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Abstract: This study compares simulation results for the aeroelastic behavior of an airfoil 

typical section by considering two distinct unsteady aerodynamics models: linear and 

nonlinear, for different airflow speeds. The considered aerodynamic models are the Edwards 

model, that treats the aerodynamic loading in a linear approximation, and the Beddoes-

Leishman model, that treats the aerodynamic loading as a combination of linear and nonlinear 

contributions. The main goal of this study is to investigate the effects related to the dynamic 

stall phenomenon at airflow speeds above the linear critical flutter speed. As expected, 

simulation results show that the Beddoes-Leishman model represents the aeroelastic response 

of the airfoil more realistic, predicting the transformation of typical flutter unstable responses 

into stable limit-cycle oscillations at post-flutter airflow speeds. 
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1. INTRODUCTION 

In aeronautical sector, a particularly aeroelastic phenomenon of interest 

is the flutter, due to its catastrophic potential, being involved in several 
aeronautical accidents.  

 Flutter is considered as a dynamic instability, which manifests from a 

certain flow speed, considered the critical system parameter. Briefly, flutter 
can be understood as being: stable for speeds below the critical speed, 

marginally stable at the critical speed and unstable for speeds above the 
critical speed, where self-sustained oscillations appear. The arise of these self-

sustained oscillations is the reason for the catastrophic nature of flutter, since, 
physically, this denotes into displacements of increasing amplitudes, until the 

collapse of the structure [1]. 
 For linear aerodynamic models, the typical flutter behavior discussed 

above is expected. However, under specific conditions, nonlinearities can be 
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added to the system, so that self-sustaining oscillations of increasing 

amplitude are replaced by limit-cycle oscillations (LCOs) of constant amplitude 
[2]. A source of non-linearity are the effects arising from the dynamic stall, 

which results from the loss of lift forces on the airfoil, due to the separation of 
the flow [1]. 

 This study aims to compare the response of an aeroelastic system 
when two different aerodynamic models are used: one of them is the Edwards 

model, which represents a linear aerodynamics, and the other is the Beddoes-
Leishman (BL) model, which represents a non-linear aerodynamics.  

 
2. LITERATURE REVIEW 

2.1 Beddoes-Leishman Model 

 The BL model was initially proposed through the use of indicial 

functions [3], and later adapted to a state-space representation [4]. The state-
space representation was chosen due to its relative ease of implementation. 

 To represent BL aerodynamics model, there is a system of 12 states 

ODEs, being: 8 corresponding to the linear portion of the flow, 3 referring to 
the progressive detachment of the flow at the trailing edge (non-linear 

phenomenon) and the remaining state corresponds to the dynamic stall 
process. The states referring to the linear portion are presented in Eq. (2.1.1) 

and (2.1.2). 
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 Matrices A, B, C and D are dependent on semi-empirical constants of 

the model and flow speed [4]. The terms   and   (angle of attack and pitch 

rate, respectively), are inputs related to the structural part of the problem. 
Using the response of the linear part of the problem, it is possible to determine 

the effective angle of attack (  ), given by Eq. (2.1.3), this term is related to 

the viscous effects on the airfoil. 
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 The first non-linear state is related to the stall. In [5] corrections are 

proposed taking into account non-stationary conditions for the stall model 
based on the critical pressure on the leading edge [6]. Thus, the pressure is 

associated with aerodynamic normal forces (  ), as well as with a delay due to 

the non-stationary part (  
 ). 
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 In Eq. (2.1.4), the term (    ⁄ ) is a constant that makes the equation 

dimensional, and   
 ( ) is the value obtained by Eq. (2.1.2) and    a constant of 

time. The value obtained through Eq. (2.1.5) is used to determine the 

condition of the flow, if |  
 |     

 there will be detachment of the flow, where 
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 is the critical value for the normal force under static conditions, and after 

the detachment of the flow there will be the reattachment when  |  
 |     

. 
 The next two states are related to aerodynamic loads derived from the 
Kirchhoff model for a flat plate, and represent flow separation and vortex 

detachment at the trailing edge of the profile. To find the point where the flow 
separation occurs, it is necessary to determine an equivalent angle of attack 

(  ) [7], which takes into account the non-linear effects and finds an 

equivalent angle for the static case that would result in the same pressure on 

the leading edge, thus using the term given by Eq. (2.1.5) and the slope of the 
normal force curve (   

), we have Eq. (2.1.6). 
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 Using   , the position of the flow separation is determined from Eq. 

