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Abstract:  In this paper we present a direct method to determine the harmonic components of a signal. The method bases on 

the fact that the distribution of the samples in the spectrum derived with the Discrete Fourier Transform (DFT) follow the 

sinc function. We found a correction term that places the estimated frequency on an inter-line position. Therefore, the method 

implies first to find the two DFT samples that belong to the main lobe and then to simply calculate the correction term and 

add it to the frequency of the sample found on the left side of the main lobe. We created the PySINC software that uses this 

method, which is written in the Python language. Tests performed to find the accuracy of the frequency estimates show that 

the results are very accurate and we concluded that this method can be used with confidence for modal analysis issues. 
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1. INTRODUCTION  
 

For numerous engineering problems estimating the natural frequencies of structures accurately is essential. The 

Discrete Fourier Transform (DFT) and its derivate versions as the Power Spectrum (PS) or Power Spectral 

Density (PSD) are influenced by the acquisition time, so these are proved to be not sufficiently accurate for 

engineering applications [1-4]. Windowing decreases the noise introduced by spectral leakage but does not 

improve the estimate. Some techniques that imply signal post-processing can be used to improve the estimation 

results. The most simple make use of interpolation involving two or three DFT samples [5-12]. The maximizer 

and its largest neighbor, or the two neighbors in other cases, are used. Another approach is zero-padding the 

original signal by adding to it points with zero amplitudes. In the frequency domain, the spectral lines become 

denser and the estimation error is diminished [13]. But this implies a cost, the amplitude decreases proportionally 

with the signal lengthening. An alternative different method to precisely identify the frequencies is to generate 

three spectra by iteratively cropping the signal and using maximizer for interpolation [14-16]. In this way, the 

dependence on the acquisition time is practically eliminated. The disadvantage of this method consists in the 

asymmetric evolution of the peaks in the overlapped spectrum, the maximizer being distributed after a pseudo-

sinc function [17]. 

In prior research, we studied the leakage phenomenon and considered it to improve the frequency estimation 

[18]. The present paper is dedicated to present a method based on particularities of the DFT and the sinc function 

that permits obtaining an accurate frequency estimate. 

 

 

2. THE PROPOSED ESTIMATOR 

 

The representation of a harmonic signal   cos(2 )f t A ft  with amplitude A and frequency f has the discrete 

representation given in: 

{ } { [0], [1],..., [ ],..., [ 1]}kx x x x k x N      (1) 

In equation (1), x[k] is the value acquired at the k-th measurement and N is the total number of samples used to 

describe the signal of time length tS. The sampling resolution is calculated as /( 1)St t N    .The signal is 

represented in the frequency domain at spectral lines which are multiples of the frequency resolution 1/ Sf t  . 

The multiplication factor is the actually the spectral line number 0... 1j N  . If the frequency f of the signal is 

not a multiple of f , the harmonic component is misrepresented. The amplitude displayed at the spectral line 

that is closest to the true frequency f has the greatest amplitude, but several amplitudes are also displayed at other 

spectral lines. This is referred to as spectral leakage in the literature. However, the sum of amplitudes of the 

Fourier series components is equal with the amplitude of the signal in the time domain.  

mailto:gr.gillich@uem.ro
mailto:d.nedelcu@uem.ro
mailto:n.gillich@uem.ro


 39 

The Fourier series representation of the harmonic signal is given by: 
1 1

1 1
( ) cos(2 ) sin(2 )

N N
j jj j

f t a j ft b j ft 
 

 
         (2) 

The real coefficient aj and the imaginary coefficient bj are, for the signal having the time length tS, given by: 
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After solving the integrals and neglecting the terms having at the denominator ( )f j f  , we obtain: 
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The amplitude displayed at the j-th spectral line is found as: 

 2 2
j j jX A a b     (5) 

It was shown that  
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and, after performing calculations, we obtain: 
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Because the sum of the squared sine and cosine functions is the unit, equation (7) results in: 
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We know that 
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Substituting equation (9) in equation (8) we obtain: 
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Finally, substituting equation (10) in equation (5) results: 
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If f j f  , the sinc function takes the value one and the real amplitude A is indicated at the j-th spectral line as 

Xj. Else, jX A  and in consequence neither the frequency nor the amplitude are correctly found. For the latter 

case, we represent the sinc function and the two spectral lines that belong to the main lobe in Figure 1.  

