
 

5th International Conference
on "Advanced Composite Materials Engineering"

COMAT 2014
16 - 17 OCTOBER 2014, Braşov, Romania

 

IN-PLANE VIBRATIONS OF PINNED-FIXED HETEROGENEOUS
CURVED BEAMS UNDER A CONCENTRATED FORCE

György Szeidl1, László Kiss1
1Institute of Applied Mechanics, University of Miskolc, Miskolc, HUNGARY
gyorgy.szeidl@uni-miskolc.hu, mechkiss@uni-miskolc.hu

Abstract: The paper deals with the vibrations of loaded heterogeneous curved beams when a centra load (a constant force) is exerted
at the crown point of the beam. The effect of the loading is accounted by the strain it causes. It is assumed that the radius of curvature
is constant and the Young’s modulus and the Poisson’s number are functions of the cross-sectional coordinates. The paper presents
the determination of the Green function matrices for loads directed upwards and downwards. An appropriate numerical model is also
provided, which makes possible to determine how the natural frequencies are related to the load. It is also shown that when the strain
is zero, the corresponding formulae yield results valid for the free vibrations of curved beams.
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1. INTRODUCTION

Curved beams are widely used in numerous engineering applications – let us consider, for instance, arch bridges, roof
structures, or stiffeners in aerospace applications. Research into the mechanical behavior of such structural elements
started in the 19th century – see book [1] by Love for further details. The free vibrations of curved beams have been
under extensive investigation: survey papers were published by Markus and Nanasi [2], Laura and Maurizi [3] as well
as Chidampram and Lessia [4]. The PhD thesis by Szeidl [5] clarifies how the extensibility of the centerline affects the
free vibrations and stability of circular beams subjected to a constant radial load (dead load) within the frames of the
linear theory. The natural frequencies were computed by utilizing different numerical models. One of these relies on the
Green function matrix of the corresponding boundary value problem. Unfortunately, the results of this work have not
been published in English language. Paper [6] by Huang et al. takes shear deformations into account provided that the
beam vibrates under the action of a constant vertical distributed load.

Lawther [7] investigates how a pre-stressed state of a body affects the natural frequencies. He studies finite dimen-
sional multiparameter eigenvalue problems and finds that for multiparameter problems, the eigenvalue part of the solution
is described by interaction curves in an eigenvalue space, and every such eigenvalue solution has a corresponding eigen-
vector. If all points on a curve have the same eigenvector, then the curve is necessarily a straight line, but the converse
problem is far more complex. In the light of Lawther’s results, there arises the question: how the frequencies change
when a curved beam is subjected to a vertical force at the crown point. We assume that the curved beam is made of
heterogeneous, isotropic and linearly elastic material. The cross-section is uniform in terms of both the geometry and the
material composition. The material parameters are functions of the cross-sectional coordinates. Our main objectives: (1)
derivation of those boundary value problems, which make possible to clarify how the load affects the natural frequen-
cies; (2) determination of the Green function matrices, which can be used to reduce the eigenvalue problems set up for
the natural frequencies to eigenvalue problems governed by systems of Fredholm integral equations; (3) reduction of the
eigenvalue problems to algebraic ones and (4) the numerical solution of these.

2. THE PROBLEM FORMULATION

Figure 1 (a) shows a portion of the beam with the applied curvilinear coordinate system (ξ = s, η, ζ) and (b) presents a
pinned-fixed beam subjected to a load, directed downwards. By assumption, the uniform cross-section is symmetric with
respect to the axis ζ. The Young’s modulus and the Poisson number depend on the cross sectional coordinates in such a
way thatE(η, ζ) = E(−η, ζ) and ν(η, ζ) = ν(−η, ζ). Observe that the coordinate line ξ = s coincides with the so-called
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Figure 1. (a) Coordinate system, (b) Pinned-fixed beam

(E-weighted) centerline. This centerline intersects the cross-section at the point C. The location of the latter is obtained
from the condition that the E-weighted first moment of the cross section with respect to the axis η is zero there:

Qeη =

∫
A

E(η, ζ) ζ dA = 0 . (1)

Let us now separate the load-induced, and otherwise time-independent mechanical quantities from those, which belong
to the vibrations of the loaded beam. The latter ones are the time-dependent increments and are uniformly denoted by
a subscript b. Let uo, wo and R be the tangential and radial displacements and the radius of the centerline, respectively.
Since this radius is constant, the coordinate line s and the angle coordinate ϕ are related to each other by s = Rϕ. The
axial strain εoξ and the rigid body rotation ψoη on the centerline can be expressed in terms of the displacements as

εoξ =
duo
ds

+
wo
R
, ψoη =

uo
R
− dwo

ds
. (2)

The principle of virtual work for a beam under distributed loading yields that the equilibrium equations

dN

ds
+

1

R

[
dM

ds
−
(
N +

M

R

)
ψoη

]
+ ft = 0 ,

d

ds

[
dM

ds
−
(
N +

M

R

)
ψoη

]
− N

R
+ fn = 0 (3a)

should be fulfilled by the axial force N and the bending moment M . Here ft and fn denote the intensity of the distributed
loads on the centerline in the tangential and normal directions.

