space-time interval between two events, results by suitably modifying 
expression (A.9.1) above, and the running index will take all values from 0 to 3. 
Therefore: 
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20
00

222

β≠α∀+++=

==+==
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xxgxxgxgss ji
ij

ji
ij

i
ii

 (A.9.2)

 

where the indices (subscript or superscript) i  and j  take all values from 0 to 3, whereas, 
the indices α and β take all values from 1 to 3, and jiij gg = , and also βααβ = gg . The 
value of the space-time interval, sd , may be zero or not. For instance, if it refers to the 
propagation of the front of a light signal, it is zero; if it refers to events which took place 
successively, at the same point in the three-dimensional space, it is different from zero. 
 In a Galilean system of reference (reference frame), including a Cartesian system of 
co-ordinates, the coefficients of expression (A.9.2) are the following: 
 

.,0;0,1;100 jigigg ijii ≠∀=≠∀−==  (A.9.2 a)
 

The space-time interval must keep the same value regardless of the used system of co-
ordinates since it is an invariant. The trajectory of a point within this space is referred to 
as a world line or line of the universe. 

In the General Theory of Relativity, the moving reference frame may describe any 
movement with respect to the fixed one. The passage from a fixed reference frame to 
another one having an accelerated motion will result in the transformation of a rectilinear 
uniform motion into a curved, accelerated one [6, p. 342].  
 The time recorded by a clock carried by any moving body is called proper time of this 
body. Initially, the clocks imagined as attributed to any points of the space are supposed 
to be not synchronized in any manner. In the General Theory of Relativity, no relation 
exists between the time recorded by the clocks at different point of the space. However, 
under certain conditions these can be synchronized [7, p. 310, 313, 384], as it will be 
further shown. The clocks may be of any type, mechanical as well as atomic. Some 
precision, not always mentioned, is necessary [5, p. 78, 360]. It is necessary to have into 
consideration, clocks with a small sensitivity to accelerations. No analysis, without 
considering minutely the structure of the clock, could predict the exact behaviour of the 
clock to accelerations. That is why, the proper time is considered to be recorded by ideal 
clocks, i.e., of very high precision, like certain atomic clocks. 

Let us consider two reference frames K and K’, the former assumed to be immobile (at 
rest), and the latter in motion. The proper time of a body in motion is always shorter that 
the time in the immobile reference frame. Indeed, in the reference frame K’, where the 
considered clock is placed, we have 0'd =αx , all space co-ordinates being unchanged. In 
this case, from relation (A.9.2), applied for a Cartesian system of co-ordinates, putting 

ss d'd = , and introducing the values of coefficients gij given above, it follows that: 
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and hence tt d'd < . 
 As already shown, it is to be noted, that in this theory, the length in three-dimensional 
space cannot be determined simply by putting 0d 0 =x , if the quantities αβg  depend on 
x0 at any point of the space. For this reason, in the General Theory of Relativity, the 
concept of distance has not, always, the known meaning. 

In the General Theory of Relativity, there is a very important difference between the 
electromagnetic field and the gravitational field. The first appears as an external 
manifestation superposed to a four-space continuum, in other words, the Maxwell 
equations are considered, but they are expressed in a four-space continuum that is the 
Galilean space-time continuum. The second appears considered as an inherent 
manifestation of the four-space continuum that is the Riemannian space-time continuum. 
The corresponding co-ordinates are also called Gaussian co-ordinates, [6, p. 364]. 

In the case of a material point, in a reference frame, in absence of any other body till a 
distance great enough, the point will describe with respect to the reference frame a curve 
expressed by a straight line. Therefore, the respective continuum is considered as a quasi-
Euclidean continuum (space-time) and gravitation does not exist. In the case of the 
presence of other bodies, the point will describe any curve, but no more a straight line. 
Therefore, the respective continuum is considered as a non-Euclidean continuum (space-
time), and a curved space-time continuum and gravitation exists. 
 
 

A.9.3. CALCULATION OF DISTANCE AND DURATION BY USING 
THE METRICS OF THE FOUR-DIMENSIONAL 
SPACE-TIME CONTINUUM 

 

 In the General Theory of Relativity, in any gravitational field, the proper time 
recorded by a clock attached to a moving body is related to the time co-ordinate x0, in a 
certain manner depending on the position of the points in space. We shall mention two 
problems that can occur: 1º The calculation of the duration, i.e., the time interval, 
between events which take place at a point with given space co-ordinates. 2º The duration 
(time interval) between two events which take place at two points. Each of these cases 
requires a different computational formula. 
 

Case 1 
In the case in which the time interval between two events, which take place at the 

same point, has to be calculated, it is possible to use relation (A.6.19 b), and to introduce 
0d α =x , where the superscript index takes all values from 1 to 3. It follows that: 

 
 

,1 02/1
00 xg

c
t ∆=∆  (A.9.4)

because tcs ∆=d . 
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Case 2 
 In order to examine this case, it is necessary to define the synchronization of clocks. 
We shall present two definitions [5, p. 59], [7, p. 313]. 
 A first definition will be given as follows. We shall consider two points in space, at 
any distance r from each other. Let us consider that a light beam (signal) is emitted from 
point A at the moment 1t . The light beam will reach the point B, where it will be 
simultaneously reflected back to point A that it reaches at moment t2. The clock of point B 
will be considered synchronized with the clock of point A if at the moment at which the 

light beam reaches point B, the clock of this point will record the time ( )210 2
1 ttt += . 

 Another definition will be explained as follows. We shall consider two points 
infinitesimally neighbouring each other. The clocks attached to these points will record 
certain times. Let us consider that a light beam is emitted from the point A at any moment 
and then it reaches the point B, where it is reflected back to point A. Further on, the 
following symbols will be used. The space co-ordinates of points A and B will be 

αα ∆+ xx  and αx , respectively. The time co-ordinate at which the light beam reaches 
and leaves, simultaneously, the point B will be 0x . 
 At the moment of time co-ordinate 0x , at which the light beam reaches and leaves, 
simultaneously, the point B, the space-time interval, at that point, has to be zero (for both 
direction of the light beam), because both events (arrival and departure of the light beam) 
occur at the same moment and at the same point. Therefore, we have 0d =s , and: 
 
 

( ) 02 βα
αβ

α0
α0

20
00 =∆∆+∆∆+∆ xxgxxgxg , (A.9.5)

 

 

where the unknown is 0x∆ , and the Greek indices take all values from 1 to 3. The roots 
of this equation are given by the relation: 
 
 

( ) ( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ ∆∆−∆∆−=∆ βαα

α
α

α
2
1

αβ00
2

00
00

2,1
0 1 xxggxgxg

g
x m , (A.9.6)

 

where both solutions are acceptable. However, it is justified to choose the former (with 
the sign minus) for the arriving beam, and the latter, for the leaving beam, respectively. 
Indeed, the latter value represents the duration of the light travel, after reflection, hence 
will give a later (ulterior) moment which should be greater. 
 With the symbols above, the moments at which the light beam is emitted from point A 
and returns to it correspond to the time co-ordinates ( )100 xx ∆+  and ( )200 xx ∆+ , 
respectively. 
 The clock of point A is considered synchronized with the clock of point B, if at the 
moment at which the light beam reaches point B, the clock of point A will record the time 
of the middle of the interval between the emission and the return of the light beam from 
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and to the point A. This time will be 00 xx ∆+ , where 0x∆  is the mean value of the two 
quantities ( )10x∆  and ( )20x∆ . The mean value will be given by the relation: 
 
 
 

.
00

α
α00

g
xgx ∆−

=∆  (A.9.7) 

 

The procedure by which the two clocks are brought to record the mentioned times is 
referred to as synchronization. The procedure can be extended from a point to another 
infinitesimally neighbouring point. The synchronization of clocks can be achieved, in 
principle, by light signal tests, and practically by emission and receiving (and recording) 
of electromagnetic signals, what can be done by a radar station. The total time co-ordinate 
difference can be obtained by integrating along any curve in three-dimensional space. The 
proper time is obtained by dividing the result by the velocity c of light in vacuo. 
 Since the path travelled by the light beam is the double of the distance between the 
two points, it follows that the corresponding space length, i.e., in three-dimensional 
space, between the two points, in the examined case, results from the relation: 
 
 

( ) ( )[ ] ( ) .1
2
1 2

1
βα

αβ00
2α

α0
00

1
0

2
0

⎥⎦
⎤

⎢⎣
⎡ ∆∆−∆=∆=∆−∆=∆ xxggxg

g
tcxxl  (A.9.8)

 

 By considering relations (A.9.7) and (A.9.8), it follows that the time recorded by a 
synchronized clock, at any point of the reference frame, will have two components: 

cl /∆ and cx /0∆ . 
 It is to be noted, that in this theory, the length in three-dimensional space cannot be 
determined simply by putting 0d 0 =x , if the quantities αβg  depend on 0x  at any point 
of the space. For this reason, in the General Theory of Relativity, the concept of distance 
has not, always, the known meaning. 
 Using the preceding formulae expressing the time, and the expression of the metrics of 
a four-dimensional continuum, we have shown, in [2], that, as below, the equations of the 
General Theory of Relativity are in good agreement with the Sagnac effect. 
 