(2.1.7). Where the terms    and    are empirical coefficients, and    the static 

stall angle, considered for a value of       in most airfoils. The values 

adopted were taken from references [8] and [9]. 
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 The term    ( )  corresponds to flow separation due to delays, and 

   varies according to the flow conditions discussed for   
 . For the vortex 

detachment condition    is given by the conditions presented in Eq. (2.1.10). 
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(2.1.10) 

      and     are empirical parameters and        ⁄  a counter that runs 

with dimensionless time. During this phase, there is a change in   , with 

increments dependent on a    , according to Eq. (2.1.11). 
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 After the flow reattachment,    is given by Eq. (2.1.12), and the value 

of    returns to being the critical angle for the static case. 
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The next state comes from a change in the Kirchhoff model for the pitch 

moment in the vortex shedding region [10]. Where the    term of Eq. (2.1.15) 

is similar to the term described by Eq. (2.1.9). 
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From the terms obtained previously, the aerodynamic loads can be given 

by the expressions presented in Eq. (2.1.16). 
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  ,    and    are empirical values,  ̂ the greater value between     and 

   , and   
 =   

  . The last state refers to dynamic stall. Before the flow 

detachment, the characteristic vortices are neglected. After the detachment 
condition is reached the behavior will be given by Eq. (2.1.17) and Eq. 

(2.1.18). 
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 Empirical terms (    and    ) and the counter    are used for the 

calculation of the term   , described in Eq. (2.1.19). 
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 The normal force coefficient is determined by Eq. (2.1.20) and the 

moment coefficient by Eq. (2.1.21). 
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 Thus, the final aerodynamic response will be given by Eq. (2.1.22) and 
(2.1.23). 
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2.2 Structural Model 

 The structural model uses a typical section with 2-DOF, as described by 

Fig. 2.2.1. The dimensionless state space representation for the structural part 
is given in Eq. (2.2.1). 
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Figure 1: Typical aeroelastic section [9] 

 Where   is the ratio of the airfoil mass to the total mass,    is the 

frequency ratio,    is the dimensionless gyration radius,    is the dimensionless 

distance between the elastic center and the CG, and    and    are damping 

ratios [11]. Using the values for the angle of attack ( ) and the pitch rate ( ), 

together with Eq. (2.2.2), the inputs for the BL model can be determined. 
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3. RESULTS AND DISCUSSION 

 The results obtained through the Edwards and BL models were 

compared for speeds greater than and equal to the critical speed (the 
parameters used were the same as used in [8]). In this case, the     found is 

14.49 m/s. 
 Also has been made the comparison between the BL model with the 

influence of nonlinear parameters and without this influence, the results 

obtained can be verified through the graphs of θ, h and α, where the first two 

represent elastic deformations in the airfoil section and the third the angle of 
attack, determined through the structural equation (2.3.2). 

 The Fig. 2 shows the results of the models for the critical speed 14.49 

m/s, where the amplitudes of the angle of attack, rotation and translation 
remain constant. The results are very similar between the models, with little 
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variation in amplitude, so both models still provide reliable results at the 

critical speed. 

 

Figure 2: Flutter critical speed [Authors]. 

 At speeds above flutter speed, where a dynamic stall occurs, the 
difference between the models is noticed. Fig. 3 shows the impact for a speed 

of 17 m/s, where the BL model reaches a value limit amplitude, which was 

already expected, due to the effect of the non-linearities generated by the 
dynamic stall. In the Edwards model, the movements continue to increase in 

amplitude even after the angle at which the dynamic stall would theoretically 
occur, since this model does not consider this type of non-linearity. 

 The differences between the models for high angles of attack is what 
differentiates them and defines the BL model as much closer to reality in this 

case. It is also notable that there is a difference in the amplitude of the two 
models before dynamic stall, where the BL model has larger angles. 
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Figure 3: Speeds above the critical speed of flutter [Authors]. 

 When compared, the BL model shows the great difference between 

considering or not the non-linearities, since from the critical speed there is a 
very large increase in the amplitude when the effect of the dynamic stall is not 

considered, making clear the need to consider it when working in this speed 

range. 
 

 
Figure 4: Comparison between linear and non-linear Beddoes-Leishman [Authors]. 

4. CONCLUSIONS 

 Two different situations were compared between BL and Edwards 
methods: the airfoil response for the above cases and the critical flutter speed. 

The predicted linear flutter speed for the airfoil is 14.49 m/s. At this speed, the 
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models predict comparable amplitude and frequency. By increasing the speed 

to 17.0 m/s the amplitude of the models varies. The Edwards model continues 
to have its amplitude increased continuously while the BL model tends to 

stabilize at a point. 
 These results can be explained by the dynamic stall, that decreases the 

aerodynamic forces at high angles due to detachment of the boundary layer, 
causing the structural forces to stand out and tend to maintain a maximum 

and constant range of motion. The results are important to show that the BL 
model is capable of simulating in a more realistic way the behavior of the 

airfoil in a case above the flutter speed, being more suitable for simulating 
events that will occur in this speed range. 
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