Hooke’s law expresses the relation between the inner forces and the deformations [8] in such a way that

N =
Ieη
R2

εoξ −
M

R
, M = −Ieη

(
d2wo
ds2

+
wo
R2

)
, N +

M

R
=
Ieη
R2

εoξ , where (4)

Ae =

∫
A

E(η, ζ)dA , Ieη =

∫
A

E(η, ζ)ζ2dA , m =
AeR

2

Ieη
− 1 (5)

Ae is referred to as the E-weighted area, Ieη is the E-weighted moment of inertia with respect to the bending axis and m
is a parameter. For the sake of brevity, we introduce dimensionless displacements and a notation for the derivatives:

Uo =
uo
R
, Wo =

wo
R

; (. . .)(n) =
dn(. . .)

dϕn
, n ∈ Z . (6)

Upon substitution of (4) and (2) into equilibrium equations (3), we obtain the following system of differential equations
(DEs): [

0 0
0 1

] [
Uo
Wo

](4)
+

[
−m 0

0 2−mεoξ

] [
Uo
Wo

](2)
+

+

[
0 −m
m 0

] [
Uo
Wo

](1)
+

[
0 0
0 1 +m (1− εoξ)

] [
Uo
Wo

]
=
R3

Ieη

[
ft
fn

]
. (7)

If we neglect the effects of the deformations to the equilibrium (so we set εoξ to zero), then we have[
0 0
0 1

] [
Uo
Wo

](4)
+

[
−m 0

0 2

] [
Uo
Wo

](2)
+

[
0 −m
m 0

] [
Uo
Wo

](1)
+

[
0 0
0 1 +m

] [
Uo
Wo

]
=
R3

Ieη

[
ft
fn

]
. (8)

With our notational conventions, quantities like the total tangential displacement is equal to the sum uo + uob. It turns
out that the increments in the axial strain and in the rotation have a very similar structure to equations (2):

εmb = εoξ b + ψoηψoη b , ψoη b =
uob
R
− dwob

ds
, εoξ b =

duob
ds

+
wob
R

. (9)

Based on the principle of virtual work, it can be shown that the equations of equilibrium with the increments are

d

ds

(
Nb +

Mb

R

)
− 1

R

(
N +

M

R

)
ψoη b + ftb = 0 , (10a)
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d2Mb

ds2
− Nb

R
− d

ds

[(
N +

M

R

)
ψoη b +

(
Nb +

Mb

R

)
ψoη

]
+ fnb = 0 . (10b)

Due to the dynamical nature of the problem, the increments ftb and fnb are forces of inertia:

ftb = −ρaA
∂2uob
∂t2

, fnb = −ρaA
∂2wob
∂t2

. (11)

Here A is the area of the cross-section, and ρa is the averaged density of the cross-section. Application of Hooke’s law
for the increments in the inner forces yields

Nb =
Ieη
R2

mεoξ b −
Mb

R
, Mb = −Ieη

(
d2wob
ds2

+
wob
R2

)
, Nb +

Mb

R
=
Ieη
R2

mεoξ b . (12a)

A comparison of equations (9), (10) and (12) result in the equations of motion:[
0 0
0 1

] [
Uob
Wob

](4)
+

[
−m 0

0 2−mεoξ

] [
Uob
Wob

](2)
+

+

[
0 −m
m 0

] [
Uob
Wob

](1)
+

[
0 0
0 1 +m (1− εoξ)

] [
Uob
Wob

]
=
R3

Ieη

[
ftb
fnb

]
. (13)

We remark that during the formal derivations we have neglected the quadratic term εoξεoξ b in (10a) and we have used the
inequalities εoξ b � (εoξ bψoη)(1) and 1 � εoξ in (10b), when utilizing Hooke’s law. If the vibrations are assumed to be
harmonic with the dimensionless displacement amplitudes Ûob and Ŵob, then we have the following system of DEs[

0 0
0 1

] [
Ûob
Ŵob

](4)
+

[
−m 0

0 2−mεoξ

] [
Ûob
Ŵob

](2)
+

+

[
0 −m
m 0

] [
Ûob
Ŵob

](1)
+

[
0 0
0 1 +m (1− εoξ)

] [
Ûob
Ŵob

]
= λ

[
Ûob
Ŵob

]
; λ = ρaA

R3

Ieη
α2 , (14)

where λ and α denote the eigenvalues and eigenfrequencies.
For an unloaded beam (εoξ = 0), we get back the equations, which govern the free vibrations – compare equation[
0 0
0 1