 

A.9.4. REFERENCE FRAME IN UNIFORM ROTATION MOTION 
AND THE SAGNAC EFFECT 

 

 Let us consider a fixed (immobile) space reference frame with three co-ordinates. At 
the same time, we shall consider a reference frame rotating about one of its axes, with 
respect to the previous one. That is just the configuration that appears in the experiments 
of the Sagnac type [1], [5, p. 190]. This type of problem has been partially analysed in 
certain papers, among which [6, p. 346] and [7, p. 336], however, without complete 
calculations, and with no reference to the Sagnac effect. 
 A light beam moving in the trigonometric (i.e., counter-clockwise) sense, along the 
circumference of a circle of radius r, will be considered in the plane 0=z . 
 In both mentioned reference frames, a cylindrical system of co-ordinates will be used 
for determining the position of any point in the three-dimensional space. Therefore the 
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space co-ordinates, in the fixed reference frame, are: rf, φf, zf, and in the rotating reference 
frame: r, φ, z. The moving reference frame is rotating counter-clockwise, and the angle is 
also counted counter-clockwise (trigonometric sense). The time is considered to be 
measured by a clock fixed at a point of the configuration vertical axis, the linear velocity 
being there zero. The time relations between these systems of co-ordinates are: 
 

,;; fff zztrr =ω+ϕ=ϕ=  (A.9.9)
 

where ω is the constant angular velocity of the moving reference frame. 
 If the sense of rotation of the light beam is changed, the situation will be the same as if 
the light beam keeps its initial sense and the angular velocity ω is of opposite sense. 
 The expression of the space-time interval in the fixed reference frame is: 

( ) ( ) ( ) ( ) .ddddd 2
f

2
f

2
f

2
f

222 zrrtcs −ϕ−−=  (A.9.10)
 

The expression of the space-time interval in the rotating reference frame is: 
 

( ) ( ) ( ) ( ) ( ) ( ) .dddd2dddd 22222222222 ztrtrrrtcs −ω−ϕω−ϕ−−=  (A.9.11)
 

Therefore: 

( ) ( )( ) ( ) ( )( ) ( ) ( ) ,dddd2ddd 2222222222 zrtrrtrcs −ϕ−ϕω−−ω−=  (A.9.12)

and: 

( ) ( )( ) ( ) ( )( ) ( ) ( ) .dddd2dd1d 22202220222
2

2 zrxr
c

rxrc
c

s −ϕ−ϕω−−ω−=  (A.9.13)

 

 The 10 coefficients in the expression of ( )2d s are: 
 

( )
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33
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 (A.9.14)

 

The duration for the point of the light beam front to describe a closed path will be 
calculated from the expression obtained by integrating both sides of formulae (A.9.7) and 
(A.9.8), and adding up the results. It follows that in this case: 
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(A.9.15)

 

After performing the calculations, we get: 
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 (A.9.16)

where SC denotes the area of the circle surface, and 0α  will be given in (A.9.17). 
Therefore, if a light beam travels along the whole circumference of a circle, the time 
recorded at the end of the circle by the clock of that point, will be: 
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2
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S
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ω=

−
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⎟
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⎞

⎜
⎝
⎛ ω+πα=

 (A.9.17)

 

It can be added that formula (A.9.17) may be derived directly, by solving equation 
(A.9.5), obtained from relation (A.9.2) considered for the front of the wave (light beam), 
and hence, taking 0d =s . The equation has to be solved with respect to 0x∆ , and, after 
performing all calculations, we shall obtain just the last result. 

It is interesting to add, that the coefficient 2
0α  has, in the considered case, the 

expression of the factor used for calculating the period of any oscillations in an 
acceleration field [6, p. 383]. 

From the last relation, it follows that the time taken by a light beam to travel along the 
whole circumference of the circle, in a reference frame turning with the angular velocity 
ω, depends on the magnitude of this velocity and on its sense. In the case of the Sagnac 
effect, two light beams travelling along the circumference in opposite senses are 
considered. From the last formula, it follows that the difference of the times taken by the 
two light beams, is given by the relation: 
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,
4

2
C2

0S12 c
S

ttt
ω

α==−  (A.9.18)

 

where, like above, SC denotes the area of the circle surface. 
It is to be noted that the last formula slightly differs from formula (10) of paper [1] 

established without resorting to the Special or General Theory of Relativity. 
It is interesting to mention that in the Special Theory of Relativity, the velocity of light 

in vacuo has the known value c, but in the General Theory of Relativity, the velocity of 
light and bodies can take any value [6, p. 389]. It should be added that it is possible to 
choose a reference frame so that, in the vicinity of a certain point, the reference frame is a 
Galilean one. In this reference frame, and within a limited domain, the velocity of light 
has the known value c. 
 
 

A.9.5.   CONCLUSION 
 

 The analysis carried out above, based on the General Theory of Relativity, has 
permitted to derive the Sagnac formula directly from the invariant expression of the 
space-time interval.  
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APPENDIX 10 

DERIVING A GENERAL FORMULA OF THE MAGNETIC 
FIELD STRENGTH OF A SOLENOID 

In this Appendix, we shall present a derivation of the general formula of the magnetic 
field strength of a solenoid. The bibliographic mentions [1]-[16], specific for this 
Appendix, are at the end of this Appendix. Also, a list of symbols is given at the end of 
this Appendix. The derivation was given by the author in previous papers presented in 
references.

A.10.1. THE ANALYSE OF THE MAGNETIC FIELD STRENGTH  
OF A SOLENOID 

Coils having the form of a solenoid are widely used in many electromagnetic 
applications [1]-[11]. The calculation of the magnetic field strength produced by 
solenoids carrying an electric current are of interest in many cases aiming at practical 
purposes as well as theoretical ones. For this reason, several thorough studies have been 
devoted to this subject. Most of them concern the case of solenoids having the form of a 
right cylinder with circular cross-section, considered in vacuum medium. Among the 
various studies dealing with this subject, we can note [2], [3], [6]. In work [2], very 
detailed analyses for various solenoids are presented. At the same time, in the same work, 
various methods for the calculation of magnetic fields are presented: the Biot-Savart-
Laplace formula [2, p. 35, 99], magnetic systems of dipoles associated to electric currents 
and magnetized bodies [2, pp. 14-21, 99-101, 137]. Analytical solutions for the case of 
circular cylindrical solenoids are presented. In those solutions, of high accuracy, elliptic 
functions of the first, second, and third kind are used. In work [2], and paper [5], fictitious 
magnetic charges have been used. As mentioned already by Maxwell [1], it is an artificial 
method. In the mentioned papers, especially the case of a solenoid having a circular 
cross-section has been taken into consideration. In certain treatises and textbooks, like 
[2], [4], [7], the expression of the magnetic field strength at a point of the solenoid axis is 
given in closed form. 

In the present paper, we shall give a new derivation of a general expression of the 
magnetic field strength of a solenoid. We shall start, also, from the Biot-Savart-Laplace 
formula, and we shall use only the relations from Vector Analysis, in order to obtain a 
general expression, and at the same time, to highlight the components of the resultant 
magnetic field strength without resorting to the general theory of expressing a vector 
starting from the values of its divergence and curl, respectively. 

The SI International System of units of measure has been used. 
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A.10.2. AN EXPRESSION OF THE MAGNETIC FIELD STRENGTH 
PRODUCED BY A SOLENOID STARTING FROM THE 
BIOT-SAVART-LAPLACE FORMULA 

 In order to fix the ideas, we shall consider, as shown in Fig. A.10.1, a solenoid with 
the symbols given in the figure. For the simplicity of the figure, we shall consider a 
solenoid of a circular or elliptic cross-section. This circumstance will not restrict the 
generality of the solution because all the relations will have a general use. The cylinder 
bases are considered to be perpendicular to its generatrix. 

The current sheet round the cylinder will be considered infinitely thin and constant 
with time. The medium is assumed as vacuum. Under the preceding assumptions, the 
magnetic field strength produced by the electric current carried by the solenoid can be 
calculated by the Biot-Savart-Laplace formula, (2.48), as follows: 

,
d

4 3r

i rl
H (A.10.1)

with the usual symbols.  
 The following symbols are used:  – helical curve, a very closed one, considered as 
the mean curve of a very thin and narrow strip, which forms the lateral surface of the 
cylinder; i – intensity of the electric current carried by the path corresponding to that 
curve; r – position vector having its origin at any source point denoted by P, and its arrow 
end at the field (observation) point denoted by N; LJ 0  – linear current density of the 
current sheet; lhS ddd  – area of an element of the lateral surface of the cylinder; h

and hd  – breadth of the strip, and element of cylinder height; l  and ld  –element of 
length along the circumference. 

With the symbols above, the link between the vector representing an element of the 
lateral surface of the cylinder, and the current carried by the strip represented by curve ,
can be expressed as follows: 
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Fig. A.10.1. Solenoid of finite length carrying a current sheet: P – source point,
running point, in three positions; N – field point; Slat – lateral surface of the

solenoid cylinder; Sbase 1, Sbase 2, – surfaces of both bases; i  – small sphere surface
surrounding the field point. The field point is inside the cylinder but it may

be also outside.

;;; 0 hJilllhS Lnktl (A.10.2)

.dd SnS (A.10.2 a)

The relations can be written considering relation (A.10.2 a), and Sd  would be shifted
at the end of the expression, keeping at the starting place only vector n , but for
conciseness reason, we have used in most cases only the vector Sd .

With the symbols above, relations (A.10.1) and (A.10.2), yield:
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H (A.10.3)

The last integral, changing the order of factors and modifying the surface over which it is
extended, can be written as follows:
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S
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nkr
H (A.10.4)

where cyl  represents the closed surface of the cylinder, i.e., the lateral surface, lat ,

unified with the surface of each of both bases, bases , and n denotes the unit normal at 
any point of that surface. In the last formula, Sd  represents the surface element around 
any point of the cylinder surface, because, on the bases of the cylinder, the numerator of 
the integrand is zero, hence the results given by relations (A.10.3) and (A.10.4) will not 
differ from each other. 

 Let us consider the integrand of the integral (A.10.4) as composed of two factors: 
3r

r

and nk . Then, taking into account the expansion of any term of the form 

racurl , where a  is a constant vector, the integral can be written using (A.1.71): 
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H
(A.10.5)

where the curl is calculated at the field point (observation point) N, which is not singular, 
whereas the surface element is at the source point P.

