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SOLUTION ALGORITHMS FOR FINITE ELEMENT STRUCTURAL ANALYSIS
EMPLOYING PRECONDITIONED CONJUGATE GRADIENT METHODS ’
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This paper summarizes the experience of the 2uthors in use of conjugate
gradient algorithms in finite element stuctural analysis. There are treated
poth linear static and dynamic problems. The solver for systems of linear equa-
tions corresponding to the static prohlem, and the extraction of eigenvalues
and the corresponding eigenvectors in t.ue case of vibration analysis of struc-
tures are hased on conjugate gradient algorithms. These iterative methods were
coupled with a preconditioning using an approximate Choleski decomposition. The
computer program modules are using sparse storage techtinics for matrix  opera-
tions, and they were incorporated in a PC version of the SAP V Liege finite
element analysis program. The analysis of several structures by these methods
shows ~an improvement of performances versus direct methods. The precision of
numerical solving increase, while the computer time and storage requirements
are diminished. These solvers are very advantageous especially in case of large
structures, : ’

1. INTRODUCTION

The solution algorithms presented .in this paper are designed for the fini-
te element analysis of elastic structures. . s

The - static analysis of the structures leads to tha solution 6f a set of
linear simultaneous equations as a key part of the computation.

Au = b, ’ - ' A. (1)

where the stiffness matrix A is a symmetric, pasitive definite, and sparse
(nxn) - matrix, u is the vector of nodal displacements, and b is the vector of
nodal loadings. ' K

In the analysis of structures only a few of .smallest eigenvalues A=w?
of the proklem :

Au =ABu , (2)

are to be calculated together with their eigenvectors u. .The global mass mat~
rix B is also symmetric and sparse. ! :

2. THE PRECONDITIONED CONJUGATE GRADIENT METHOD FOR LINEAR EGQUATIONS

“The solution algorithm for the matrix equation (1) is ([21,[3),16],
{71,081,(9] v . ‘ S

e starting vector r’=b —Aua; p°= vO=W 2 4 : 3
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Here W is a symmetric, pesitive defihite preconditiovning matrix.

The speed of convergence of this algorithe depends on the choice of W. The best
W approximates A, the best is the hehaviour of this algorithm, but the compu-
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tational work and storage required for the inversion of W increases.

2.1, The incomplete Choleski decomposition

In fhis paper. is treated a preconditionning method by use of the incomp-
lete Choleski dezomposition (061,071,081 In this case .

o= T (4)

where © is a lower triargular matrix with the same sparsity paﬁtern as . the
lower triangular part of A. By incomlete decomposition on obtain an approxima-
tive representation_for A ) : .

A=TT +E, - ()

where ‘£ is an (nxn) errov matrix that contains nonzero elements only out-of the
sparsity pattern of A. The exact decomposition a=Ll into lower and upper tei-
angular facters, L oand [ . respectively, produce  fill-in within most of the
band or skyline and is hence costly. Te incomplete decomposition of large spar—

se matrites»is less expensive because this fill-in is neglected.
Reordering of nodes

The ordering of nodes can affect the efficiency of the preconditioning. A
k-colour reordering of nodes (3] refore the incomplete decomposition - improves .
the approximation. Im this case the nodes of the same colour are not coupled:
one .vith pther. For example, in the case of a regular plane  frame structure
(rectangular mesh with beam elements) results a two-colour reordering of nodes
obtained hy separating the mesh points into two sets, simulating the hlack and
white squares of a chesshoard and then aumbering all of the nodes in .one set
pefore the nodes in the other set. For complexe types of structures the regqui-
red number. of colours can he greater, This type of reordering reduces the pro=
pagation of the effects of neglecting generated coefficients (fill=in) in the
process of decomposition. :

3. THE PRECONDITIONED CONJUGATE GRADIENT METHOD FOR EIGENVALUE PROBLEMS

The -salution algorithm for the matrix equation (2} for the fundamental
‘mode of vibration is 1 . T :

@1 starting vector 3 o =’ (B AR A 5 (&)

