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STRESSES IN VARIOUS COMPOSITE LAMINATES FOR GENERAL
SET OF APPLIED IN-PLANE LOADS
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Abstract: This paper presents numerical simulations regarding the determination of stresses in all plies of various composite
laminates such as anti-symmetric, symmetric cross-ply, symmetric angle-ply and balanced angle-ply laminates for general
set of in-plane loads. The basic laminate theory has been used considering that in all plies, the fibers and matrix properties,
fibers content and ply thickness are same. Following input data have been used: stack of plies, fibers axis of each ply at
specified angle to reference direction, axial and transverse Young’s moduli and shear modulus both for fibers and matrix,
axial-transverse Poisson ratio for fibers and matrix. Output data include longitudinal, transverse and shear stresses in all
plies at angles varying between 0° and 90° to reference direction.
Keywords: composite laminates, anti-symmetric, symmetric cross-ply, symmetric angle-ply, balanced angle-ply

1. INTRODUCTION

Fibers-reinforced polymer matrix composite materials are heterogeneous and anisotropic materials so that their
mechanics is more complex than that of conventional materials. The basic element of a composite laminate
structure is the individual layer (called lamina) unidirectional reinforced with fibers inserted into a resin system
(called matrix). Basic assumptions in the description of the interaction between fibers and matrix in a
unidirectional reinforced lamina subject to tensile loads are [1]:
 Both fibers and matrix acts as a linear elastic material;
 Initially, the lamina presents no residual stresses;
 Loads are applied parallel or perpendicular to the fibers direction;
 The matrix presents no voids and failures;
 The bond between fibers and matrix is perfect;
 The fibers are uniformly distributed in the matrix.

For in-plane stress condition by superimposing three loadings σ║, σ┴ and τ#, following law of elasticity can be
given:
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where the second matrix is called the compliances matrix.
Transverse contraction coefficients υ║┴ and υ┴║ are not independent of each other. If we assume the existence
of small deformations and a linear elastic behavior of the composite material than, between the coefficients of
transverse contraction υ and the Young’s moduli E, there is following relationship:
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Relation (2) is called the Maxwell-Betti law. Therefore, the unidirectional reinforced lamina can be described by
four basic elasticity terms: E║, E┴, υ┴║ and G#. If desired, the expression (1) in terms of stresses versus strains
can be written as following:

,

G

EE

EE

#

II

#

IIIIIIII

IIII

IIII

II

IIII

II

#

II































































































00

0
11

0
11

(3)

where the second matrix is called the stiffness matrix.
Expressing the strains versus stresses lead to the advantage to compute the compliances as a function of lamina’s
basic elastic properties. These basic elastic properties are also called technical constants. These constants can be
determined from the lamina’s micromechanics using the fibers and matrix elastic properties [1]:
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Regarding the lamina being in the stress plane state, its strains can be expressed versus stresses using the
transformed components of the compliances matrix:
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These transformed compliances can be computed as following [1]:
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In case in which the stresses are expressed versus strains, the relations are:
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where rij represent the transformed components of the stiffness matrix.
A laminate composite structure is considered formed of N unidirectional reinforced laminae subjected to a
general set of in-plane loads. The elasticity law of a unidirectional reinforced K lamina is:
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where rijK represents the transformed stiffness, σxxK and σyyK are medium stresses of a K lamina on x and y axes,
τxyK represent the medium shear stress according to x-y coordinate system. The laminate balance equations are:
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where nxx and nyy are the normal forces, nxy is the shear force, σxx and σyy represent the normal stresses, τxy is the
shear stress of the composite laminate, tK and t are the K lamina thickness respective the laminate thickness, nxxK
and nyyK are normal forces on the unit length of the K lamina and nxyK is the in-plane shear force on the unit
length of the K lamina. With relations (17)-(20) the composite laminate elasticity law can be obtained:
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and from these relations, the composite laminate stiffness can be determined:
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In these conditions, the composite laminate elasticity law becomes:
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where rij are functions of the basic elastic properties of each lamina E║K, E┴K, υ┴║K, G#K and of the fibers disposal
angle. Analogue to stresses, a strains analysis can be carried out. From relation (23) the strains εxx, εyy and γxy can
be computed. The individual strains of each lamina can be determined through transformation as following:
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Finally, from the strains presented in relation (24), the stresses in each individual lamina can be computed:
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To carry out a prediction regarding the failure of the individual laminae, a break criterion is usually used. The
system of coordinates ║-┴-z represents the local system of coordinates and is applied to each individual lamina.
The x-y-z system of coordinates represents the global system of coordinates and is usually applied to the entire
laminate. Some experimental results obtained on various composite laminates subjected to a wide range of
loadings are presented in references [2], [3], [7-11] as well as numerical simulations to predict the elastic
properties of some fibers-reinforced composite laminates are given in papers [4-6].
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2. COMPUTATIONAL MICROMECHANICS OF FOUR LAMINATES