A.10.3. CALCULATION OF THE INTEGRAL BY USING VECTOR 
ANALYSIS TRANSFORMATIONS  

We want to calculate the integral:  

.dd

,
d

curl

cyl

S

r

nS

Sk
I (A.10.6)

(A.10.6 a)

Having in view the form of relation (A.10.6), and several known examples, one could 
suppose that the calculation of expression (A.10.6) would be easier performed if one uses 
the vector potential. However, this procedure does not lead, in this case, to a favourable 
result. That is why we shall use a new procedure, more general, and simpler than those 
we have previously presented in [9] and [10]. 

Unlike to the case of relation (A.10.4), in relation (A.10.6), we shall consider the 
vector quantity the curl of which has to be calculated, as composed of two factors: k  and 

r

n
. Taking into account that the first factor is constant; we shall obtain using (A.1.76): 
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( ) .divcurl
rrr
nknknk

∇⋅−=⎟
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⎞

⎜
⎝
⎛ ×  (A.10.7)

 

The right-hand side contains a term that appears also in the expression of the gradient 
of the scalar product, one vector of which, namely k , is constant, and by (A.1.74) we get: 
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Therefore: 
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From relations (A.10.6) and (A.10.9), it follows that: 
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We shall calculate the component produced by each of the three terms contained by 
the integral. 

The first term yields according to (A.1.169): 
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In the integral extended over the lateral surface of the cylinder, the scalar product 
Sk d⋅  is zero because the two vectors are, at any point of this surface, perpendicular to 

each other. Hence: 
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The second term yields according to (A.1.70): 
 

 .dddiv

cylcyl

32 ⎮⌡
⌠ ⋅

−=⎮⌡
⌠

⎟
⎠
⎞

⎜
⎝
⎛=

ΣΣ
rr

SrkSkI  (A.10.13)

In order to simplify the calculation, we shall apply the theorem of Gauss-Ostrogradski 
for obtaining the transformation of a surface integral into a volume one. For applying the 
usual formulae containing differential operators, taking into account that the point N is 
fixed, we shall consider, when performing the calculation, the vector rr −=′ , and after 
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the calculation has been performed, we shall return to vector r. However, for conciseness 
reason, we shall not write this intermediary transformation. 

In order to ensure the applicability of the mentioned theorem, we shall first separate, 
inside the cylinder, the singular point, that is the point corresponding to 0r , by 
surrounding it with a sphere, having the centre at that point, and small enough, so that it 
does not touch the cylinder. Then, we have to calculate the integral: 

,,
ddd

icyl333

icyl

rrr
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(A.10.14)

where i represents the surface of the sphere, which surrounds the singular point above. 
 The above mentioned theorem yields: 
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(A.10.15)

For the sphere surface, the unit normal is oriented, as in general, outwards the 
considered volume, that is, towards the sphere centre, as ir  in A.10.1. Therefore, relations 
(A.10.14) and (A.10.15) yield: 
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The relations (A.10.13) and (A.10.16) yield: 
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If the point N is outside the cylinder, the term 2I  is zero. 
The third term yields: 
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(A.10.18)

It will be calculated similarly as the second one. Using the same definition of  as in 
relation (A.10.14), we have: 
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It follows that we have to calculate: 
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We have, using (A.1.92): 
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 Therefore: 

.03I (A.10.23)

 It results that: 

.321 IIII (A.10.24)

We obtain: 
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A.10.4. COMPUTING THE EXPRESSION OF THE MAGNETIC
   FIELD STRENGTH 

From relations (A.10.5), (A.10.6), (A.10.25), it results for the case of the solenoid an 
expression with separated components: 
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Therefore:
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where the following symbols have been used: cylV  – volume domain occupied by the 

cylinder; cyl  – cylinder surface; Sbases – surface of each cylinder base; i0 – total current 

sheet; J0L – linear current density; k – unit vector along the cylinder generatrix; r –
position vector of observation (field) point N with respect to the origin (source) point P.
Therefore: if the point N is outside the cylinder, the first term of the right-hand side is 
zero, and if it is inside, it is different from zero. 

The last formula emphasizes that, generally, the expression for any observation (field) 
point inside the cylinder has two components, the latter of Coulombian type and the 
former of non-Coulombian type. If the observation point is outside the cylinder, the 
former term vanishes, while the latter subsists. 

It is interesting to emphasize that the last relation permits to establish a known general 
relation. If we change the symbols and denote the second term by NH  the Coulombian 
component, and by M  the value of the first non-Coulombian component, we can write: 

,)()(
1

0
NNN HMB (A.10.28)

where, the quantity H  has the character of the magnetic field strength, and the quantity 
M  has the character of the magnetization. In general: 

,00 MHB (A.10.29)

or introducing the magnetic polarization: 

.0 jMHB (A.10.30)

If any other magnetic field, produced by other causes for instance electric currents, 
exists it has to be included into the vector H . Therefore, in such cases, the magnetic field 
strength may be of non-Coulombian type. 

It follows that formula (A.10.27) allows for deducing the relation between the 
magnetic field strength, polarization and induction, in the general case. 
 If any substance contains a large number of elementary solenoids, the relations above 
are valid for the quantities BMH ,,  of every solenoid and also for the average of these 
quantities over any physically infinitesimal interval of space and time. We have, hence, 
found anew, simpler and in a more general way a result of paper [9] and [10]. 
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A.10.5. CALCULATION OF THE MAGNETIC FIELD STRENGTH 
                  PRODUCED BY A CIRCULAR CROSS-SECTION
                  SOLENOID BY USING DIRECTLY THE 
                  BIOT-SAVART-LAPLACE FORMULA 

In order to verify the accuracy of formulae above, we shall apply formula (A.10.3) for
calculating the magnetic field strength of a right circular cylinder. We shall consider the
configuration of Fig. A.10.1, and use formula (A.10.3). It will be recalled that P is the
source point, whereas N is the observation (field) point. For applying the formula, we
shall consider a slice of the cylinder, of a very small height z. Let NNN zyx ,, be the

co-ordinates of point N, and, 1bz and 2bz , the z-co-ordinates of the two bases of the
cylinder. The slice will be taken at any co-ordinate z. For simplicity, without restricting
the generality, we shall take 0Ny .

The projection of the considered slice on the plane xOy is shown in Fig. A.10.2.
The product rl will be expressed by using the polar co-ordinates and where,

in this case, 0r . It follows: 

Fig. A.10.2. The projection of the circumference of a cross-section 
 of the solenoid cylinder on the xOy - plane: The representation of the projection of
the position vector PN  using polar co-ordinates. The segment OP belongs to the 

plane of the circle. 

,0cossin 00 kjil rr (A.10.31)

,sincos 00 zzrrx NN kjir (A.10.32)
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.cossincos 0000 rxrrzzrzz NNN kjirl (A.10.33)

The utilization of formula (A.10.31) results in calculating a double integral with 
respect to variables z and , for each of the three axes of Cartesian co-ordinates. 

Taking into account that, for reasons of symmetry, yH  is zero, it results that: 

,
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(A.10.34 a,..,d)

where, in order to shorten the explanations, we shall use the following symbols:
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and
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We shall denote: 

.)( 22 zzcarzFF N (A.10.37)

For the calculation of expressions (A.10.35 a, b), we can use one of the procedures of 
Sub-Section A.10.6.1. For this purpose, we shall denote: 
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We get: 
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(A.10.40)

Then, we shall calculate the integrals (A.10.34 a, c) above, with respect to the 
variable . This calculation has been carried out by a numerical method, using the Gauss 
integration method, by a procedure with 32-point ordinates. 



Appendix 10. The General Formula of the Magnetic Field Strength of a Solenoid. 369

A.10.6. CALCULATION OF THE MAGNETIC FIELD STRENGTH 
                  PRODUCED BY A CIRCULAR CROSS-SECTION
                  SOLENOID BY USING THE FORMULA WITH SEPARATE 
                  COMPONENTS

In order to verify the accuracy of formulae above, we shall apply formula (A.10.27)
for calculating the magnetic field strength of a right circular cylinder. We shall consider
the configuration of Fig. A.10.1, and use formula (A.10.27). We shall consider, the
configuration of Fig. A.10.3. It will be recalled that, as previously, P is the source point,
whereas N is the observation (field) point.

Fig. A.10.3. The projection of a thin slice of the end of the solenoid cylinder on the
xOy  - plane: The representation of the projection of the position vector PN  using

polar co-ordinates. The segment OP belongs to the plane of the circle.

Let, as above, NNN zyx ,, be the co-ordinates of point N, and, 1bz and 2bz , be the
z-co-ordinates of the two bases of the cylinder. For simplicity, without restricting the

generality, we shall take 0Ny . For describing the position of a point on each of the
two bases of the solenoid cylinder, polar co-ordinates and will be used, as in
Fig. A.10.3. The vector oriented from point P to point N will be: 

.sincos zzx NN kjir (A.10.41)

The calculation by formula (A.10.27) results in calculating a double integral with
respect to variables  and , for each of the three axes of Cartesian co-ordinates.

Taking into account that, for reasons of symmetry, yH  is zero, it results that: 
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where, in order to shorten the explanations, we have used the following symbols: 
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and the order of the computing operations can be: (A.10.43), (A.10.44), (A.10.42) or 
(A.10.44), (A.10.43), (A.10.42). We shall denote: 
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and 

.)( 22 ρ+ρ+==ρ= cbarFF  (A.10.46)
 

For the calculation of expressions (A.10.44 a, b), we shall use one of the procedures of 
Section A.10.6.1. For this purpose, we shall denote: 
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The Coulombian component of the magnetic field strength, as mentioned, is given by 
the integral of the right-hand side of relation (A.10.27). We obtain: 
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Further on, it is necessary to calculate the integrals (A.10.42 a, c) with respect to the 
variable . This calculation has been carried out, as previously, by a numerical method, 
using the Gauss integration method, by a procedure with 32 ordinates. 