 

 
Figure 1:  The spectrum showing the DFT samples on the main lobe and the sinc function 
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We know that, when 0f j f   , the spectral line j is at the left side of the main lobe. Let now Xj and Xj+1 be 

the amplitudes found at spectral lines j and j+1. To find the true frequency fe we have to solve the system:  
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From the second equation in (12), we have that: 
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and knowing that 1Sf t   and sin( ) sin( )x x   , equation (14) becomes 
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Hence, the system of equations (12) becomes 
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After simple mathematical handling results  
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which can be grouped as 
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resulting the expression of the estimated frequency 
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Hence, the estimated frequency is found from the mathematical relation: 
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δ is a correction term that helps finding the true frequency at an inter-line position. Thus, the frequency can be 

estimated when we know the values Xj and Xj+1 displayed at lines j and j+1 belonging to the main lobe. It does 

not matter which is the bigger component, always that found at the left lobe side is considered as a reference. 

 

 

3. THE DEVELOPED SOFTWARE 
 

The software developed for frequency estimation, nominated PySINC because it involves a sinc-based 

algorithm, performs following steps: 

 

1. Imports the original signal from CSV or LVM files 

2. Asks for the maximum targeted frequency 

3. Add two samples with zero amplitude to the original signal and obtain a zero-padded signal 

3. Calculates the DFT of the zero-padded signal and display it (Figure 1, upper diagram) 

4. Calculates the DFT of the original signal 

5. Asks for the threshold amplitude to know the peaks for which it continues processing 

6. For each individual peak it determines the evolution of the maximizer considering the two DFTs 

7. Find the spectral lines located on the main lobes in function of the evolution of the maximizer 

8. Calculate δ for the DFT of the original and the true frequency with equations (20) and (19) 

9 Displays the DFT of the original signal including the sinc function (Figure 1, bottom diagram) 

10. Displays the estimated frequency and amplitude in a pop-up window. 
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Figure 2:  The interface of the Frequencies obtained with the standard DFT and the developed PySINC software 

 

Handling the software is quite easy, it is just necessary to introduce the value of the maximum targeted 

frequency (at position 2 in the workflow described at the start of this section) and indicate by right-clicking the 

threshold (position 5 in the workflow). The user can see in the second displayed diagram if the DFT samples of 

the main lobe and the sinc function plotted for the estimated frequency fit. If this is not the case, the estimation is 

incorrect. From our experience this happens just if the signal is undersampled, i.e. it contains fewer samples as 

recommended by the Nyquist sampling theorem. 

 

 

4. RESULTS AND DISCUSSION 

 

In order to proof the method and implicitly the PySINC software’s reliability we performed numerous 

simulations for generated signals, hence with known frequency. In this section we present the results obtained 

for 2 and 3 cycles of a sinusoid with the frequency f = 5.17 Hz and amplitude A = 1 m/s2. The signal was 

generated with a sampling rate r = 1000 and the number of samples was N = 400...700. The number of samples 

was increased with the step s = 20 but in particular regions it was denser to obtain precise curves. We calculated 

the maximum theoretically achievable error as ε = Δf/2, the frequency with the standard DFT and the frequency 

with the PySINC software which involves the sinc-based algorithm. We plot in Figure 3 the frequency curves. 

One can observe the high accuracy obtained with PySINC dissimilar with the raw frequency estimation achieved 

with the standard DFT.  
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Figure 3:  Frequencies obtained with the standard DFT and the developed PySINC software 
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Figure 4:  Errors in frequencies estimation resulted when using the developed PySINC software 

 

We also calculate the error achieved when involving the sinc-based method and show the small resulted errors in 

Figure 4. These are, obviously, much smaller as those obtained with the standard DFT. This makes us 

considering that the estimation is sufficient precise to permit a fine evaluation of engineering processes, as 

damage detection is. Tests made for incipient damage were successfully performed [19-20], the occurrence of 

cracks being possible in the very early stage. 

 

 

5. CONCLUSION 

 

The paper introduces a sinc-based algorithm to estimate the harmonic components of a signal with high 

accuracy. The algorithm is implemented in software, written in the Python language, which has been proved to 

be reliable even for signals generated with a short time length. The software is easy to be used and provide 

accurate results. For the tests made involving a signal with the known frequency of 5.17 Hz, we obtained errors 

less than 2% even for a very low number of cycles. Obviously, by increasing a little bit the time length of 

analysis, the error is dramatically reduced. However, also the errors achieved for a short signal are reasonable for 

most engineering applications and recommend the software for practical use. 
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