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CONCENTRATOR

Ioan-Calin Rosca 1, Mihail-Ioan Pop 2
1 Department of Mechanical Engineering, Transilvania University, Brasov, ROMANIA, icrosca@unitbv.ro
2 Department of Electrical Engineering and Applied Physics, Transilvania University, Brasov, ROMANIA,

mihailp@unitbv.ro

Abstract: An ultrasonic horn concentrator designed by variational calculus theory was simulated and its resonance
frequencies were obtained. Simulations employed 3 methods: a transfer matrix method,  a coupled oscillators model and a
3D finite elements method. The working  frequency of the horn was fixed by adding end couplings.
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1. INTRODUCTION

Ultrasonic horns are used to amplify the ultrasonic signal by increasing the wave density of energy. Ultrasonic

equipments used in manufacturing processes consist of four main parts: ultrasonic generator, transducer,

ultrasonic solid horn (USH) and the tool. USH carries the acoustic energy from a transducer to the tool attached

at the output end with high efficiency (Figure 1).

Figure 1: Ultrasonic system: 1 - electromechanical transducer; 2 – ultrasonic horn; 3 – tool

A wave with amplitude 0u is emitted by the transducer, then it is amplified by the horn with an amplification

magnitude q . The amplification is ensured by the USH varying cross-section, from an initial value 0S at input

end to a minimum value LS at the output (Figure 1). The gain of USH is defined as 0uuq out . The

transducer, USH and tool form an embedded mechanical system, and the operating frequency depends on the

dimensions and elastic properties of both components. The system’s performance can be improved by optimizing

the USH.
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2. THEORETICAL CONSIDERATIONS

The USH with a variable cross-section is described by Webster’s horn equation (see [1]):
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where ),( txu = displacement of ultrasonic signal, xS = cross-section area at distance x , and c = sound

velocity in the horn’s material. By separation of variables [2] txuutuxutxu  )()(),( and the following

equations are obtained:
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where  = ultrasound angular frequency ][ srad and ck  = wave number.

By imposing the condition that the maximum acoustic pressure maxp is equal to the normal stress L at the

end of the horn [3] and considering Hooke’s law, a variational formulation of equation (3) with minimisation of

concentrator volume can be obtained:
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where )(xx   and 1 are Lagrange multipliers, and Lu  is the strain value at the end of the horn [4]. The

function (4) has an extremum value if 0I , with the condition 0 uu  at both ends of the horn [4].

These conditions reduce to solving the system of equations:
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A corresponding solution is obtained:
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where A and B are two integration constants, which can be found from the boundary conditions. The imposed

initial conditions are: 0)0( uu  and 0)( quuLu L  with 5q . Moreover, it is assumed that there are

extremum values of )(xu only at the end points of the horn [2] such that 00   Lxx uu . The following

expressions for A and B are obtained:
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The spatial component of the wave is then   kxkx
x BeeBuu  0 . The position of the nodal point nx , which is

chosen as the fastening point of the horn, can be obtained by considering 0)( xu :
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From Hooke’s elasticity theory it follows that the maximum strain and maximum stress happen at the nodal

point. Also xx uku 2 . Label  kxkx
x BeeBuhxh  )()( 0 . The optimal horn section is, from (3):
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with L the horn’s length. It follows that the maximum cross-section is situated at the nodal point, which is an

important advantage for practical applications.

Taking into account the optimization procedure described above, we designed an USH made of steel, with an

end diameter mmdL 6 , an initial amplitude mu 7
0 102  , and a gain coefficient 5q . The nodal point is

located at mmxn 50.34 , where the diameter is mmd 70.29max  .

2. COMPUTER SIMULATIONS

Computer simulations were carried in order to determine the USH resonance frequencies by using 3 methods:

the transfer matrix method (TMM), a coupled oscillators (CO) model and a 3D Finite Element Method (FEM).

In the transfer matrix method (TMM) the sound wave propagation is modeled by a transfer matrix T [5-9] in

relation to a progressive and a regressive wave of complex-valued amplitudes  fAA  and  fBB 

respectively, at frequency f :
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with the horn’s input end in and the output end out . The USH was divided into N slices Nj ,...,2,1 with

transversal surfaces jS as in (9), thickness x and acoustic impedance jj cSZ  , where  = bulk density

of concentrator’s material. The sound wave propagation along each strip j is characterized by a propagation

matrix jP and propagation from layer j to layer 1j is characterised by a discontinuity matrix 1, jjD ; total

reflection at the ends is characterised by a reflection matrix R :
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The transfer matrix from input to output is then:

12,123,231,1, ... PDPDPPDPT  NNNNoutin . (12)

Propagation from input to output and back is modeled by the the matrix: outininouttotal ,, RTTT  , such that:
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With 1inA the resonance condition is 01' inA .
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The concentrator was also modeled as a linear arrangement of coupled oscillators [10], set at equal distances and

connected with springs. Parameters were computed from Hooke’s law. The displacements  tu j of the

oscillators were obtained by numerically integrating the equations of motion

   jjjjjjjjjj uukuukum   11,1,1 (14)

with a 4th-order Runge-Kutta integration method [11]. The Fourier spectrum at the horn’s ends was used to

determine the resonance frequencies.

The 3D Finite Element simulation was done with the Elmer FEM software and the resonance modes were

obtained. Those with a longitudinal behaviour were taken into consideration.

The USH was fitted with constant section input and output couplings that model the transducer and tool. Their

lengths were chosen as mm38.881 L for the input coupling and mm32.132 L for the output coupling , such

that the resonance frequency of the whole system is set at Hzf res 19900 and the position of the nodal point is

fixed at mm34.72nx into the USH body.

Table 1: Resonance frequency values (Hz) of the concentrator with end couplings obtained with different

methods.

TM 1D CO 3D FEM

19900 19836.73 19729.10

25802 25787.75 25937.11

38144 38147.55 37874.84

51955 52033.26 51325.97

Figure 2: The frequency response of the USH with end couplings by using the TMM. Left: the resonance

condition plot. Right: the wave amplitude along the system at Hzf 19900 .

Figure 3: A few longitudinal eigenmodes of the USH obtained with FEM for the concentrator without (left) and

with (right) end couplings.



231

3. CONCLUSION

An acoustic horn concentrator was designed by optimization with variational calculus. Simulations were carried

in order to obtain the resonance frequencies [12]. Next coupling ends were added to the concentrator in order to

set its working frequency at Hzf 19900 for a total amplification factor 5q . The concentrator is useful in

mechanical manufacturing processes involving ultrasound, in which high-amplitude ultrasound is injected into a

working piece. The dimensions of both the piece and the ultrasound generator establish the frequency at which

optimal transmission occurs. Thus, it is important to take the 2 devices into account. The current approach allows

for optimization of the embedded system formed from the acoustic horn concentrator and connected devices.
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