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Abstract: The purpose of this paper-work is the definition and mathematical modelling of the surface described by the contact area 

between bucket and arm, during operation. The metric characteristics of the coupling area result from the kinematics of excavator’s 

actuation mechanisms, however the surface described by the contact area becomes a functional feature by pairing the stress torsor 

of each point. The need to introduce this new functional feature is a direct consequence of the need to develop accessory coupling 

mechanisms on the machine arm. In the case of a coupling force generated through vacuum enclosures, the coupling area definition 

in the specified meaning, becomes essential for the adoption of this coupling mode, which is innovative in relation to the currently 

used mechanical or hydraulic couplings. Further, the authors deal with the geometric modelling of the contact surface between 
bucket and arm. This first step is necessary in the whole concept based on the kinematic study of the motion produced by actuating 

the three cylinders moving the excavator's arm. The shape and size of the contact zone are the result of modelling. 

 

 

1.INTRODUCTION 

 

The components of excavator’s arm mechanism are joints with cylindrical hinge type couplings, respectively bolt 

mountings. These elements are put in motion by hydraulic actuator cylinders. In order, the first one end articulated 

element on excavator’s chassis in point O, is the boom. On the other end of the boom, in point O1, is articulated one of 

the arm extremities. On the other extremity, there is the joint point P between arm and excavator’s bucket, joint point 

which is the subject of authors study (Figure 1). The excavators increase in performance is measured by the easiness, 

safety and rapidity of   accessories changing and mounting process, like dipper buckets, grading buckets, grabs, rippers, 

hydraulic hammers, shearing buckets, crushers, etc. This process can be streamlined by using an accessory coupling 

system on the arm. The work will continue to refer to the arm-bucket joint because, according to the authors ' 

experience, the excavation bucket stresses to the maximum this joint point. 

 

 

2. CONSIDERATIONS ON THE SURFACE DESCRIBED BY THE ARM-BUCKET JOINT 

 

The surface generated by point P is completely determined by two characteristics: the geometry and the stress torsor. 

The sizing and verification calculations under real operating conditions require deep knowledge on geometric elements 

and torsor components in each point of the surface in which an arm-bucket joint is located. 

The area generated by point P may be assimilated to the functional characteristics of bucket excavators under the 

following conditions; 

- Its geometry is known, i.e. a function φ1 (Xi, Yi) = 0, in which Xi, Yi are the coordinates of P point;  

- It is known the stress torsor in each point of the surface, i.e. a function φ2 (Fi, Mi) = 0 where Fi and Mi respectively, 

represent the forces and moments acting in points Pi (Xi, Yi), determined by the variable force acting at the top of 

bucket teeth.  
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Figure1 - Geometric generation of a surface described by arm-bucket joint 

 

Further, for the coordinates, the following notations were adopted:  

- in lowercase letters, the coordinates representing the joints of the boom on the chassis and of the arm on the boom, 

thus obtaining the points O (0,0) and O1 (x, y), with x and y variables. The point O has two limit positions: the upper 

extreme position O1 (x1, y1) and the bottom extreme position O1 (x2, y2)  

-in capital letters, the coordinates of the mobile point P, mobile for its function in the frame of the mechanism, thus Pi 

(Xi, Yi)  

With these considerations, it follows that the area determined by point P movement, is a functional feature of type:  

     φ (X₁, Yi, Fi, Mi) = 0    

The knowlledge of this functional feature is necessary and sufficient to the correct adoption of any equalizer-bucket 

coupling mechanism, since the functionality of this mechanism is completely determined by the above function. 

 

 

3. DELIMITATION OF THE SURFACE GENERATED BY THE ARM -BUCKET JOINT 

 

For the delimitation of the surface generated by the arm-bucket joint, four phases of movement of the entire assembly 

shall be considered, the assembly consisting of the boom, the arm and the two motion cylinders. 

The boom is fixed with one of its extremities on excavator’s chassis, through the joint in point O. On the other 

extremity, respectively in point O1, is the joint linking the boom to the arm. Considering that the cylinder that operates 

the boom is in a fully open position and the cylinder that operates the arm is in a completely closed position, it is 

obtained the highest point which the arm-bucket joint can reach, respectively the point P1 (X1, Y1). 

In a first phase, the arm’s actuating cylinder is kept closed and the boom’s actuating cylinder is operated. The arm 

extremity is   moving from point P1 (X1, Y1) to point P2 (X2, Y2) , generating the quadrant P1, P2 with the centre in 

point O (0,0). 

In the second phase, the boom’s actuating cylinder is maintained completely closed, and the arm’s actuating cylinder 

is operated. Through the action of this cylinder, the extremity at which the arm-bucket joint is located will move from 

point P2(X2,Y2) to point P3(X3,Y3) thus generating the quadrant  P2,P3 with the centre in point O2(x2,y2). 