A.10.6.1. Calculation of the Integrals of Sections A.10.5 and A.10.6 
  Calculation of Integrals Using Tables 

The integrals occurring above may be calculated either by Computer Symbolic 
Calculus, using softwares, like Derive, MathCAD, Maple, Mathematica. The author 
prepared computer programs in Maple which lead to relatively complicate expressions. 
However, it is possible to use tables of integrals, like [12], [13], which, in this case, 
completed with some arrangements by hand, lead to symmetrical and much simpler 
expressions. The functions below and the corresponding indefinite integrals can be used:
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A.10.7. COMPUTER PROGRAMS AND NUMERICAL RESULTS

For the methods developed in the present paper, we have developed computer
programs in Fortran.F77 language. For integration by the Gauss method, the subroutine
DQG32 of the IBM Library has been used. The program has been written in double
precision, that is, each word has two bytes, i.e., 16 bits, what ensures results of high
precision even at points in the vicinity of singular points. The obtained results are given
in Table 1. The programs are called SOLENBSL.F77 based on the Biot-Savart-Laplace
formula, and SOLENCNC.F77 based on the separated components formula.

If the two types of formulae ensure a good accuracy, they have to give results very
close to each other. We have compared the results for various points placed at various
positions with respect to the cylinder. The greatest relative deviation has been of the order

of magnitude of 510 .
Table 1

Results obtained by numerical computation of the magnetic field strength by three methods:

1. Biot-Savart-Laplace formula.  2. Formula with the separated Coulombian components.

        3. Formula in closed form. Data of the solenoid: 11bz , 12bz , 10r , 10LJ .

a. Co-ordinates of the observation point: 0Nx , 0Ny . Component zH .

Value of zN

and method
-1.01 -1

(-1.0000001)
-0.5 0 0.5 1

(1.0000001)

1 0.4016784
E+00

0.4472135
E+00

0.6396319
E+00

0.7071068
E+00

0.6396319
E+00

0.4472135
E+00

2 0.4016784
E+00

0.4472135
E+00

0.6396319
E+00

0.7071068
E+00

0.6396319
E+00

0.4472135
E+00

3 0.4016784
E+00

0.4472136
E+00

0.6396319
E+00

0.7071068
E+00

0.6396319
E+00

0.4472135
E+00

b. Co-ordinates of the observation point: 2Nx , 0Ny . Component zH .

Value of zN

and method
-1.5 -1 -0.5 0 0.5 1

1 -0.458168
E-03

-0.224792
E-01

-0.440966
E+00

-0.518527
E+00

-0.440966
E-01

-0.224792
E-01

2 -0.458168
E-03

-0.224972
E-01

-0.440966
E+00

-0.518527
E+00

-0.440966
E-01

-0.224792
E-01

c. Co-ordinates of the observation point: 2Nx , 0Ny . Component xH .

Value of zN

and method
-1.5 -1 -0.5 0 0.5 1

1 -0.466422
E-01

-0.489889
E-01

-0.305329
E-01

0.000000
E+00

0.305329
E-01

0.489889
E-01

2 -0.466422 -0.489889 -0.305329 0.000000 0.305329 0.489889
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The obtained results show a small difference between the two methods, these are due 
to the rounding error, different for each formula. It has to be noted that the errors are very 
small even in the neighbourhood of singular points. Afterwards has remade the 
computation using the Maple 12 software, for the case in which we are not interested in 
the simplicity of the form of formulae. We could realize certain programming facilities 

and greatest relative deviation has been of the order of magnitude of less than 710 . In 
the table above, there are given the last results, for this reason no deviation appears, 
which appeared in the foregoing papers of the author. The comparison of the results 
obtained using by formulae in closed form and numerical procedures, respectively, has 
shown that, at least, the first seven digits of the mantissa (or significant), the results being 
written in the form of the table above, coincide. 

A.10.8. CALCULATION OF THE MAGNETIC FIELD STRENGTH OF 
             A SOLENOID BY USING  
             FICTITIOUS MAGNETIC CHARGES  

 We shall consider two space domains of the same form and sizes, both of finite length, 
containing a cylindrical solenoid and a uniformly magnetically polarized cylinder. 

The cylindrical solenoid produces a magnetic field as well as the cylindrical uniformly 
magnetically polarized body occupying the same domain. According to paper [9], a 
cylindrical solenoid may be decomposed in a set of elementary solenoids, the 
neighbouring current sheets of which being of similar directions, their effect will be the 
same as that of the given solenoid. At the same time, according to the same paper, the 
cylindrical uniformly magnetized cylinder may be decomposed in a set of elementary 
magnetic dipoles. If one magnetic dipole is equivalent to one elementary solenoid, then 
the magnetic field produced by each of them in their neighbourhood will be the same. 
According to the same paper, at a microscopic scale, the magnetic field strength of 
elementary dipole and elementary solenoid have different values. Then, if we consider a 
single cylindrical solenoid and a single magnetized cylinder, the magnetic field strength 
inside the considered domains will be also different, regardless of the cylinder size, hence 
microscopically as well as macroscopically. But, the magnetic induction will be the same 
in both cases. Therefore, we shall consider the magnetic induction of the two domains. 

In the case of the magnetically polarized cylinder of finite length, the magnetic field 
strength may be obtained by using the principle of superposition, like in paper [9]. The 
considered magnetically polarized cylinder will be considered as belonging to an 
infinitely long cylinder. We can consider that the infinitely long cylinder consists of three 
parts: the considered cylinder of finite length, and other two semi-infinite cylinders, each 
of them situated on one part of the cylinder of finite length, in order to built-up the whole 
infinitely long cylinder. 

The magnetic induction (flux density) at any point inside or outside the cylinder of 
finite length will have two components: 

1. A component, say of type a, produced by the infinitely long cylinder.  
Because the effect of magnetic dipoles cancels each other, the volume density of the 
fictitious magnetic charge will be zero, and the magnetic field strength produced by 
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the infinite cylinder will be zero, inside as well outside the cylinder, but the 
magnetic induction will be different from zero inside, and zero outside. 

2. A component, say of type d, produced by the two semi-infinite cylinders, each of 
them situated on one side of the cylinder of finite length, taken with changed sign, 
because it has to be subtracted from the previous one. 

Because the effect of magnetic dipoles cancels each other, the volume density of the 
fictitious magnetic charge will be zero, and only the fictitious magnetic charge of the base 
of the semi-infinite cylinder will contribute to the production of a magnetic field. 

The component of type a will be: 

 ( ) ,a jN MB =  (A.10.49 a)

inside, and  

 ( ) ,0a =NB  (A.10.49 b)

outside the infinite cylinder. 
The magnetic induction produced at any point inside as well as outside the cylinder of 

finite length will be given by the known relation (like in Electrostatics): 
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π
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N SMrB  (A.10.50)

where not minus sign has to be introduced, because the integral limits above refer to the 
cylinder of finite length, and the normals to the bases of this cylinder are opposite to those 
on the bases of the semi-infinite length. 

By summing up the formulae (A.10.49) and (A.10.50), dividing by the permeability of 
vacuum both sides, and replacing, the magnetic polarization, according to formulae (14), 
(18) of [9], we have just formula (A.10.27) above. 

This latter deduction has not the generality of the former one, but, in turn, it has the 
advantage of being suggestive. 

 
 
A.10.9. CONCLUSION 
 

The presented new method of establishing the magnetic field strength of a solenoid 
calculating the magnetic field strength produced by a right cylindrical solenoid of finite 
length and with a cross-section of any form has the advantage of using only the Vector 
Analysis formulae, without resorting to the method of fictitious magnetic charges or to 
general formulae of the field theory. The method leads to an expression with separated 
components. The obtained expression permits the calculation of the magnetic field 
strength produced by various form of the solenoid, is easier to be applied than other 
largely used expressions and ensures a high accuracy. Also, it permits to obtain directly 
the relation between induction (flux density), field strength and polarization of a magnetic 
field. 
 Certain results concerning the usage of various softwares have been obtained, what 
has not been known in other publications. 
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List of Symbols Used in Appendix 10  
 

B  – macroscopic magnetic induction; 
ld  – line element vector; 
Sd  – Surface element vector; 

H  – macroscopic magnetic field strength; 

Sh  – length of a cylinder that can be a solenoid or a uniformly magnetized body; 

I  – symbol of any vector integral with a certain suffix; 
kji ,,  – unit vectors of a three-orthogonal right-handed system of co-ordinates; 

i  – electric current intensity; 

0i  – total electric current intensity of a solenoid; 

LJ0  – linear density of the current sheet of a solenoid; 

k  – unit vector of the generatrix of a right cylinder; 
M  – magnetization vector; 

jM  – MM 0µ=j , magnetic polarization vector; 
n  – unit vector of the normal to a surface; 
r  – position vector of any observation (field) point P relatively to the origin or 

source point N; 
ir  – radius of the interior sphere with the centre at the observation point; 

0r  – radius of the cylinder; 
zyx ,,  – co-ordinates of any source point P; 

,Nx  

NN zy ,  

– co-ordinates of any observation point N; 

,1bz

2bz  

– co-ordinate along the Oz-axis of the two bases of the cylinder; 

S  – open surface that can have a suffix indicating it; 
Γ  – curve, in most cases, a closed one; 
µ  – magnetic permeability, in vacuo it is 0µ ; 
θ  – angle in cylindrical co-ordinates; 
Σ  – closed surface that can contain a suffix indicating it. 

 
 
REFERENCES 

 

1. MAXWELL, J.C.: A Treatise on Electricity and Magnetism, Third Edition, Clarendon Press, 
London, 1891. Reprinted by Dover Publications, Inc., New York, 1954. 

2. DURAND, É.: Magnétostatique, Masson et C-ie, Éditeurs, Paris, 1968. 
3. FAWZI, T.H., BURKE, P.E.: The accurate computation of self and mutual inductances of 

circular coils. IEEE Transactions on PAS, vol. 97, No. 2 (1978), pp. 464-468. 
4. 