% =Au’-AoBu’ pf=-vP=-Wg g

Computes ax from the equation @

(o Ap¥ - Ak  BpF ) +ax (0%, ApF )= A ¥, B )+

val ((p*, A%y (uk BpR)-(uX, Ap Y (p¥ Bp D=0

e, )t L\K"=uk°"/m‘) ;/\k,4=(uk",Auk") 3

-4 | . .
gk#‘-'-‘A‘Jk"'Ax*,BUK" " vk+l=w gk-H; b‘(:(qk-ﬂ'vl#l)/(gk'vk) ; P’*"“Vk"*‘bkpk A
For the computation of higher modes the same algorithm is used, but. in

each step, the current approximation of the eigenvector ut is M~othogonalized
with the lower eigenvectors wd (J=lyaea,i-D computed hefore [43. )
This algorithm can he used even ta the computatian of structures with solid -

body degrees of freedom. The zero ei1genvalues corresponding to this d.o.f. are
approximed hy very small numbers.



-73-
A - .
{n the case of the same structure the selving of a load case by the algo-
rithm (3) requires nearly the same computational work, that the solution of an
eigenvector by the algorithm (6) [3].

4. NUMERICAL RESULTS

The algorithms presented above were imcorporated in a PC version of the
SAP "V Liege finite element analysis program. The computer program modules are
using in-core and peripheral sparse storage technics and can handle very large
matrices. The numerical results were obtained with a 12 Mhz AT-286 computer
with mathematical coprocgssor (80287).

In the table I. is shown the behaviour of the algorithm (3) in the case of
a square plate on elastic Winkler space. The structure was modeled by a grid of
dxd shell and corresponding boundary elements. The stiffpess of soil is given
by the Kk factor. In the case of small k factors the displacement of the
structure is close to the movement of a rigid body and  the (3) algerithm
becomes slow. A four—colour reordering of nodes shows a very good improvement
in this case. ) i

Table 1.  Elastic supported plate — the effect of the ordering of nodes

" Number of required iterations for EPS=0,000001

Etiffness of soil (k) 1.0 0.7 0.5 0.4 0.3 0.1
Lexicographical ordering 21 25 94 267 to- -
Four~colour ordering 10 10 10 10 11 11

"In  the table 2. is given a comparison between the algorithm (3) and ‘the
Gauss elimipation algorithm for twe 3D frame structures solved for one load
case, ’ ' :

Table 7. Comparison ketveen solvers for linear equations

Solution method PCG Elim. ) PCG gElim.
Number of degrees 750 750 ’ 1296 1296
Half handwidth - 156 - 222
-Number of klocks - ' 17 - 490
Number of iterations dd o= 30 -
Assembling time (seconds) 14 116 ‘ 26 315
Solving time (seconds) 166 616 _ 217 3150
Total time (seconds) 180 732 - 243 3465
External storage (K bytes) 96 499 174 1288

The takle 3. presents a comparison bhetveen the subspace iteration algo-
rithm  and (6) for solving the first five vibration modes in the case of a 3D
frame structure with 750 d.o.f, )
The effective computing time was 1033 seconds in the first case and 3374 se-
conds in the case of the subspace iterations.

Tabelul 8. Comparison betveen eigenproblem solvers

Period (seconds) mode 1 mode 2 mode 3 mode 4 mode 5

GCP T 0.4760 0.4760  0.4655  0.1556  0.1543
81 0.4760  0.4760  0.4655  0.1557  0.153d3
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S. CONCLUSION

This ‘paper presents preconditioned conjugate gradient algorithms for the
finite element analysis of structures. There are treated the systems of linear
equations corresponding to the static proklem and the solving of eigenvalue
problems for the case of vihration analysis of structures,

The preconditioning by incomplete Choleski decomposition is- very efficient.
There is studied a reordering of nodes, which gives a further improvement of
the computational speed.

In the case of solving linear systems of equations the comparison between
the PCG method and Gauss elimination shows a reduction up to 1d times of _ the
required solving time and up to 7 times of the external storage. This
comparison was made for the same precision but in some cases the  PCG method
gives higher precision that direct methods. The comparxson shows growing advan-
tages for larger structures,

_ These methods are very efficient and permnt the analysts of larqe structu-
res with computers of low performance. .
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