In order to compute stresses in each individual lamina of a composite laminate, four examples of laminates have
been chosen. These laminates are: anti-symmetric laminate with following plies sequence: [30/0/0/-30];
symmetric cross-ply laminate with plies distribution: [90/0/0/90]; symmetric angle-ply laminate with plies
sequence: [30/-30/-30/30]; balanced angle-ply laminate with following plies distribution: [30/30/-30/-30].
The computational method is based on the approach presented in reference [12]. For all types of laminates, the
Tenax IMS65 carbon fibers have been taken into account as well as Huntsman XB3585 epoxy resin with
following input data:
 Matrix axial and transverse Young’s modulus: 3.2 GPa;
 Fibers axial Young’s modulus: 290 GPa;
 Fibers transverse Young’s modulus: 4.8 GPa;
 Matrix axial-transverse Poisson ratio: 0.3;
 Fibers axial-transverse Poisson ratio: 0.05;
 Matrix axial-transverse shear modulus: 1.15 GPa;
 Fibers axial-transverse shear modulus: 4.2 GPa;
 Fibers volume fraction: 0.51;
 Applied normal stress in x-direction: 2000 MPa;
 Applied normal stress in y-direction: 200 MPa;
 Applied shear stress in x-y plane: 100 MPa;
 Off-axis loading system: between 0° and 90°.

For these types of laminates, stresses in each lamina have been computed. Example of stresses in some plies in
case of some considered laminates subjected to a general set of in-plane loads are presented in tables 1-2 and
stresses distributions according to different off-axis loading angles are visualized in figures 1-8.

Table 1: Example of computational stresses in first ply in case of [30/0/0/-30] anti-symmetric laminate
Off-axis loading system Normal stress σ║ [GPa] Normal stress σ┴ [GPa] Shear stress τ# [GPa]

0° 2179.08820396 -0.71697426 -35.75065488
10° 939.39407259 36.90536763 -49.96934150
20° 122.51085318 121.05810845 -26.13182244
30° -173.03328210 241.59118570 32.88674569
40° 88.40865122 383.96653138 119.96785257
50° 875.30289753 531.01157756 224.60823152
60° 2092.73839739 664.99052153 334.18670852
70° 3593.87446208 769.74352531 435.48650202
80° 5197.65192780 832.63583067 516.28936191
90° 6710.63156295 846.08169739 566.84927077
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Figure 1:  Stresses in plies’ laminate [30/0/0/-30] Figure 2:  Stresses in plies’ laminate [90/0/0/90]
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Figure 3:  Stresses in plies’ laminate [30/-30/-30/30] Figure 4:  Stresses in plies’ laminate [30/30/-30/-30]
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Figure 5:  Stress σ║ in plies’ laminate [30/0/0/-30] Figure 6: Stress σ║ in plies’ laminate [90/0/0/90]
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Figure 7:  Stress σ║ in laminate [30/-30/-30/30] Figure 8: Shear stress in laminate [30/30/-30/-30]
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Table 2: Example of computational stresses in first ply in case of [90/0/0/90] symmetric cross-ply laminate
Off-axis loading system Normal stress σ║ [GPa] Normal stress σ┴ [GPa] Shear stress τ# [GPa]

0° 373.01363977 103.92906445 -100.00000000
10° 412.30478474 103.07095551 213.84886691
20° 659.32319009 97.67613434 501.90440441
30° 1084.27479052 88.39529598 729.42286341
40° 1635.90415140 76.34784651 868.96215995
50° 2247.67663063 62.98688614 903.69179548
60° 2845.80343841 49.92394388 829.42286342
70° 3358.14165431 38.73460334 655.11329304
80° 3722.89572819 30.76846414 401.78739109
90° 3896.07093555 26.98636024 100.00000002

3. CONCLUSION

A strong anisotropy at all considered laminates can be noticed. Stresses along fibers direction are up to ten times
greater than those transverse to fibers direction. The theoretical approach can be used to determine
computational stresses in various composite laminates, stresses that can be compared with experimental results
obtained by different methods.
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