

CONAT20046005

CAD – WEBDAV ADAPTOR: PREMISE FOR A LIGHT PLM SOLUTION
1Covaciu, Dinu*, 2Brădău, Horia, 1Preda, Ion

1Transilvania University Braşov, Romania, 2kPrism ES, Woodbridge, Canada

KEYWORDS

CAD, PLM, collaborative engineering, WebDAV, DeltaV, DASL

ABSTRACT

In today's dynamic engineering environment, including the automotive area, collaboration is a hard
requirement. More than in other disciplines, the CAD design process can't be conceived outside a
team. Central (secure) repository, remote access, metadata, access control and versioning are
mandatory tools for a design team in order to be effective and successful. PDM/PLM platforms
offer solid solutions for big companies, which use expensive CAD platforms, but they are a luxury
that smaller companies/teams can't currently afford.

The general need for collaboration lead the Internet community and groups (W3C, IETF) to define
WebDAV (Web Distributed Authoring and Versioning), a HTTP based protocol that allows teams
to collectively work on the same document.

The paper presents a WebDAV adaptor that enables CAD clients to access a remote WebDAV
server. It features access control, metadata management, locking (checkin/checkout), versioning,
part relations (in assemblies), and enables teams for distributed design process.

The adaptor was implemented for Unigraphics, as a C/C++/OpenUg application and it can be used
with any server implementing the WebDAV specifications.

Designed for CAD activities, the proposed solution can be easily adapted for other domains.

MAIN SECTION

PLM (Product Lifecycle Management) seeks(1) to provide horizontal collaboration throughout a
product's lifecycle, from concept to disposal. PLM is not just product data management (PDM);
PLM strives to offer authoring, managing and sharing tools for data that is created and used
throughout a product's lifecycle by all that touch or have a need for information on a product.

To date, the two biggest manufacturing market segments that have embraced PLM are automotive
and aerospace. These two industries were among the first to implement and integrate PLM into their
businesses just based on the sheer complexity of the products they manufacture and on the
multitude of suppliers they have to deal.

A PLM system must have at least most of the following subsystems or modules:

• CAD/CAM;
• Bill of materials (BOM) processor;
• Configuration management;
• Computer-aided process planning (CAPP);
• Database management;
• Data communications;
• Visualization;
• User interface;
• Application programming interfaces (API)

Ideally, the PLM system should be tied to supply chain management (SCM) and enterprise resource
planning (ERP) systems, and herein lies the fact that PLM can be tricky to implement. The biggest
challenge in successfully deploying a PLM system on any scale is understanding and managing the
full range of data types that can be generated within and throughout a PLM system.

Most of the PLM subsystems are tied directly to manufacturing. In manufacturing, PLM systems
must be customized and fine tuned according to unique business models in terms of which specific
PLM components are included.

PLM technology optimises and exploits the interaction of information with different people in a
business. Simply put, this is called workflow, a complex chain of processes that transforms thoughts
into actions and, ultimately, into tangible products. In the end, PLM is as much about business
strategy as it is about a product's lifecycle.

WEBDAV

WebDAV stands (2) for “Web Distributed Authoring and Versioning” and represents an extension
to the HTTP/1.1 protocol that allows clients to perform remote web content authoring operations.

WebDAV provides a coherent set of methods, headers, request entity body formats, and response
entity body formats that provide operations for: properties (the ability to create, remove, and query
information about documents, such as their authors, creation dates, etc. and also the ability to link
documents of any media type to related documents), collections (the ability to create sets of
documents and to retrieve a hierarchical membership listing), locking (the ability to keep more than
one person from working on a document at the same time; this prevents the “lost update problem”,
in which modifications are lost when a second author writes changes without merging the first
author's changes), and namespace operations (the ability to instruct the server to copy and move
Web resources).

Within the HTTP/DAV/DeltaV family of specifications, a document on a Web server is known as a
resource. Like objects in object-oriented languages, resources have a state and operations on that
state. The state of a WebDAV resource comes in two parts: a body (that contains the primary
content, like the CAD model or drawing) and properties. The operations on resources are termed
methods.

Collections are resources that contain a set of URIs (Uniform Resource Identifier), which identify
member resources (like a directory in a file system).

Properties are pieces of data that describe the state of a resource (they are data about data). A
property is a name-value pair that contains descriptive information about a resource. There are two

categories of properties: “live” and “dead”. A live property is a property whose value is both
computed and controlled by the server. A dead property is a property whose value is controlled by
the client, and stored by the server.