] [
Ûob

Ŵob

](4)
+

[
−m 0
0 2

] [
Ûob

Ŵob

](2)
+

[
0 −m
m 0

] [
Ûob

Ŵob

](1)
+

[
0 0
0 m+ 1

] [
Ûob

Ŵob

]
= λ

[
Ûob

Ŵob

]
to equation (11) in [9]. This system is associated with the boundary conditions valid for pinned-fixed beams and together
they constitute an eigenvalue problem. The left side of equation (14) can be rewritten in the brief form

K [y (ϕ) , εoξ] =
4

Py(4) +
2

Py(2) +
1

Py(1) +
0

Py(0), yT=
[
Ûob | Ŵob

]
. (15)

Observe that the i-th eigenfrequency αi in the eigenvalue problem depends on the heterogeneity parameters m and ρa;
and also, on the magnitude and the direction of the concentrated force. The effects of the latter one are accounted through
the axial strain: εoξ = εoξ(P). Here P is a dimensionless load, defined by P = PζR

2ϑ/(2Ieη).

3. THE GREEN FUNCTION MATRIX

Differential equations (15) are degenerated, since the matrix
4

P has no inverse. Let r(ϕ) be a prescribed inhomogeneity.
Consider the boundary value problems defined by

K(y) =

4∑
ν=0

ν

P(ϕ)y(ν)(ϕ) = r(ϕ) ,
3

P(ϕ) = 0 (16)

and the boundary conditions valid for pinned-fixed beams:

Ûob(−ϑ) = 0 Ŵob(−ϑ) = 0 Ŵ
(2)
ob (−ϑ) = 0 | Ûob(ϑ) = 0 Ŵob(ϑ) = 0 Ŵ

(1)
ob (ϑ) = 0 . (17)

Solution to the homogeneous part of differential equation (15) depends on whether the axial strain εoξ is positive or
negative – i.e.: whether the concentrated force is directed upwards or downwards. Let

χ2 =

{
1−mεoξ
mεoξ − 1

if
εoξ < 0

εoξ > 0 and mεoξ > 1 .
(18)

This solution is of the form

y =

[
4∑
i=1

Y
(2×2)

i C
(2×2)

i

]
e

(2×1)
, where (19a)
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Y1 =

[
cosϕ 0
sinϕ 0

]
, Y2 =

[
− sinϕ 0

cosϕ 0

]
, Y3 =

[
cosχϕ Mϕ
χ sinχϕ −1

]
, Y4 =

[
− sinχϕ 1
χ cosχϕ 0

]
(19b)

when εoξ < 0. However, Y3 and Y4 are different when εoξ > 0 and mεoξ > 1:

Y3 =

[
coshχϕ Mϕ
χ sinhχϕ −1

]
, Y4 =

[
− sinhχϕ 1
χ coshχϕ 0

]
. (19c)

In the above relations Ci are arbitrary constant matrices, e are arbitrary column matrices andM = (m+1)/[m (1 + εoξ)].
Solutions to the boundary value problems (16) and (17) are sought in the form

y(ϕ) =

∫ b

a

G(ϕ,ψ)r(ψ)dψ , G(ϕ,ψ) =

[
G11(ϕ,ψ) G12(ϕ,ψ)
G21(ϕ,ψ) G22(ϕ,ψ)

]
, (20)

where G(ϕ,ψ) is the Green function matrix, defined by the following properties [5]:
(1) The Green function matrix is continuous in ϕ and ψ in each of the triangular ranges −ϑ ≤ ϕ ≤ ψ ≤ ϑ and
−ϑ ≤ ξ ≤ ϕ ≤ ϑ. The elements (G11(ϕ,ψ), G12(ϕ,ψ)) [G21(ϕ,ψ), G22(ϕ,ψ)] are (2 times) [4 times]
differentiable with respect to ϕ, and the following derivatives are continuous in ϕ and ψ:

∂νG(ϕ,ψ)

∂xν
= G(ν)(ϕ,ψ) , ν = 1, 2 ,

∂νG2i(ϕ,ψ)

∂xν
= G

(ν)
2i (ϕ,ψ) , ν = 1, . . . , 4; i = 1, 2. (21)

(2) Letψ be fixed in [−ϑ, ϑ]. Although the functionsG11(ϕ,ψ) , G
(1)
12 (ϕ,ψ) , G

(ν)
21 (ϕ,ψ) ν = 1, 2, 3 ;G

(ν)
22 (ϕ,ψ) ν =

1, 2 are continuous everywhere, the derivatives G(1)
11 (ϕ,ψ),G(3)

22 (ϕ,ψ) have a jump at ϕ = ψ:

lim
ε→0

[
G

(1)
11 (ϕ+ ε, ϕ)−G(1)

11 (ϕ− ε, ϕ)
]

= 1/
1

P 11(ϕ), lim
ε→0

[
G

(3)
22 (ϕ+ ε, ϕ)−G(3)

22 (ϕ− ε, ϕ)
]

= 1/
4

P 22(ϕ) . (22)

(3) Let α denote an arbitrary constant vector. For a given ψ ∈ [−ϑ, ϑ], the vector G(ϕ,ψ)α, as a function of ϕ
(ϕ 6= ψ) should satisfy the homogeneous differential equation K [G(ϕ,ψ)α] = 0 .

