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Abstract:  Classical stability analysis of linear models is based upon eigenvalues. This is most notably true for self-adjoint 

matrices and operators, which possess a basis of orthogonal eigenvectors. In recent decades, recognition has grown that one 

must proceed with greater caution when a matrix or operator lacks an orthogonal basis of eigenvectors (non-normal 

operators). In this paper we use Lyapunov equations and functions to consider perturbed matrices. The basic question is: 

what choice of Lyapunov function V would allow the largest perturbation and still guarantee that dV/dt is negative definite? 

By using a sub-optimal strategy and pseudospectra we find that this is determined by testing for the existence of solutions to 

a related ‘quadratic’ matrix equation - algebraic Riccati equation (ARE). 
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1. INTRODUCTION  
 

It is well known that the Lyapunov direct method represents an approach to the problem of stability for both 

linear and nonlinear dynamical systems, and for a variety of fields. In recent decades, recognition has grown that 

one must proceed with greater caution when a matrix or operator lacks an orthogonal basis of eigenvectors. Such 

operators are called non-normal, and this property can lead to a rich variety of behavior. For example, non-

normality can be associated with transient behavior that differs entirely from the asymptotic behavior suggested 

by eigenvalues. Such transients may manifest themselves in slow convergence of iterative processes, in nearness 

to instability, and in the transition to turbulence in fluid flow. 

In this paper we use Lyapunov equations and functions to consider perturbed matrices. We will consider only 

affine unstructured parameter uncertainty (perturbations). 

The basic question is: what choice of Lyapunov function V would allow the largest perturbation and still 

guarantee that dV/dt is negative definite? By using a sub-optimal strategy and pseudospectra we find that this is 

determined by testing for the existence of solutions to a related ‘quadratic equation with matrix coefficients and 

unknowns - the so-called matrix Riccati equation.  

  

 

2. PSEUDOSPECTRA AND PERTURBED MATRICES 

 

We consider a matrix A in the space of n-by-n matrices nxn, = R or C.  

Suppose that A is uncertain or subjected to a perturbation at the form   A  where Δ represent a vector or 

matrix of parameter deviations. In this paper we will consider only affine unstructured parameter perturbations 

 AA )( .  

We denote the spectrum of A by )(A  is its set of eigenvalues 

   dundefinine isIA wherepointIACA 1)(0)(det:)(    (1) 

and we denote by )(A  the spectral abscissa of A which is the largest of the real parts of eigenvalues 

)}(:{Resup Azz    (2) 

For a real  > 0, the -pseudospectrum of A is the set  

})(:{)(   AXwhereXzCzA . (3) 

Throughout,   denotes the operator 2-norm. Any element of the pseudospectrum is called a pseudo-

eingenvalue.  

The -pseudospectral abscissa  is the maximum value of the real part over the pseudo-spectrum: 

 



 76 

}:{Resup    zz . (4) 

In this paper we investigate the set of eigenvalues of a perturbed matrix nxnA R  where A is given and 

nxnR ,   is arbitrary.  

For any nxnA K  we call 

)}(:;{),(  A and A nxn  RC  (5) 

the spectral value set of A with perturbation radius ρ and 

 CK )(,:min{ Ad nxn
K   ø}  (6) 

the  distance from instability [1], i.e. is the distance, within the normed space ),( nxnK , between A and the 

set of  C - unstable matrices in Knxn . 

For a normal matrix A the distance from instability is measured by the distance of its spectrum from the 

imaginary axis. If A is not normal, the distance of )(A from the imaginary axis can be a very misleading 

indicator of the robustness of stability of A. 

Just as the spectral abscissa of a matrix provides a measure of its stability, so the ε-pseudospectral abscissa 

provides a measure of robust stability, where by robust we mean with respect to complex perturbations in the 

matrix [5], [6], [7], [8].  

The pseudo-abscissa )(A  is the maximum value of the real parts over the pseudo-eigenvalues 

})(:sup{Re)( AzzA    , )()(0 AA    (7) 

where )(A  are the ε-pseudospectra of matrix A.  

The ε-pseudospectra of A consist of all eigenvalues of matrices within a distance ε of A, and in particular, Λ0(A) 

is just the spectrum of A. Pseudospectra plot the set of eigenvalues of A+Δ for all Δ with  . We can 

define )(A  in various equivalent ways: [1], [2], [3], [4], [5], [6], [8]. 

 11)(:    AzICz  

      with  someforAzCz )(: .  