 
FOURNET, G.: Électromagnétisme à partir des équations locales, Masson et C-ie, 

Éditeurs,Paris, 1985. 
5. BABIC, S., et al.: Calculation improvement of 3D linear magnetostatic field based on 

fictitious magnetic surface charge. IEEE Trans. Magn., vol. 36, No. 5 (2000), pp. 3125-
3127. 



General Theory of the Electromagnetic Field 
 

 

376 
 

6. BABIC, S., et al.: The mutual inductance of two thin coaxial disk coils in air. IEEE Trans. 
Magn., vol. 40, No. 2 (2004), pp. 822-825. 

7. MORARU, A.: Bazele electrotehnicii. Teoria câmpului electromagnetic (Fundamentals of 
Electrotechnics. Theory of the electromagnetic field). Edit. Matrix Rom, Bucharest, 2002. 

8. NICOLAIDE, A.: Electromagnetics. General Theory of the Electromagnetic Field, Second 
Edition, Transilvania University Press, Braşov 2009. 

9. NICOLAIDE, A.: A New Analysis of the Introduction of the Magnetic Field State Quantities 
in Solids. Periodica Polytechnica Ser. El. Eng. Vol. 48, No. 3 (2004), pp. 101-118. 

10. 
 
 

NICOLAIDE, A.: Establishing a general formula of the magnetic field strength of a 
solenoid. Rev. Roum. Sci. Techn. – Électrotechnique et Énergétique, 49, No. 3, (2004), 
pp. 295-308. 

11. NICOLAIDE, A.: A new approach to the introduction of the electric and magnetic field state 
quantities. Rev. Roum. Sci. Techn. – Électrotechnique et Énergétique, 49, No. 4 (2004), 
pp. 547-560. 

12. RYZHIK, I.M., GRADSTEIN, I.S.: Tables of Series, Products, and Integrals, Second Edition. 
New York: Plenum Press, 1963. 

13. FRENET, F.: Recueil d’exercisses sur le calcul infinitesimal. Gauthier-Villars et C-ie, 
Éditeurs, Paris, 1917. 

14. SCHEIBER, E., LUPU, M.: Matematici speciale. Rezolvarea problemelor cu ajutorul 
calculatorului (Special Mathematics. Solving Problems by Computer), Edit. Tehnică, 
Bucureşti, 1998. 

15. NICOLAIDE, A.: Transforming the Expression of the Integral of a Vector Field Curl over a 
Cylinder Surface into Another Surface Integral without Differential Operators. In: World 
Congress on Engineering 2008, IAENG International Association of Engineers, The 2008 
International Conference of Applied and Engineering Mathematics, London, 2-4 July, 
2008, Vol. II, pp. 918-921. ISBN: 978-988-17012-3-7. 

16. NICOLAIDE, A.: A New Vector Analysis Approach to the Calculation of the Magnetic Field 
Strength of a Solenoid. Current Themes in Engineering Science 2008. Editor: Alexander 
M. Korsunsky. Melville, New York, 2009, American Institute of Physics. AIP 
Conference Proceedings, volume 1138, pp. 59-70.  

17. *
*

*  Maple 12. The Essential Tool for Mathematics and Modeling. Maplesoft, a division of 
Waterloo Maple Inc. 1996-2008. 

 



 
 
 
 

BIBLIOGRAPHY 
 
 
A. Treatises, Textbooks and Works on Electromagnetism 
 

1. MAXWELL, J.C.: A Treatise on Electricity and Magnetism. Third Edition, London: 
Clarendon Press, 1891. Reprinted by Dover Publications, Inc., New York, 
1954. 

2. LORENTZ, H.A.: Theory of Electrons and Its Applications in the Phenomena of 
Light and Radiant Heat. Teubner Publishing Company, Leipzig, 1909. 
Reprinted by Dover Publications, Inc., New York, 1952. 

3. BLOCH, L.: Précis d‘Électricité Théorique. Gauthier-Villars et C-ie, Éditeurs, 
Paris, 1919. 

4. PROCOPIU, Şt.: Electricitate şi magnetism (Electricity and Magnetism). Vol. I. 
Editura Laboratorului de electricitate, Iaşi, 1942. 

5. SMYTHE, W.R.: Static and Dynamic Electricity. McGraw-Hill Book Company, 
New York, 1950. 

6. DACOS, F.: Conception actuelle de l‘électricité théorique. Dunod, Éditeur, Paris, 
1957. 

7. TAMM, I.E.: Bazele teoriei electricităţii. Editura Tehnică, Bucureşti, 1957. 
Fundamentals of the Theory of Electricity. Mir Publishers, Moscow, 1979. 

8. RĂDULEŢ, R.: Bazele teoretice ale Electrotehnicii (Theoretical foundations of 
Electrotechnics). Vol. I-IV. Litografia Institutului Politehnic Bucureşti, 1958. 

9. *** Manualul inginerului electrician (Handbook of the electrical engineer). Vol. I, 
Editura Tehnică, Bucureşti, 1958. 

10. FOURNET, G.: Physique électronique des solides à l’usage des ingénieurs (École 
Nationale Supérieure des Télécommunications). Éditions Eyrolles, Paris, 
1962. 

11. ARZELIÈS, H.: Électricité. Le point de vue macroscopique et relativiste. Gauthier-
Villars, Éditeur, Paris, 1963. 

12. DURAND, É.: Électrostatique. Tome I – Les distributions. Tome II – Problèmes 
généraux. Tome III – Méthodes de calcul. Diélectriques. Masson et C-ie, 
Éditeurs, Paris, 1964, 1966, 1966. 

13. ELLIOTT, R.S.: Electromagnetics. McGraw Hill Company, New York, 1966. 
14. BRUHAT, G.: Cours de Physique Générale. Électricité. Huitième édition revisée 

par G. GOUDET. Masson et C-ie, Éditeurs, Paris, 1967. 
15. DURAND, É.: Magnétostatique. Masson et C-ie, Éditeurs, Paris, 1968. 
16. BESSONOW, A.: Applied Electricity for Engineers. Mir Publishers, Moscow, 1968. 
17. LANDAU, L.D., LIFSHITZ, E.M.: Electrodynamics of Continuous Media, Course of 

theoretical Physics. Vol. 8, Pergamon Press, Oxford, 1960. 
Fizică teoretică. Electrodinamica mediilor continue. Editura Tehnică, 
Bucureşti, 1968. 



Bibliography 
 

378 

18. ROSSER, W.G.V.: Classical Electromagnetism Via Relativity. Edit. Butterworths, 
London, 1968. 

19. PHILIPPOW, E.: Grundlagen der Elektrotechnik. Akademische Verlagsgesellschaft 
Geest & Portig K.- G., Leipzig, 1970. 

20. VALLÉE, R.L.: L’énergie électromagnétique materielle et gravitationnelle. 
Hypothèse de l’existence des milieux énergétiques et d’une valeur limite 
supérieure du champ électrique. Masson et C-ie, Éditeurs, Paris, 1971. 

21. FOURNET, G.: Électromagnétisme à partir des équations locales. Masson et C-ie, 
Éditeurs, Paris, 1985. 

22. FISCHER, J.: Elektrodynamik. Springer-Verlag, Berlin, Heidelberg, New York, 
1975. 

23. NICOLAIDE, A.: Bazele fizice ale Electrotehnicii (Physical foundations of Electrical 
Engineering). Vol. I, Vol. II, Editura Scrisul Românesc, Craiova, 1983, 1986. 

24. NOVOZHILOV, Yu., YAPPA, A.: Electrodynamics. Mir Publishers, Moscow, 1986. 
25. ELLIOTT, R.S.: Electromagnetics: History, Theory, and Applications. The IEEE 

Press, 1993. 
26. NICOLAIDE, A.: Magnetism and Magnetic Materials. Transilvania University Press, 

Braşov, 2001. 
 

 
B. Works on Electromagnetism and the Theory of Relativity 
 
27. EINSTEIN, A.: The Meaning of Relativity. Princeton University Press, Princeton, 

New Jersey, 1955. Teoria relativităţii. Editura Tehnică, Bucureşti, 1957. 
28. SAGNAC, G.: Sur les interférences des deux faisceaux superposés en sens invers le 

long d‘un circuit optique de grandes dimensions. Comptes Rendus de 
l‘Académie des Sciences. Séance du 23 mai 1910, T. 150, No. 21, pp. 1302-
1305. Paris, 1910. 

29. SAGNAC, G.: Interféromètre à faisceaux lumineux superposés inverses donnant en 
lumière blanche polarisée une frange centrale étroite à teinte sensible et des 
franges colorées étroites à intervalles blancs. Comptes Rendus de l‘Académie 
des Sciences. Séance du 13 juin 1910, T. 150, pp. 1676-1679. 

30. SAGNAC, G.: L‘éther lumineux démontré par l‘effet du vent relatif d‘éther dans un 
interféromètre en rotation uniforme. Comptes Rendus de l‘Académie des 
Sciences. Séance du 27 octobre 1913. T. 157, pp. 708-710. 

31. SAGNAC, G.: Sur la preuve de la réalité de l‘éther lumineux par l‘expérience de 
l‘interférographe tournant. Comptes Rendus de l‘Académie des Sciences. 
Séance du 22 décembre 1913. T. 157, pp. 1410-1413. 

32. ARZELIÈS, H.: La cinématique relativiste. Gauthier-Villars, Éditeur, Paris, 1955. 
33. ARZELIÈS, H.: La dynamique relativiste. Gauthier-Villars, Éditeur, Paris, 1957. 
34. KELLY, A.G.: Time and the Speed of Light – a New Interpretation. The Institution 

of Engineers of Ireland, Monograph No. 1, January 1995. 
35. KELLY, A.G.: A New Theory on the Behaviour of Light. The Institution of 

Engineers of Ireland, Monograph No. 2, February 1996. 
36. KELLY, A.G.: Reliability of Relativistic Effect Tests on Airborne Clocks. The 

Institution of Engineers of Ireland, Monograph No. 3, February 1996. 
 