HTTP protocol operations are called methods, and WebDAV adds seven new methods to the set of
methods defined by HTTP/1.1 (GET, HEAD, POST, OPTIONS, PUT, DELETE, TRACE). The
WebDAV methods provide overwrite protection (LOCK, UNLOCK), metadata management
(PROPFIND, PROPPATCH), and namespace management (COPY, MOVE, MKCOL). Generally,
a user of a WebDAV-enabled authoring tool is unaware of the WebDAV protocol use. The
WebDAV protocol is designed to be integrated into existing authoring tools, adding Web-based
remote authoring capabilities to the tools already familiar for the users. To date, this has been a
successful strategy, with WebDAV support in document authoring tools such as Microsoft Word,
PowerPoint and Excel (via the “Web Folders” feature).
In HTTP/1.1, method parameter information was exclusively encoded in HTTP headers. Unlike
HTTP/1.1, WebDAV encodes method parameter information either in an Extensible Markup
Language (XML) request entity body, or in an HTTP header. The use of XML to encode method
parameters was motivated by the ability to add extra XML elements to existing structures,
providing extensibility. In addition to encoding method parameters, XML is used in WebDAV to
encode the responses from methods, providing the extensibility advantages of XML for method
output, as well as input.

DELTAV

The WebDAV Working Group, when it went to create document management features found that
versioning was critical and included it from the start. As WebDAV progressed it was found that
versioning was very hard and that it required a special attention. The DeltaV protocol is an
extension to the WebDAV protocol. DeltaV (3) is picking up where WebDAV left off, extending
the protocol with versioning and configuration management support.

Versioning is the ability for a resource to be checked into a version controlled system where it has
multiple revisions that are tracked and can have multiple successor and predecessor relationships.
The server will maintain those relationships, report the revision history, and control the write able
access to these revisions using check in/out operations. Parallel development provides more
resource availability in a multi-user environment. So, multiple users can checkout the same
revisions of a resource, then check that they has the same revision and finally merge them back later
on as appropriate. Configuration management means to bring together consistent revisions of
resources.

To the base provided by HTTP and WebDAV, DeltaV adds 11 additional methods. Versioning
capability is provided by the methods VERSION-CONTROL, CHECKIN, CHECKOUT,
UNCHECKOUT, and REPORT. An unversioned resource is put under version control with
VERSION-CONTROL. While under version control, a typical editing process begins with
CHECKOUT, involves one or more writes (PUTs) to the resource, and ends with a CHECKIN. An
editing session can be aborted using UNCHECKOUT. The version history of a resource can be
retrieved using REPORT. Unique user-friendly names can be associated with specific versions
using LABEL. The default visible revision can be set using UPDATE. The others methods added
by DeltaV are MERGE, MKACTIVITY, MKWORKSPACE and BASELINE-CONTROL.

DASL

DASL represents WebDAV SEARCH, an application of HTTP/1.1 forming a lightweight search
protocol to transport queries and result sets and allows clients to make use of server-side search
facilities.

The basic usage of DASL follows these steps:

• the client constructs a query using the DAV:basicsearch grammar;
• the client invokes the SEARCH method on a resource that will perform the search (the search
arbiter) and includes a text/xml or application/xml request entity that contains the query;
• the search arbiter performs the query;
• the search arbiter sends the results of the query back to the client in the response; the server must
send an entity that matches the PROPFIND response.

Implementation of a WebDAV client for Unigraphics

Most of the CAD systems offer a C++ based API: CAA for CATIA V5, Pro/Toolkit for
Pro/Engineer, OpenUG for Unigraphics, Ideas-Open for Ideas, ObjectARX for AutoCAD. A
WebDAV client writen in C++ will be suitable for all these CAD systems, with different interfaces.
For this reason, we developed a C++ wrapper over Neon, an existing WebDAV client library,
written in the C programming language.

The Neon library, developed by Joe Orton (5), features:

• high-level interface to HTTP and WebDAV methods (PUT, GET, HEAD, etc.);
• low-level interface to HTTP request handling, to allow implementing new methods easily;
• persistent connections;
• basic and digest authentication;
• SSL/TLS support using OpenSSL (including client certificate support);
• Generic WebDAV „207” XML response handling mechanism;
• XML parsing using the Expat or Libxml parsers;
• easy generation of error messages from „207” error responses;
• WebDAV resource manipulation: MOVE, COPY, DELETE, MKCOL;
• WebDAV metadata support: set and remove properties, query any set of properties

(PROPPATCH/PROPFIND).