364 
 

In the third phase, the arm’s actuator cylinder is kept in a fully open position and is started the opening of the boom’s 

actuator cylinder. In this way the equalizer-bucket joint will move from point P3(X3,Y3) to point P4(X4,Y4) on the P3,P4 

quadrant,  with the centre in point O (0,0). 

Finally, in the fourth phase, the boom’s actuator cylinder is maintained fully opened and the arm’s actuator cylinder is 

opened. This way, the arm- bucket joint will move from point P4(X4,Y4) to point P1(X1,Y1) describing the P4,P1 

quadrant with the centre in point O1(x1,y1) and thus, the surface generated by the arm-bucket joint  is ended. 

The aforementioned phases are illustrated in Figure 2. Based on the data resulting from this image, the following 

equations of curves (quadrants) wich delimitating the surface described by the arm-bucket joint, can be obtained, i.e. 

          φ1 (Xi, Yi) = 0 

 

 
    Figure 2-The area described by the arm - bucket joint 

 

a.)  For the circle centred in O1 and with radius R1: 

     (x-x1)2 + (y- y1)2 = 𝑅1
2   or  y=y ±  √𝑅1

2 − (x − x1))2       (1) 

the equations for the quadrants P1A, respectively AP4, are as follows: 

     f1(x) = y1+ √𝑅1
2 − (x − x1))2         (2) 

     f2(x) = y1 - √𝑅1
2 − (x − x1))2         (3) 

b.)  For the circle having the centre in O (0,0) and the radius R 

     x2 + y2 = R2  or       y = ±  √𝑅2 − x2 

the equations of quadrants  P1B, respectively BP2 ,are as follows: 

     f3(x) =  √𝑅2 − x2          (4) 

     f4(x) =  - √𝑅2 − x2          (5) 

c.) For the circle having the centre in O2 (x2, y2) and the radius R2: 
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     (x – x2)2 + (y – y2)2 = 𝑅2
2 or y=y2 ±  √𝑅2

2 − (x − x1)2 

the equations of  quadrants P2C , respectively CP3, are the following: 

     f5(x) = y2 - √𝑅2
2 − (x − x2)2         (6) 

     f6(x) = y2 + √𝑅2
2 − (x − x2)2         (7) 

d.) For the circle having the centre in O and the radius r: 

x2 + y2 =r2  or  y =  ±  √𝑟2 − x2 

the equations of quadrants P2C, respectively CP3, are as follows: 

     f7(x) =  - √𝑟2 − x2          (8) 

     f8(x) = √𝑟2 − x2          (9) 

The functions f1 (x), f2 (x),....., f8 (x) represent the boundaries of the surface generated by the equalizer – bucket joint 

The coordinates of points P1, P2, P3, P4 are obtained by solving the equation systems below: 

(S1)        P1(X1,Y1)  : P1A : f1(x) = y1+ √𝑅1
2 − (x − x1 )2  

        : P1B : f3(x) =  √𝑅2 − x2  

(S2) P2(X2,Y2)  : P2C : f5(x) = y2 – √𝑅2
2 − (x − x2)2  

     : P2B : f4(x) =  - √𝑅2 − x2  

(S3) P3(X3,Y3 ) : P3C : f6(x) = y2 + √𝑅2
2 − (x − x2)2   

     : P3D : f7(x) =  - √𝑟2 − x2  

(S4) P4(X4,Y4)  : P4A : f2(x) = y1 - √𝑅1
2 − (x − x1)2   

     : P4D : f8(x) = √𝑟2 − x2  

By solving the S1 system, it follows: 

    X1=
𝑥1

2
(

𝑅2−𝑅1
2

𝑥1
2+𝑦1

2 + 1) +
𝑦1

2
√(

2𝑅

√𝑥1
2+𝑦1

2
)

2

−  (
𝑅2−𝑅1

2

𝑥1
2+𝑦1

2 + 1)
2

 

 But x12+y12 = OO12, thus:  

    X1=
𝑥1

2
(

R2−R1
2

OO1
+ 1) +

𝑦1

2
√(

2R

OO1
)

2

− (
R2−R1

2

OO1
2 + 1)

2

 

R, R1, OO1 are dimensional characteristics (lengths) of the drive mechanism elements. 