Bibliography 
 

379

37. MONSARRAT, B.: La Relativité: Une conséquence de la structure 
Quadridimensionnelle de l’univers. Conférence. Organisation: SEE – Société 
des Électriciens et Électroniciens, Supelec (École Supérieure d’Électricité), 12 
octobre 1998. 

38. FABRE, L.: Une nouvelle figure du monde. Les Théories d’Einstein. Payot et C-ie, 
Paris, 1922. 

39. POINCARÉ, H.: La mécanique nouvelle. Conférence, mémoire et note sur la Théorie 
de la relativité. Les grands classiques. Gauthier-Villars et C-ie, Éditeurs, Paris, 
1924. Éditions Jacques Gabay, Paris, 1989. 

40. NICOLAIDE, A.: Grundlagen für eine Ableitung der Gleichungen des 
elektromagnetischen Feldes unter Anwendung der Speziellen 
Relativitätstheorie (Foundations of the Derivation of the Electromagnetic Field 
Equations by Applying the Special Theory of Relativity). Archiv für 
Elektrotechnik, 1974, Bd. 56, H. 3, S. 149-155. Springer-Verlag, Berlin, 
Heidelberg, New York. 

41. NICOLAIDE, A.: Ableitung der Gleichungen des elektromagnetischen Feldes unter 
Anwendung des Coulombschen Gesetzes und der Speziellen Relativitätstheorie. 
(Derivation of the Electromagnetic Field Equations by Applying Coulomb’s 
Law and the Special Theory of Relativity). Archiv für Elektrotechnik, 1974, 
Bd. 56, H. 3, S. 156-160. Springer-Verlag, Berlin, Heidelberg, New York. 

 
 
C. Standards 
 
42. ***Sistemul internaţional de unităţi (SI). Mărimi caracteristice ale 

electromagnetismului. Unităţi de măsură. (The International System of Units 
(SI). Characteristic quantities in electromagnetism. Units of measure). State 
Standard STAS 737/9-74. 

43. ***Mărimi în electrotehnică. Simboluri (Quantities in Electrotechnics. Symbols). 
State Standard STAS 3087-76. 

44. Norme Internationale CEI 27-1, Sixième édition, 1992-12. Symboles littéraux à 
utiliser en électrotechnique. Partie 1: Generalités.                             
International Standard IEC 27-1, Sixth edition 1992-12. Letter symbols to be 
used in electrical technology. Part 1: General. Genève, 1999. 

45. Norme Internationale CEI 60027-1, 1992, Amendement 1, 1997-05. Symboles 
littéraux à utiliser en électrotechnique. Partie 1: Généralités.              
International Standard IEC 60027-1, 1992, Amendment 1, 1997-05. Letter 
symbols to be used in electrical technology. Part 1: General. Genève, 1999. 

46. CARPENTIER, J.: Le système international d’unités en 1992 (The International 
System of Units in 1992). In: Revue Générale de l’Électricité, 1993, No. 5, pp. 
1-9, Paris. 

47. KOSOW, I.L.: Circuit Analysis. Chapter 1: The SI, Scientific Notation, Unit 
Conversion, p. 1. Chapter 2: Current and Voltage, p. 15. Chapter 11: 
Magnetism and Magnetic Circuits, p. 278. Edit. John Wiley and Sons, New 
York, 1988. 

 
 



Bibliography 
 

380 

D. Treatises, Textbooks and Works on Parts of Electromagnetism 
 
48. KIRÉEV, V.: Cours de Chimie Physique. Éditions Mir, Moscou, 1968. 
49. NICOLAIDE, A.: Significance of the scientific research of Nicolae Vasilescu Karpen 

(1870-1964). AGIR Publishing House, Bucharest, 2006. 
50. ŠPOLSKIJ, E.V.: Fizică atomică (Atomic Physics). Vol. I, II. Editura Tehnică, 

Bucureşti, 1953. 
51. TAREEV, B.M. et al.: Electrical and Radio Engineering Materials. Mir Publishers, 

Moscow, 1980. 
 
E. Mathematical Methods 
 
52. BRICARD, R.: Le Calcul vectoriel. Collection Armand Colin (Section de 

Mathématiques). Librairie Armand Colin, Paris, 1932. 
53. MORSE, P.M., FESHBACH, H.: Methods of Theoretical Physics. Part I, Part II, 

McGraw-Hill Book Company, New York, 1953. 
54. KOCIN, N.E.: Calculul vectorial şi introducere în calculul tensorial. (Vector 

Calculus and introduction to Tensor Calculus). Editura Tehnică, Bucureşti, 
1954. 

 
F. Additional References 
 
55. NICOLAIDE, A.: A new approach to the introduction of the electric and magnetic 

field state quantities. Revue Roumaine des Sciences Techniques – Série 
Électrotechnique et Énergétique, 2004, 49, 4, pp. 547-560, Bucarest. 

56. NICOLAIDE, A.: A new Analysis of the Introduction of the Magnetic Field State 
Quantities in Solids. Periodica Polytechnica, Ser. El. Eng., 2004, Vol. 48, No. 
3, pp. 101-118, Budapest. 

57. NICOLAIDE, A.: Establishing a general formula of the magnetic field strength of a 
solenoid. Rev. Roum. Sci. Techn. – Électrotechn. et  Énerg., 2004, 49, 3, pp. 
295-308, Bucarest. 

58. NICOLAIDE, A.: Transforming the Expression of the Integral of a Vector Field Curl 
over a Cylinder Surface into Another Surface Integral without Differential 
Operators. World Congress on Engineering 2008, IAENG International 
Association of Engineers, The 2008 International Conference of Applied and 
Engineering Mathematics, London, 2-4 July, 2008, Vol. II, pp. 918-921, 
ISBN: 978-988-17012-3-7. 

59. NICOLAIDE, A.: A New Approach for Establishing the Energy Momentum Tensor in 
the Theory of Relativity. World Congress on Engineering 2009, IAENG 
International Association of Engineers, The 2009 International Conference of 
Applied and Engineering Mathematics, London, 1-3 July, 2009, Vol. II, pp. 
1131-1137, ISBN: 978-988-18210-1-0. 

60. NICOLAIDE, A., PANAITESCU, A.: The energetic properties of the electromagnetic 
field. Dynamic properties of the electromagnetic field. Rev. Roum. Sci. Techn. 
– Électrotechn. et Énerg., 2008, 53, 2, 3, pp. 121-136, 239-252, Bucarest. 

 
 



 
 
 

SUBJECT INDEX 
 
Ampere, unit of measure, p. 95. 
Ampère law, p. 143. 
Ampere-turns, p. 145. 
Amperian electric current, p. 76. 
Amperian magnetic charge, p. 169. 
Amperian magnetic moment, p. 78. 
Atom, p. 38, 50. 
Average value, p. 39. 
Average value of E, p. 50. 
Average value of electric polarization, p. 61. 
Average value, denoting, calculating, 

p. 39, 48. 
Axial vector, p. 31. 
Base (basic) units, p. 30. 
Biot-Savart-Laplace formula, p. 115, remark 
on, p.116, law, p. 115. 
Bound electric charges, p. 43, 56. 
Cartesian system of co-ordinates, 

p. 32, 101, 206. 
Cavity within a body, p. 61, 78. 
Charge carrier, p. 47. 
Charge of electron, p. 38. 
Circulation of a vector, p. 54, 219. 
Closed curve, simply closed curve, p. 35. 
Condition of electromagnetic field, p. 143. 
Conduction electric current, p. 72. 
Conductive (conducting) material, p. 42. 
Conductor, p. 45. 
Conservation of the normal component of 

the electric displacement, p. 156. 
Conservation of the normal component of 

the magnetic induction, p. 160. 
Conservation of the tangential component 

of the electric field strength, p. 159. 
Conservation of the tangential component 

of the magnetic field strength, p. 163. 
Conservation of the true electric charge, 

p. 48, 80, 81, 83. 
Constant charge principle, p. 46. 
Contraction of lengths, p. 103. 
Contravariant quantity (tensor), p. 105. 
Convection electric current, p. 142. 
Coulomb formula for electric charges, p. 85, 

in the special theory of relativity, p. 98. 
Coulomb formula for magnetic charges, 

p. 169. 

Coulomb formula, law, theorem, p. 86. 
Coulomb, unit of measure, p. 93. 
Coulombian electric field strength, p. 53. 
Coulombian magnetic charge, p. 169. 
Coulombian magnetic moment, p. 78. 
Covariant quantity (tensor), p. 105. 
Crystalline lattice, p. 43, 72. 
Curl of a vector, p. 219. 
Curl solenoidal field, p. 33. 
Curl component of the electric field strength, 

p. 53, 112. 
Curl field, p. 33. 
Current-linkage, p. 145. 
Cylindrical co-ordinates, p. 242. 
Delocalized electron, p. 42. 
Density of amperian electric current, p. 79. 
Density of electric charge, p. 47. 
Density of electric current in terms of the 

volume density of electric moving charge 
carriers, p. 70. 

Density of the electric current, p. 69, 70. 
Density of the polarization electric charge, 

volume density, p. 59, surface density,  
p. 60, 64, line density, p. 60. 

Density of the surface tension, p. 200. 
Derivative of a scalar function with respect 

to a given direction, p. 212. 
Derivative of a vector along a direction,  

p. 224. 
Derivative with respect to time of the flux 

through a moving open surface, p. 235. 
Derived quantity, p. 37. 
Derived unit, p. 37. 
Dielectric, p. 42. 
Dielectric constant, p. 124. 
Differential, exact, total, p. 89, 210. 
Differential operations by the nabla operator, 

p. 227. 
Differential operations of the second order, 

p. 229. 
Differential operators in curvilinear 

co-ordinates, p. 242. 
Dilatation of time, p. 104. 
Dilation of time, p. 104. 
Dimension attributed to an atom, p. 50. 
Dimension attributed to an electron, p. 51. 