(4) The vector G(ϕ,ψ)α, as a function of ϕ, should satisfy the boundary conditions (17). Moreover, there exists
only one Green function matrix to each of the boundary value problems.

If the Green function matrix exists then (20) satisfies the differential equations (16) and the boundary conditions (17).
Consider the system of differential equations in the form of

K[y] = λy , (23)

where K[y] is given by (15) and λ is the unknown eigenvalue. The system of ordinary DEs (23) and the homogeneous
boundary conditions (17) constitute a boundary value problem, which is, in fact, an eigenvalue problem with λ as the
eigenvalue.

Vectors uT = [u1|u2] and vT = [v1|v2] are comparison vectors, if they are different from zero, satisfy the boundary
conditions and are differentiable as many times as required. The eigenvalue problems (23), (17) are self-adjoint if the
product

(u,v)M =

∫ ϑ

−ϑ
uTKv dϕ (24)

is commutative, i.e., (u,v)M = (v,u)M over the set of comparison vectors and it is positive definite for any comparison
vector u, if (u,u)M > 0. If the eigenvalue problems (23), (17) are self-adjoint, then the related Green function matrices
are cross-symmetric: G(ϕ,ψ) = GT (ψ,ϕ).

4. NUMERICAL SOLUTION TO THE EIGENVALUE PROBLEMS

Making use of (20), the eigenvalue problems (23), (17) can be replaced by homogeneous integral equation systems:

y(ϕ) = λ

∫ ϑ

−ϑ
G(ϕ,ψ)y(ψ)dψ . (25)

Numerical solution to such problems can be sought e.g., by quadrature methods [10]. Consider the integral formula

J(φ) =

∫ ϑ

−ϑ
φ(ψ) dψ ≡

n∑
j=0

wjφ(ψj), ψj ∈ [−ϑ, ϑ] , (26)

where ψj(ϕ) is a vector and wj are the known weights. Having utilized the latter equation, we obtain from (25) that
n∑
j=0

wjG(ϕ,ψj)ỹ(ψj) = κ̃ỹ(ϕ) κ̃ = 1/λ̃ ∈ [−ϑ, ϑ] (27)
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is the solution, which yields an approximate eigenvalue λ̃ = 1/κ̃ and the corresponding approximate eigenfunction ỹ(ϕ).
After setting ϕ to ψi (i = 0, 1, 2, . . . , n), we have

n∑
j=0

wjG(ψi, ψj)ỹ(ψj) = κ̃ỹ(ψi) κ̃ = 1/λ̃ ψi, ψj ∈ [−ϑ, ϑ] , or GDỸ = κ̃Ỹ , (28)

where G = [G(ψi, ψj)] for self-adjoint problems, while D = diag(w0, . . . , w0| . . . |wn, . . . , wn) and ỸT =
[ỹT (ψ0)|ỹT (ψ1)| . . . |ỹT (ψn)]. After solving the generalized algebraic eigenvalue problem (28), we have the approx-
imate eigenvalues λ̃r and eigenvectors Yr, while the corresponding eigenfunction is obtained via substituting into (27):

ỹr(ϕ) = λ̃r

n∑
j=0

wjG(ϕ,ψj)ỹr(ψj) r = 0, 1, 2, . . . , n . (29)

Divide the interval [−ϑ, ϑ] into equidistant subintervals of length h and apply the integration formula to each subinterval.
By repeating the line of thought leading to (29), the algebraic eigenvalue problem obtained has the same structure as (29).

It is also possible to consider the integral equations (25) as if they were boundary integral equations and apply isopara-
metric approximation on the subintervals (elements). If this is the case, one can approximate the eigenfunction on the e-th
element (the e-th subinterval which is mapped onto the interval γ ∈ [−1, 1] and is denoted by Le) by

e
y = N1(γ)

e
y1 + N2(γ)

e
y2 + N3(γ)

e
y3 , (30)

where quadratic local approximation is assumed: Ni = diag(Ni), N1 = 0.5γ(γ − 1), N2 = 1 − γ2, N3 = 0.5γ(γ +

1),
e
yi is the value of the eigenfunction y(ϕ) at the left endpoint, the midpoint and the right endpoint of the element,

respectively. Upon substitution of approximation (30) into (25), we have

ỹ(ϕ) = λ̃

nbe∑
e=1

∫
Le

G(x, γ)[N1(η)|N2(γ)|N3(γ)]dγ
[
e
y1|

e
y2|

e
y3

]T
, (31)

in which, nbe is the number of elements. Using equation (31) as a point of departure, and repeating the line of thought
leading to (28), we again get an algebraic eigenvalue problem.