If we note: k1 = 
1

2
(

R2−R1
2

OO1
+ 1); k2 = 

1

2
√(

2R

OO1
)

2

− (
R2−R1

2

OO1
2 + 1)

2

, with k2 = √(
2R

OO1
)

2

− k1
2   , the final result is: 

     X1 = k1x1 + k2y1   (10) 

     Y1 = √R2 − X1
2  (11) 

By solving the S2 system, the result is: 

X2=
𝑥2

2
(

𝑅2−𝑅2
2

𝑥2
2+𝑦2

2 + 1) +
𝑦2

2
√(

2𝑅

√𝑥2
2+𝑦2

2
)

2

− (
𝑅2−𝑅2

2

𝑥2
2+𝑦2

2 + 1)
2

 

But x22+y22 = OO22, therefore:  

X2=
𝑥2

2
(

R2−R2
2

OO2
+ 1) +

𝑦2

2
√(

2R

OO2
)

2

− (
R2−R2

2

OO2
2 + 1)

2

 

If we note k3 = 
1

2
(

R2−R2
2

OO2
+ 1); k4 = 

1

2
√(

2R

OO2
)

2

− (
R2−R3

2

OO3
2 + 1)

2

  with  k4 = √(
2R

OO2
)

2

− k3
2    ,  the final result is: 

     X2 = k3x2 + k4y2  (12) 

     Y2 = √R2 − X2
2  (13) 
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By solving the S3 system, the result is: 

X3 =
𝑥2

2
(

r2−𝑅2
2

𝑥2
2+𝑦2

2 + 1)  −  
𝑦2

2
√(

2r

√𝑥2
2+𝑦2

2
)

2

− (
r2−𝑅2

2

𝑥2
2+𝑦2

2 + 1)
2

 

But x22+y22 = OO22, thus:  

X3=
𝑥2

2
(

r2−R2
2

OO2
+ 1) −  

𝑦2

2
√(

2r

OO2
)

2

− (
r2−R2

2

OO2
2 + 1)

2

 

If we note k5 = 
1

2
(

r2−R2
2

OO2
+ 1); k6 = 

1

2
√(

2r

OO2
)

2

− (
r2−R3

2

OO2
2 + 1)

2

 and we have   k6 = √(
2r

OO2
)

2

− k5
2    , the final result 

will be: 

      X3 = k5x2 + k6y2          (14) 

      Y3 = √r2 − X3
2          (15) 

By solving the S4 system, it will result: 

     X4=
𝑥1

2
(

r2−𝑅1
2

𝑥1
2+𝑦1

2 + 1) +
𝑦1

2
√(

2r

√𝑥1
2+𝑦1

2
)

2

−  (
r2−𝑅1

2

𝑥1
2+𝑦1

2 + 1)
2

 

But x12+y12 = OO12, thus :  

     X1=
𝑥1

2
(

r2−R1
2

OO1
+ 1) +

𝑦1

2
√(

2r

OO1
)

2

− (
r2−R1

2

OO1
2 + 1)

2

 

If we note: k7 = 
1

2
(

r2−R1
2

OO1
+ 1); k8 = 

1

2
√(

2r

OO1
)

2

− (
r2−R1

2

OO1
2 + 1)

2

 with k8 = √(
2r

OO1
)

2

− k7
2   , the final result will be : 

     X4 = k7x1 + k8y1           (16) 

     Y4 = √r2 − X4
2          (17) 

3.) Remarks on Pi limit points ( i = 1÷4 )  

If the position of Pi points is imposed, the positions of O1 and O2 points are resulting 

It is exemplified the calculating method of O2 points coordinates, using the system below: 

     {
𝑘1𝑥1 + 𝑘2𝑦1 = X1

𝑘7𝑥1 + 𝑘8𝑦1 = X4
 

The system has a solution if 

     𝛥 = |
𝑘1 𝑘2

𝑘7 𝑘8
| = 𝑘1𝑘8 = 𝑘2𝑘7 ≠ 0 

For the system have technical solutions, the following condition must be fulfilled: 

     
𝑘1

𝑘7
≠

𝑘2

𝑘8
 

System determinants are: 

      𝛥 = |
𝑘1 𝑘2

𝑘7 𝑘8
| ;  𝛥𝑥1

= |
𝑥1 𝑘2

𝑥4 𝑘8
|; 𝛥𝑦1

= |
𝑘1 𝑥1

𝑘7 𝑥4
| , 

with the solutions: 

     𝑥1 =
𝛥𝑥1

𝛥
 ;  𝑦1 =

𝛥𝑦1

𝛥
 

Analogue for point O2. 

 

 

4. CONCLUSIONS 
 

The paper-work develops the geometric modelling of the surface described by the coupling mechanism between 

equalizer and bucket  
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 This area is proposed to be included in all the functional characteristics of excavators. To substantiate this point of 

view, the paper-work defines a function corresponding to all coordinates, with the form (X, Y, F, M) = 0.  

It shall be demonstrated that all points have the coordinates expressed by linear combinations of geometric elements 

defining the excavator’s working mechanism. 
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