Subject Index 
 

382 

Dipole (electric dipole), p. 58. 
Direction, p. 32. 
Displacement electric current, p. 145. 
Divergence and the curl of a vector by 

means of the nabla operator, p. 226. 
Divergence of a vector, p. 215. 
Double vector product (of three vectors), 

p. 207. 
Doublet (electric doublet), p. 58. 
Einstein postulates and theory, p. 99. 
Electric charge, p. 46. 
Electric conductivity, p. 83. 
Electric conductor, p. 45. 
Electric constant, p. 85, 107. 
Electric current, p. 68. 
Electric currents, action and reaction, p. 116. 
Electric displacement, in vacuo, and in any 

medium, p. 108, 121, 123. 
Electric displacement, p. 121, 123. 
Electric field, p. 45. 
Electric field intensity, p. 53. 
Electric field line, p. 53. 
Electric field strength, in vacuo, p. 49, 85. 
Electric field strength, induced, rotational 

solenoidal, curl component, p. 53, 112. 
Electric field strength in the large sense, 

p. 52, 53. 
Electric field strength in the restricted sense, 

p. 53. 
Electric field strength in various reference 

frames, p. 107. 
Electric field strength produced by a 

distribution of electric charges at rest, 
p. 87. 

Electric flux, p. 122. 
Electric flux density, p. 108, 121, 123. 
Electric induction, p. 108, 121, 123. 
Electric insulator, p. 45. 
Electric moment of a neutral system, p. 57, 

of a polarized body, p. 58. 
Electric polarization vector, p. 60. 
Electric potential difference, p. 88. 
Electric potential produced by charges 

at rest, p. 87. 
Electric resistivity, p. 83. 
Electric tension, p. 55, 88. 
Electric tension in the large sense, p. 55. 
Electric tension in the restricted sense, 

p. 55. 
Electrification by friction, p. 44. 
Electrification state, p. 44. 

Electrodynamic potentials, p. 179. 
Electrodynamic potentials produced by one 

electric charge moving at constant 
velocity, p. 183. 

Electrodynamic potentials produced by one 
electric charge moving at non-constant 
velocity, p. 185. 

Electrodynamic vector potential, p. 179. 
Electromagnetic momentum, p. 200. 
Electromagnetic System of Units, p. 168. 
Electromotive force, p. 55. 
Electromotive force in the large sense, 

p. 55. 
Electromotive force in the restricted sense, 

p. 55. 
Electromotive force induced by the rotation 

of a magnet about its axis, p. 177. 
Electromotive force induced in a coil in 

rotational motion in a uniform magnetic 
field, p. 174. 

Electromotive tension, p. 55. 
Electron, p. 38. 
Electronic current, p. 72. 
Electrostatic potential, p. 87, 88. 
Electrostatic System of Units, p. 168. 
Ellipsoidal co-ordinates, p. 245. 
Energy of the electromagnetic field, 

definition, p. 189, 193. 
Equipotential surface, p. 34, 210. 
Equivalent work, p. 189. 
Extraneous component of the electric field 

strength, p. 53. 
Farad, p. 167. 
Faraday law, p. 136. 
Fictive (fictitious) magnetic charges, 

p. 79, 168. 
Field of scalars, p. 31. 
Field of vectors, p. 31. 
Field point, p. 87, 169, 213. 
Field, electromagnetic, p. 31. 
Flow rate, p. 35. 
Flux, p. 34, 214. 
Flux density, p. 35. 
Flux line, p. 34. 
Flux of a vector through a surface, p. 214. 
Flux of the electric field strength, p. 89, 90. 
Flux through a closed surface, p. 214. 
Flux through an open surface, p. 214. 
Flux-linkage, p. 36, magnetic, p. 129. 
Flux-turn, p. 36, magnetic, p. 129. 
Force acting upon a dipole, p. 65. 



Subject Index 
 

383

Force acting upon a moving point-like 
charge, p. 108, 109. 

Force of electric nature acting on a point-like 
electric charge, p. 52. 

Force of magnetic nature acting upon a 
moving point-like electric charge, p. 110. 

Force of non-electric nature acting on a 
point-like electric charge, p. 52. 

Force transformation expression when 
passing from a reference frame to another, 
p. 104. 

Formulae for cylindrical co-ordinates, 
p. 242. 

Formulae for spherical co-ordinates, 
p. 242. 

Free electric charge, p. 46. 
Free electron, p. 42. 
Fundamental unit, p. 37. 
Gauss-Ostrogradski, theorem, p. 218. 
Gauss law (theorem), p. 93. 
General law, p. 37. 
Gradient, p. 210. 
Gradient lines or lines of field, p. 213. 
Gradient of the magnitude of the position 

vector, p. 213. 
Green theorem, p. 230. 
Hamilton operator, p. 224. 
Helical surface, p. 36. 
Helix, p. 36. 
Henry, unit of measure, p. 168. 
Hole, p. 72. 
Hole current, p. 72. 
Homogeneous medium, p. 31. 
Impressed component of the electric 

field strength, p. 53. 
Impressed electric field strength, p. 53. 
Induced field strength, p. 53 
Inertial reference frame, p. 97. 
Infinitesimal quantity, physically, p. 39. 
Insulating material, p. 43. 
Insulator, p. 45. 
Intensity of Amperian electric current, p. 76. 
Intensity of magnetic current, p. 134. 
Intensity of polarization electric current, 

p. 76, 143. 
Intensity of the electric current, p. 68. 
Intensity of the electric field, p. 53. 
International System of Units, p. 30. 
Intrinsic magnetic induction, p. 78. 
Ion current, p. 72. 

Irreversible transformation of 
electromagnetic energy in the case of 
hysteresis phenomenon, p. 195. 

Isotropic medium, p. 31. 
Joule-Lenz law, p. 196. 
Kind of physical quantity, p. 37. 
Kinetic energy, p. 185. 
Lacuna, p. 72. 
Lagrange equation, p. 184, 185. 
Lagrange function, p. 184. 
Lamé coefficients, p. 242. 
Laplace formula of the force, p. 111. 
Law of electric conduction in local form, 

p. 83. 
Law of electric flux in vacuo, p. 89, 117, 

in general, p. 121. 
Law of electromagnetic induction, 

p. 131-135. 
Law of free (true) electric charge 

conservation, integral form, p. 80, local 
form, p. 81, for media in motion, p. 83. 

Law of magnetic circuit, for medium at rest, 
for vacuum, p. 136, for any medium, 
p. 141, 142, 146. 

Law of magnetic flux, p. 125-128. 
Law of temporary electric polarization,  

p. 123. 
Law of temporary magnetic polarization, 

p. 147. 
Laws of the theory of electric and magnetic 

phenomena, p. 40. 
Level surface, p. 34, 210. 
Liénard-Wiechert potentials, p. 183. 
Line element, p. 32. 
Line of electric displacement, p. 125. 
Line of electric field, p. 53. 
Line of electric field strength, p. 53. 
Line of field, p. 32. 
Line of flux, p. 34. 
Line of force, p. 32. 
Line of magnetic field strength, p. 141. 
Line of magnetic field, p. 141. 
Line of magnetic induction, p. 141. 
Line-integral of electric field strength, p. 54. 
Linear current density, p. 71. 
Linear current sheet, p. 71. 
Lines of magnetic induction, p. 110. 
Lorentz expression of the force, p. 108. 
Lorentz transformation relations, p. 102. 
Macroscopic average (mean) value, symbol, 

p. 39, 48, 50. 



Subject Index 
 

384 

Macroscopic electric current density, p. 70. 
Macroscopic field strength, p. 50. 
Macroscopic line density of electric charge, 

p. 47. 
Macroscopic study, p. 38. 
Macroscopic surface density of electric 

charge, p. 47. 
Macroscopic value, p. 39. 
Macroscopic volume density of electric 

charge, p. 47. 
Magnet, p. 112. 
Magnetic circuital law, p. 136. 
Magnetic constant, p. 107. 
Magnetic vector potential, p. 129. 
Magnetic field, definition, p. 113. 
Magnetic field intensity, p. 141. 
Magnetic field strength in any medium, 

p. 141. 
Magnetic field strength, in vacuo, and in any 

medium, p. 108, 141. 
Magnetic field strength in vacuo, introduced 

by the special theory of relativity, p. 108. 
Magnetic field strength produced at a point 

by a moving electric charge or an electric 
current in vacuo, p. 108, 114. 

Magnetic field strength produced at a point 
on the axis of a circular turn carrying a 
constant electric current, p. 173. 

Magnetic field strength produced by a  
thread-like rectilinear conductor carrying 
a constant electric current, p. 170. 

Magnetic flux, p. 128. 
Magnetic flux density, p. 41, 108. 
Magnetic flux tube, p. 110. 
Magnetic induction, p. 41, 108. 
Magnetic induction, direct introduction, 

p. 110. 
Magnetic induction introduced by the special 

theory of relativity, p. 107. 
Magnetic moment of an amperian current, 

p. 78. 
Magnetism, p. 112. 
Magnetization process, p. 112. 
Magnetization vector, p. 78. 
Magnetomotive force, p. 144. 
Magnetomotive tension, p. 144. 
Mass of electron, p. 38. 
Mass of proton, p. 38. 
Material law, p. 37. 
Material point, p. 39. 
Material quantity, p. 37. 