5. COMPUTATION OF THE GREEN FUNCTION MATRICES

Based on the definition presented in Section 3, here we show the calculation of the corresponding Green function matrices
for the two loading cases of pinned-fixed beams. With regard to property 3, the Green function can be given in the form

G(ϕ,ψ)︸ ︷︷ ︸
(2×2)

=

4∑
j=1

Yj(ϕ) [Aj(ψ)±Bj(ψ)] , (32)

where (a) the sign is [positive](negative) if [ϕ ≤ ψ](ϕ ≥ ψ); (b) the matrices Aj and Bj have the following structure

Aj =

 j

A11

j

A12
j

A21

j

A22

 =
[
Aj1 Aj2

]
, Bj =

 j

B11

j

B12
j

B21

j

B22

 =
[
Bj1 Bj2

]
j = 1, . . . , 4; (33)

(c) the coefficients in Bj are independent of the boundary conditions. As the matrices Y3 and Y4 are different for εoξ < 0
and for εoξ > 0, when mεoξ > 1, we deal with the two possibilities separately.
The Green functions matrix if εoξ < 0. Let us now introduce the following notational conventions

a =
1

B1i, b =
2

B1i, c =
3

B1i, d =
3

B2i, e =
4

B1i, f =
4

B2i . (34)

We note that
1

B21 =
2

B21 =
1

B22 =
2

B22 = 0 – see Section 3. The systems of equations for the unknowns a, . . . , f can
be set up by fulfilling the continuity and discontinuity conditions mentioned in property 1 and 2 for the Green function
matrix if ϕ = ψ. Therefore, if i = 1, we have

cosψ − sinψ cos (χψ) Mψ − sin (χψ) 1
sinψ cosψ χ sin (χψ) −1 χ cos (χψ) 0
− sinψ − cosψ −χ sin (χψ) M −χ cos (χψ) 0

cosψ − sinψ χ2 cos (χψ) 0 −χ2 sin (χψ) 0
− sinψ − cosψ −χ3 sin (χψ) 0 −χ3 cos (χψ) 0
− cosψ sinψ −χ4 cos (χψ) 0 χ4 sin (χψ) 0




a
b
c
d
e
f

 =


0
0
1

2m
0
0
0

 , (35)

from where we get the constants as
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a =
1

B11 =
χ2

(1− χ2) (1−M)m

sinψ

2
, b =

2

B11 =
χ2

(1− χ2) (1−M)m

cosψ

2
,

c =
3

B11 = − χ2

(1− χ2) (1−M)m

sinχψ

2χ3
, d =

3

B21 = − 1

2 (1−M)m
,

e =
4

B11 = − 1

χ (1− χ2) (1−M)m

cosχψ

2
, f =

4

B21 =
1

2
M ψ

m (1−M)
.

(36)

If i = 2, then
cosψ − sinψ cos (χψ) Mψ − sin (χψ) 1
sinψ cosψ χ sin (χψ) −1 χ cos (χψ) 0
− sinψ − cosψ −χ sin (χψ) M −χ cos (χψ) 0

cosψ − sinψ χ2 cos (χψ) 0 −χ2 sin (χψ) 0
− sinψ − cosψ −χ3 sin (χψ) 0 −χ3 cos (χψ) 0
− cosψ sinψ −χ4 cos (χψ) 0 χ4 sin (χψ) 0




a
b
c
d
e
f

 =


0
0
0
0
0
− 1

2

 (37)

is the equation system, the solution of which assumes the form

a =
1

B12 =
1

2

cosψ

(1− χ2)
, b =

2

B12 = −1

2

sinψ

(1− χ2)
, c =

3

B12 = −1

2

cosχψ

(1− χ2)χ2
,

d =
3

B22 = 0 , e =
4

B12 =
1

2

sinχψ

(1− χ2)χ2
, f =

4

B22 =
1

2χ2
. (38)

Regarding the unknown scalars
1

A1i(ψ),
2

A1i(ψ),
3

A1i(ψ),
3

A2i(ψ),
4

A1i(ψ),
4

A2i(ψ) , i = 1, 2;ψ ∈ [−ϑ, ϑ] in the
matrices Aj , property (4), that is the boundary conditions (17) yield


cosϑ sinϑ cos (χϑ) −Mϑ sin (χϑ) 1
cosϑ − sinϑ cos (χϑ) Mϑ − sin (χϑ) 1
− sinϑ cosϑ −χ sin (χϑ) −1 χ cos (χϑ) 0

sinϑ cosϑ χ sin (χϑ) −1 χ cos (χϑ) 0
cosϑ sinϑ χ2 cos (χϑ) 0 χ2 sin (χϑ) 0
− sinϑ − cosϑ −χ3 sin (χϑ) 0 −χ3 cos (χϑ) 0