 

 

3. LYAPUNOV EQUATION AND UNSTRUCTURED PERTURBATIONS 

 

We consider a linear time invariant finite dimensional systems of the form 

}),()1((;),()( NR   ttxAtxttxAtx   (8) 

 

It is well known that the linear dynamical system described by equation (7) is asymptotically stable if 

;}0Re;{)(   zzA CC or }1;{)( 1  zzA CC .  (9) 

equivalently, for any positive definite matrix Q we can find a positive definite matrix P which satisfies the 

matrix Lyapunov equation 

QAPPAT  . (10) 

We need to consider not just one nominal system (8) but a family of models 

xAx )(     (11)  

where Δ is a perturbation. 

The fundamental question is how large can we allow ρ so if   then all eigenvalues of perturbed matrix A+ 

Δ are guaranteed to have negative real part.  

Let λ be an eigenvalue of A+Δ. Then  

uuA  )(   uuAI  )(   uAIu  1)( . 

Tacking magnitude of both sides and using matrix norm we obtain  

1)( 1  AI , but        



1

)( 1  AI   (12). 

So, the pseudospectrum crosses over the imaginary axis at a value of ρ and an imaginary number yiz   if      

     


1
)( 1  AIiy .  

It is know that A is stable, then  
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QAPPAT     

has a positive definite solution.  

Let  xPxxV T)(  be Lyapunov function. The 
dx

dV
 calculation for perturbed system (11), with P solution of (7), 

gives 

22

1 2 xPx
dx

dV
    (13) 

where n ....0 21   are the positive eigenvalues of the positive definite matrix Q. 

From (13) result that 
dx

dV
 will be negative definite, from given Q, if we chose 

 
P2

1
    (14). 

 

So for ρ given by (14) and for a given Q, if  , then every eigenvalue of  (A+ Δ) has negative real part.  

 

 

4. CHARACTERIZATION OF STABILITY RADIUS VIA A PARAMETRIZED RICATTI   

     EQUATION 
 

In this section we study a strategy for increasing the size of ρ, i.e. choose Q to maximize ρ given by (12). It is 

obvious that the range of ρ is dependent of choose of Q. To see this dependence we look at the eigenvalues of 

(A+ Δ) directly. For a given value of ρ > 0 we look to plot the totality or set of eigenvalues of  (A+Δ) for all Δ 

with   . For ρ very small we would expect this totality or set of eigenvalues to be focused simply around 

the eigenvalues of the nominal A. As we increase ρ then the set grows, expanding in sometimes amazingly pretty 

shapes. A question arise: can we get a handle on the smallest value of ρ so that the contours intersect the right-

half plane especially by our Lyapunov Equation technique. The smallest ρ is determined as fallows: 

Theorem 1. Every eigenvalue of (A+ Δ), with    has negative real part if and only if the Riccati equation 

022  PIPAPAT   (AREε) 

has a positive definite solution. 

The above theorem can be used to construct a Lyapunov function of maximal robustness. Indeed if P is any 

solution of (AREρ) with Kd then it can be shown that xPxxV T)( is a Lyapunov function for the set of 

perturbed systems  xAx )(    ,   ,  ))(,0[ AdK . 

Proof.  

QIPPPPPIAPPA TTTT  222 )()()()(  provided that  . 

From (12) we shown that the smallest ρ for which this can happen is the smallest we can make 
1)(

1
 AiyI

 

( min ). Now why this smallest min  got anything to do with the (AREρ)? If this equation has a solution then 

we can write 

0)()( 22*  PIAiyIPPAiyI   

Here (·)* indicates transpose and complex conjugate. Then, multiplying the equation (on the left) by inverses of  
*)( AiyI   and )( AiyI   resp., we obtain 

))(())(()()( 1*11*12 IAiyIPIAiyIPAiyIAiyII    

 

It follows from this that necessarily  
1)(

1




AiyI
 . 

So we prove that the pseudospectrum at level ρ lies entirely in left-half complex plane if and only if the Riccati  

equation (AREε) has a positive definite solution. 
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5. CONCLUSIONS 
 

The above theorem can be used to construct a Lyapunov function of maximal robustness. Indeed if P is any 

solution of (AREε) with Kd then it can be shown that xPxxV T)( is a Lyapunov function for the set of 

perturbed systems xAx )(  ,  , )](,0[ AdK .  

Pseudospectra is a new computational and visualization tool, which is making significant impacts across stability 

and control of dynamical systems. This paper is just meant to motivate more research in finding applications in 

robustness of stability and controllability of dynamical systems.  
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