Maxwell equations, p. 150. 
Maxwell tension, p. 200. 
Metre, p. 101. 
Michelson, experiment of, p. 27. 
Microscopic electric current density, p. 70. 
Microscopic study, p. 38. 
Microscopic value, p. 39. 
Mixed product of three vectors, p. 207. 
Modulus, p. 205. 
Molecular electric current, p. 76. 
Momentum, p. 185. 
Momentum, total, p. 201. 
Monopole, magnetic, p. 169. 
Morley, experiment of Michelson and, 

p. 27, 28. 
Multipole, electric, p. 58. 
Nabla operator, p. 224. 
Negative electrification, p. 44. 
Neutral system, p. 46, 56. 
Neutralization, p. 46. 
Non-coulombian electric field strength, 

p. 53. 
Non-polar dielectric, p. 43. 
Normal to a surface, the sense of a, 

p. 35, 214. 
Nucleus, p. 38. 
Observation point, p. 87, 169, 213. 
Ohm law, p. 83. 
Open surface, p. 35. 
Orbital motion of electron, p. 40. 
Original reference frame, p. 97. 
Orthogonal trajectory, p. 34. 
Ostrogradski (see Gauss-Ostrogradski). 
Permanent electric polarization, p. 62. 
Permanent magnetic polarization, p. 79. 
Permanent magnetization, p. 79. 
Permeability, magnetic, p. 148. 
Permeability, magnetic, of vacuum, p. 107. 
Permeability, relative magnetic, p. 148. 
Permittivity, electric, p. 124. 
Permittivity, electric, of vacuum, p. 107. 
Permittivity, relative electric, p. 124. 
Physical quantity, p. 36. 
Physically infinitesimal space, p. 39, 50. 
Physically infinitesimal time, p. 39, 50. 
Physically infinitesimal volume, p. 39, 50. 
Poincaré, derivation of, p. 27. 
Point charge, p. 47. 
Point-like body, p. 35, 39. 
Point-like charge, electric, p. 47. 
Polar dielectric, p. 43. 



Subject Index 
 

385

Polar vector, p. 31. 
Polarization charge (electric), p. 60. 
Polarization electric charge of the interior of 

a closed surface in a dielectric, p. 59, 63. 
Polarization electric current, p. 73. 
Polarization phenomenon of dielectrics, 

p. 57. 
Polarization state, p. 61. 
Ponderomotive action, law of, expression of, 

p. 49. 
Ponderomotive actions of electromagnetic 

nature, p. 31. 
Position vector, p. 32. 
Positive electrification, p. 44. 
Positive normal to a surface, unit vector 

of the, p. 35. 
Postulates of the theory of special relativity, 

p. 99. 
Potential component of the magnetic field 

strength, p. 144. 
Potential difference between two points,  

p. 56. 
Potential energy, p. 185. 
Potential field, p. 33. 
Poynting vector, p. 193. 
Primitive quantity, p. 37. 
Principle of constant velocity of light in 

empty space, p. 99. 
Principle of superposition, p. 86. 
Proof body, test body, p. 49. 
Proper value, p. 105. 
Proton, p. 38. 
Quantities of the electromagnetic state of 

bodies, p. 41. 
Quantity of electricity, p. 47. 
Quantum Mechanics, p. 29. 
Reference frame, p. 40, 101. 
Reference system, p. 40. 
Refraction of the lines of electric field in the 

case of insulating media, p. 159. 
Refraction of the lines of magnetic field at 

the passage through the separation surface 
of two media, p. 163. 

Relation between the force vectors in various 
reference frames, p. 251. 

Relation between the normal components of 
electric displacement vectors, p. 156. 

Relation between the normal components of 
the magnetic induction vectors, p. 160. 

Relations between the state quantities of the 
electromagnetic field in various inertial 
reference frames, p. 151. 

Relation between the tangential components 
of the electric field strength, p. 159. 

Relation between the tangential components 
of the magnetic field strength, p. 163. 

Relation between the vectors: electric 
displacement, electric field strength and 
electric polarization, p. 123. 

Relation between the vectors: magnetic 
induction, magnetic field strength and 
magnetic polarization, p. 147. 

Relativity principle, p. 99. 
Resinously electrified, p. 44. 
Retarded electrodynamic scalar and vector 

potentials, p. 183. 
Right-handed screw rule, p. 35, 207. 
Rotational component of the electric field 

strength, p. 53, 112. 
Rutherford-Bohr-Sommerfeld, model, p. 39. 
Rutile, p. 43. 
Sagnac effect, p. 28. 
Scalar electrodynamic potential, p. 179. 
Scalar function, p. 31, 32. 
Scalar integral relations, p. 230. 
Scalar product of three vectors, p. 207. 
Scalar product of vectors, p. 206. 
Secondary quantity, p. 37. 
Semiconductor, p. 45. 
Sense, p. 32. 
SI units, p. 30, 93, 165. 
Solenoid, p. 146. 
Solenoidal component, p. 52, of the electric 

field strength, p. 53.  
Solenoidal component, p. 52, of the magnetic 

field strength, p. 144. 
Solenoidal electric field strength, p. 53, 112. 
Solenoidal field, p. 33, 53. 
Solid angle, p. 91, expression of the law of 

electric flux in terms of, p. 92. 
Source point, p. 87, 169, 213. 
Spherical co-ordinates, p. 242. 
Spin motion of electron, p. 76. 
State quantities of bodies, p. 41. 
State quantities of the electromagnetic field, 

p. 41. 
Stokes theorem, p. 219, 222. 
Strength of the electric current, p. 68. 
Strength of the electric field, p. 49, 85, 53. 



Subject Index 
 

386 

Strength of the electric field, in the large 
sense, p. 53. 

Strength of the electric field, in the restricted 
sense, p. 53. 

Strength of the magnetic field, p. 108, 141. 
Substance, p. 31. 
Substantial derivative of a scalar, p. 232. 
Substantial derivative of a volume integral of 

a scalar function, p. 233. 
Surface divergence of the polarization, p. 65. 
Susceptibility, electric, magnetic, p. 123, 

148. 
System of co-ordinates, 

p. 32, 101, 206, 239. 
System of reference, p. 40. 
Temperature coefficient of resistivity, p. 84. 
Temporary electric polarization, p. 62. 
Temporary magnetic polarization, p. 79. 
Temporary magnetization, p. 79. 
Tesla, unit of measure, p. 166. 
Test body, proof body, p. 49. 
Three-orthogonal rectilinear system of 

co-ordinates, p. 32, 207. 
Torque acting upon a dipole, p. 67. 
Torus, p. 208. 
Transformation expressions of co-ordinates 

and time, p. 102. 
Transformation expressions of forces, 

p. 104, 250, 251. 

Transformation relation of local time, p. 103. 
Triple vector product (of three vectors),  

p. 207. 
True electric charge, p. 45, 46. 
Tube of field lines, p. 34. 
Turn of a coil, p. 129. 
Undulatory Mechanics, p. 29. 
Unit of length, p. 100. 
Units of measure, p. 93, 165. 
Unit of time, p. 100. 
Unit vector, p. 206. 
Unit vectors of a system of co-ordinates, 

p. 206, 240. 
Vector, p. 205. 
Vector calculus, p. 205. 
Vector function, p. 31, 32. 
Vector integral relations, p. 230, 231. 
Vector potential, magnetic, p. 129. 
Vector product of two vectors, p. 206. 
Vitreously electrified, p. 44. 
Volt, p. 56. 
Voltage, p. 56, 88. 
Volume density of the free (true) electric 

charge, p. 47. 
Volume density of the polarization electric 

charge, p. 59. 
Volume element, p. 50. 
Warburg theorem, p. 195. 
Weber, unit of measure, p. 165. 
 



Andrei Costin Nicolaide, Prof., D.Sc.: 
 

He was born on the 1st of September 1933 in Bucharest. He received the degree of 
Electrical Engineer, with honours, from the Technical Institute of Craiova, Faculty of 
Electrotechnics (1956), speciality electrotechnics; Doctor of Engineering (Polytechnic 
Institute of Bucharest, 1962); Doctor of Sciences (Polytechnic Institute of Bucharest, 
1974), Regular Member of the Academy of Technical Sciences in Romania since 2002 
(corresponding member since 1999), full professor at the “Transilvania” University of 
Braşov (1969-2003), consulting professor since 2004. He received the Aurel Vlaicu Prize 
of the Romanian Academy in 1980, the title of Fellow of the New York Academy of 
Sciences (1995), Senior Member IEEE (1997). Now he is a Life Senior Member of the 
IEEE (Institute of Electrical and Electronics Engineers). His scientific activity includes: 
Electrical machines (especially synchronous ones) – transient regimes (he elaborated and 
applied new calculation methods), Magnetohydrodynamics, Magnetic materials, Field 
computation by the method of conformal mapping (also including for this aim the usage 
of a symbolic programming language) and by numerical methods, Analysis of certain 
phenomena in the Special and General Theory of Relativity (Certificate of merit from: 
The World Congress on Engineering 2009, IAENG International Association of 
Engineers, The 2009 International Conference of Applied and Engineering Mathematics, 
London, 1-3 July, 2009). 
 



 
 
 
 
 
 
 

Author: Andrei Nicolaide 
 

Editing on 
computer: 

Andrei Nicolaide 
 

Graphics: Andrei Nicolaide 
 

Proofreading: Andrei Nicolaide 
Elisabeta Godgea 

 
 
 
 
 

 
TO THE READER 
 

The author welcomes your opinion on the content and design of this book. 
Please send your comments to: 
 
Prof. Andrei NICOLAIDE 
Department of Electrical Engineering 
Transilvania University of Braşov 
Bd. Eroilor, Nr. 29 
500036  Braşov, Romania 
 
E-mail: andrei.nicolaide@gmail.com 

 
 
 
 
 
 
 
 
 
 
 



ANDREI NICOLAIDE

GENERAL THEORY
OF THE

ELECTROMAGNETIC FIELD

CLASSICAL AND RELATIVISTIC
APPROACHES

TRANSILVANIA UNIVERSITY PRESS

ANDREI NICOLAIDE

GENERAL THEORY
OF THE

ELECTROMAGNETIC FIELD

CLASSICAL AND RELATIVISTIC
APPROACHES

TRANSILVANIA UNIVERSITY PRESS