1

A1i
2

A1i
3

A1i
3

A2i
4

A1i
4

A2i


=

=


−a cosϑ− b sinϑ− c cos (χϑ) + dMϑ− e sin (χϑ)− f
a cosϑ− b sinϑ+ c cos (χϑ) + dMϑ− e sin (χϑ) + f
a sinϑ− b cosϑ+ cχ sin (χϑ) + d− eχ cos (χϑ)
a sinϑ+ b cosϑ+ cχ sin (χϑ)− d+ eχ cos (χϑ)
−a cosϑ− b sinϑ− cχ2 cos (χϑ)− eχ2 sin (χϑ)
−a sinϑ− b cosϑ− cχ3 sin (χϑ)− eχ3 cos (χϑ)

 . (39)

Closed form solution to this system was generated using Maple 15. The unknowns are not detailed here.
Calculation of the Green functions matrix if εoξ > 0 and mεoξ > 1. For the other loading case, repeating a procedure
similar to the procedure leading to (35), we get the following equations if i = 1

cosψ − sinψ cosh (χψ) Mψ sinh (χψ) 1
sinψ cosψ −χ sinh (χψ) −1 −χ cosh (χψ) 0
− sinψ − cosψ χ sinh (χψ) M χ cosh (χψ) 0

cosψ − sinψ −χ2 cosh (χψ) 0 −χ2 sinh (χψ) 0
− sinψ − cosψ −χ3 sinh (χψ) 0 −χ3 cosh (χψ) 0
− cosψ sinψ −χ4 cosh (χψ) 0 −χ4 sinh (χψ) 0




a
b
c
d
e
f

 =


0
0
1

2m
0
0
0

 . (40)

The solutions are as follows

a =
1

B11 = − χ2

(1 + χ2) (1−M)m

sinψ

2
, b =

2

B11 = − χ2

(1 + χ2) (1−M)m

cosψ

2
,

c =
3

B11 = − 1

χ (1 + χ2) (1−M)m

sinhχψ

2
, d =

3

B21 = − 1

2 (1−M)m
,

e =
4

B11 =
1

χ (1 + χ2) (1−M)m

coshχψ

2
, f =

4

B21 =
1

2 (1−M)m
Mψ .

(41)
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If i = 2 
cosψ − sinψ cosh (χψ) Mψ sinh (χψ) 1
sinψ cosψ −χ sinh (χψ) −1 −χ cosh (χψ) 0
− sinψ − cosψ χ sinh (χψ) M χ cosh (χψ) 0

cosψ − sinψ −χ2 cosh (χψ) 0 −χ2 sinh (χψ) 0
− sinψ − cosψ −χ3 sinh (χψ) 0 −χ3 cosh (χψ) 0
− cosψ sinψ −χ4 cosh (χψ) 0 −χ4 sinh (χψ) 0




a
b
c
d
e
f

 =


0
0
0
0
0
− 1

2

 (42)

is the equation system to be solved – compare it to (37) – and the solutions we have obtained are

a =
1

B12 =
1

2

cosψ

(1 + χ2)
, b =

2

B12 = −1

2

sinψ

(1 + χ2)
, c =

3

B12 =
1

2

coshχψ

(1 + χ2)χ2

d =
3

B22 = 0 , e =
4

B12 = −1

2

sinhχψ

χ2 (1 + χ2)
, f =

4

B22 = − 1

2χ2
.

(43)

For the elements of the matrices Aj , boundary conditions (17) yield the equation system


cosϑ sinϑ cosh (χϑ) −Mϑ − sinh (χϑ) 1
cosϑ − sinϑ cosh (χϑ) Mϑ sinh (χϑ) 1
− sinϑ cosϑ χ sinh (χϑ) −1 −χ cosh (χϑ) 0

sinϑ cosϑ −χ sinh (χϑ) −1 −χ cosh (χϑ) 0
cosϑ sinϑ −χ2 cosh (χϑ) 0 χ2 sinh (χϑ) 0
− sinϑ − cosϑ −χ3 sinh (χϑ) 0 −χ3 cosh (χϑ) 0





1

A1i
2

A1i
3

A1i
3

A2i
4

A1i
4

A2i


=

=


−a cosϑ− b sinϑ− c cosh (χϑ) + dMϑ+ e sinh (χϑ)− f
a cosϑ− b sinϑ+ c cosh (χϑ) + dMϑ+ e sinh (χϑ) + f
a sinϑ− b cosϑ− cχ sinh (χϑ) + d+ eχ cosh (χϑ)
a sinϑ+ b cosϑ− cχ sinh (χϑ)− d− eχ cosh (χϑ)
−a cosϑ− b sinϑ+ cχ2 cosh (χϑ)− eχ2 sinh (χϑ)
−a sinϑ− b cosϑ− cχ3 sinh (χϑ)− eχ3 cosh (χϑ)

 . (44)

the solutions of which are omitted here.

6. THE LOAD-STRAIN RELATION AND THE CRITICAL STRAIN

In practise, the loading is generally the known quantity. However, the formulation has the axial strain εoξ as a parameter.
For a first, linearized model, the effect the deformations have on the equilibrium is neglected. We can establish the load-
strain relationship εoξ = εoξ (P) on the basis of differential equations (8) if ft = fn = 0, and by applying the

Uo|±ϑ = Wo|±ϑ = M |−ϑ = ψoη|+ϑ = 0 , (45a)
Uo|ϕ=−0 = Uo|ϕ=+0 , Wo|ϕ=−0 = Wo|ϕ=+0 , ψoη|ϕ=−0 = ψoη|ϕ=+0 ,

N |ϕ=−0 = N |ϕ=+0 , M |ϕ=−0 = M |ϕ=+0 , dM/ds|ϕ=+0 − dMds|ϕ=−0 − Pζ = 0 (45b)

boundary and continuity (discontinuity) conditions prescribed at the crown point. Here the physical quantities can all be
given in terms of the dimensionless displacements Uo and Wo as

ψoη = Uo −W (1)
o , N = Aeεoξ −

M

ρo
≈ Aeεoξ , M = −Ieη

ρ2o

(
W (2)
o +Wo

)
. (46)

After solving the boundary value problem defined by the ODEs (8) (ft = fn = 0) and the above continuity and disconti-
nuity conditions we get the axial strain in the following form

ε(P,m, ϑ) = −P
ϑ

[
(3ϑ cosϑ− 4 cosϑ sinϑ+ 4 sinϑ) cos2 ϑ+

(
ϑ2 − 2 + 2 cosϑ

)
sinϑ+ ϑ (2− 5 cosϑ)

]
×

× 1

m [(−2ϑ sinϑ+ 11 cosϑ− 4ϑ cos2 ϑ sinϑ− 7 cos3 ϑ) cosϑ− 4 + 3ϑ2] + 2ϑ (cosϑ sinϑ− 2 cos3 ϑ sinϑ+ ϑ)
. (47)

IfP is [negative] (positive), then εoξ is [negative] (positive). The critical strain, at which, curved beams lose their stability,
can be obtained by solving the eigenvalue problem governed by equations (13) – with the right side set to zero – and the
corresponding boundary conditions. The eigenvalue sought is χ =

√
1−mεoξ .

The general solution for the displacement increments and the boundary conditions to be satisfied are:

Wob = −E2 − E3 cosϕ+ E4 sinϕ− χE5 cosχϕ+ χE6 sinχϕ , (48)

Uob = E1 + E2Mϕ+ E3 sinϕ+ E4 cosϕ+ E5 sinχϕ+ E6 cosχϕ , (49)
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Uob|±ϑ = Wob|±ϑ = W
(2)
ob

∣∣∣
−ϑ

= W
(1)
ob

∣∣∣
+ϑ

= 0 . (50)

Here Ei (i = 1, . . . , 6) are undetermined constants of integration. The boundary conditions lead to the homogenous
equation system

1 −Mϑ − sinϑ cosϑ − sinχϑ cosχϑ
1 Mϑ sinϑ cosϑ sinχϑ cosχϑ
0 1 cosϑ sinϑ χ cosχϑ χ sinχϑ
0 1 cosϑ − sinϑ χ cosχϑ −χ sinχϑ
0 0 cosϑ sinϑ χ3 cosχϑ χ3 sinχϑ
0 0 sinϑ cosϑ χ2 sinχϑ χ2 cosχϑ




E1

E2

E3

E4

E5

E6

 =


0
0
0
0
0
0

 . (51)

The vanishing of the determinant results in the following non-linear equation:[
χ4 (1− 2 cos2 χϑ

)
+

(
1− 2χ2) sin2 χϑ+ χϑ

(
χ2 − 1

)
cosχϑ sinχϑ

]
sin2 ϑ+ χ2ϑ

(
χ2 − 1

)
cosϑ sinϑ cos2 χϑ =

=
[(
χϑ

(
χ2 − 1

)
cosχϑ+ sinχϑ

)
cosϑ +χ2ϑ

(
χ2 − 1

)
sinϑ sinχϑ+ χ

(
−χ2 − 1

)
sinϑ cosχϑ

]
cosϑ sinχϑ . (52)

The lowest reasonable critical value is then approximated by the polynomial

χϑ = gpf (ϑ) = 0.014 875, ϑ5 − 0.078 701ϑ4 + 0.168 958ϑ3 − 0.119 606ϑ2 + 0.057 002ϑ+ 3.749 293 , (53)

and the critical strain is
εoξ crit = − 1

m

(
χ2 − 1

)
= − 1

m

[(gpf
ϑ

)2
− 1

]
. (54)

7. COMPUTATIONAL RESULTS

Figure 2. Results for pinned-fixed beams when εoξ ' 0

We have solved the eigenvalue problems governing the vibrations of curved beams using a Fortran90 code. The numerical
results have been compared to those valid for the free vibrations of curved beams with the same geometry and material.
For more details about the natural frequencies of planar curved beams see [5].
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When we set the strain to a very small value, i.e., to |εoξ| = |εoξ crit · 10−6| for both loading cases, we get back the results
valid for the free vibrations of curved beams – see [5] and [11] for details.

It is known that – see e.g.: [9] – the i-th eigenfrequency for the free transverse vibrations of heterogeneous straight
beams is obtained from the relation

α∗i =
Ci, charπ

2√
ρaA
Ieη

`2b

, (55)

where the constant Ci, char depends on the supports and the ordinal number of the frequency sought. This time C1, char =
1.556, C2, char = 5.078, C3, char = 10.541, C4, char = 17.97 and `b is the length of the beam. If we recall Eq.(14)2 which,
for such a small strain considered, expresses the relation between the eigenvalues λi and the eigenfrequencies αi = αi free
for the free vibrations of curved beams we may write

Ci,char
αi
α∗i

=

√
λi√

ρa A
Ieη

R2

π2√
ρa A
Ieη

`2r

=
ϑ 2
√
λi

π2
. (56)

This is the connection between the natural frequencies of curved and straight beams with the same length (`b = Rϑ̄),
cross-section and material. In Figure 2, this ratio is plotted against the central angle ϑ̄ of the curved beam. Four different
values of the parameter m were picked: (1, 3.4, 12, 100) · 103. Observe that the ratio of the even natural frequencies are
independent of m, while the odd ones are not. It is also important to mention that the frequency spectrum changes as ϑ̄
increases – e.g.: the first eigenfrequency becomes the second one in terms of its magnitude if ϑ̄ is sufficiently great.

When dealing with the free longitudinal vibrations of fixed-fixed rods, the natural frequencies assume the form [11]

α̂i =
Ki char

`r

√
E

ρa
π , (57)

where the constant Ki char = i; (i = 1, 2, 3, . . .) and `r is the length of the rod. If we recall Eq.(14)2, we can compare
the eigenfrequencies of curved beams (given that |εoξ| = |εoξ crit · 10−6| ' 0 when calculating λi) to those of rods by

Ki char
αi
α̂i

=
1√
m

ϑ̄

π

√
λi . (58)

These quotients for i = 1, 2 are plotted in Figure 3. We found that the ratios do not depend on the parameter m and these
are equal to 1 and 2 respectively if the central angle is sufficiently small. We remark that these tendencies are the same
with a good accuracy for pinned-pinned and for fixed-fixed curved beams as well.

Figure 3. Results for pinned-fixed beams when εoξ ' 0

In the forthcoming, the effect of the concentrated load to the length of the centerline is taken into account. In what
follows, regarding our notations, αi is i-th eigenfrequency of the loaded curved beam, while the eigenfrequencies that
belong to the free vibrations (the beam is unloaded) are denoted by αi free.

Figure 4 represents the quotient α2
1/α

2
1 free against the quotient |εoξ/εoξ crit| both for a negative and a positive Pζ . We

remark that this time the subscript 1 always refers to the lowest frequencies (which do not coincide with the first one
every time – see Figure 2). The frequencies under [compression] <tension> [decrease] <increase> almost linearly and
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independently of m and ϑ, given that m >∼ 10 000 and ϑ̄ >∼ 1. These relationships can be approximated with a very
good accuracy by

α2
1

α2
1 free

= 1.000 848 535− 0.983 386 732
|εoξ|
εoξ crit

− 0.174 018 254

(
εoξ

εoξ crit

)2

, if εoξ < 0 , (59)

α2
1

α2
1 free

= 1.000 198 503 + 0.986 131 634
|εoξ|
εoξ crit

− 0.008 370 551

(
εoξ

εoξ crit

)2

, if εoξ > 0. (60)

We again remark that these results are almost the same, when the curved beam is pinned-pinned or fixed-fixed.

Figure 4. Results for the two loading cases of pinned-fixed beams

8. CONCLUDING REMARKS

In accordance with our aims, we have investigated the vibrations of curved beams with cross-sectional heterogeneity
under a centra load (a vertical force) exerted at the crown point. We have derived the governing equations of the boundary
value problems, which make it possible to clarify how the radial load affects the natural frequencies.

For pinned-fixed beams, we have determined the Green function matrices assuming that the beams are prestressed by
a radial load. When computing the corresponding matrices, we had to take into account that the system of differential
equations that govern the problem are degenerated. Making use of the Green function matrices, we have reduced the self-
adjoint eigenvalue problems set up for the eigenfrequencies to eigenvalue problems governed by homogeneous systems
of Fredholm integral equations. These integral equations can be used for those loads, which results in a constant axial
strain on the E-weighted centerline.

Numerical solutions were provided graphically. For the loaded beams considered, the quotient α2
1/α

2
1 free depends

linearly with a good accuracy on the axial strain εoξ. With the knowledge of the relationship εoξ = εoξ (P), we can
determine the strain, which belongs to a given load and then the natural frequencies of the loaded structure.
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