Neon library don’t offer support for DeltaV and DASL (versioning and searching), so we have to
extend the library with new functions. The extended features we added to the library consist mainly
in support for REPORT and SEARCH methods.

The authors written an original C++ wrapper over Neon, named Neonplus. It defines a main object
called WebdavDlg. The objects defined in the Neonplus library can be called in custom applications
developed for different CAD platforms which support C++, like Unigraphics, Inventor,
Pro/Engineer, Catia, Ideas, or AutoCAD.

An example of using Neonplus for Unigraphics is below:

/* MKCOL DIALOG ---*/
int MKCOL_ok_put (int dialog_id,
 void * client_data,
 UF_STYLER_item_value_type_p_t callback_data)
{
 if (UF_initialize() != 0)
 return (UF_UI_CB_CONTINUE_DIALOG);
 char *coll = "";
 WebdavDlg *dlg;
 dlg = new WebdavDlg(user_name, user_pwd, server_path);
 //create a new collection: (name given by dialog)
 callback_data->item_attr = 2;
 callback_data->item_id = MKCOL_WIDE_S_0;

 UF_STYLER_ask_value(dialog_id,callback_data);
 coll = callback_data->value.string;
 log->write("\nCount: %d",callback_data->count);
 log->write("\nCollection: %s",coll);
 dlg->Mkcol(coll);
 delete dlg;
 free(coll);
 UF_terminate ();
 return (UF_UI_CB_EXIT_DIALOG);
} // Mkcol

The black lines in the code above are the only used to call the Webdav functions from the Neonplus
library. These lines are called in the same way also under other CAD platforms programming
interface.

A diagram that explain how the custom defined methods and the WebDAV methods works in a
CAD system is shown below:

 custom methods WebDAV methods

Get - Open

Get

Local filesystem

WebDAV Server
(Intranet, Internet)

WebDAV adaptor
(C/C++ /OpenUG or
another API)

CAD system:
UG, Pro/E, Inventor
etc.

The same diagram (in the above example Get) applies for the other methods (Put, Lock/Unlock,
Mkcol, Report, Search).

The WebDAV server used for our demo was Jakarta Slide.

Table 1 - Examples of implemented methods

Client Side Server Side

Get Part – ask for the last (current) version
of the part or assembly (file)

- identify the last version
- check if the file is unlocked
- lock the file
- send file to client

Put Part - save a modified part as current
version

- save the received file as a new version
- unlock the file for the other users

Get/Put Properties – add custom data to the
part (according to the internal standards)

- to add/change a property, locks the
file before and unlock them after

Get previous version – ask for a previous
version of a part (assembly) and get the
corresponding file from server

- generate a report (a list of all saved
versions for the requested file)

- find the selected version in the history
collection

- send the file to the client, like for the
Get Part request

Search for parts – search for parts on server,
based on metadata (properties)

- execute the Search method
- generate a list with files (parts) that

matches the request

Example of using the test application to get/open a part from the server

First, start Unigraphics. Using the Neon_test menu,
log on to the server.

We suppose the path already exists on the server (in
this example, /files/dinu/). The path must be
terminated with a / (slash).

The user must enter his username and password to
give access to that path on the server.

From the Neon_test menu, select Get. The following
dialog box will be displayed:

The list contains the files with extension .prt on the
current path. Select an item of this list and then OK.

The selected part will be opened:

To put a part on the server, first open that part in Unigraphics, that select Put from the Neon_test
menu.

The other regular WebDAV methods are implemented in a similar way. A special attention must
give to the assemblies.

The methods Get and Put works apparently like for any other part. When put an assembly, a new
property, named component_count, is set. The value is equal with the number of the parts in the
assembly. For each component part, is set another property, named componentX, where X is an
integer, representing the index of the component. The value of these properties is the name of the
component part. When getting a part, the program checks if it is an assembly by reading the
property component_count. If this property is defined and the value is greater than 0, the part is an
assembly and the properties componentX will be read. Each component will be also copied from
server using the same method: Get.

Example of using the test application to put an assembly to the server

Suppose the attached assemly is opened in
Unigraphics.

To put the assembly on server, select from
the menu Put.
Write a name for the assembly and press
OK.

Check the result on server. There are three
new items: the given assembly and two
component parts.

To add custom information (properties) to a part, we use the method Proppatch. The additional
information attached to a part can be retrieved using the method Propfind.

Example of using the test application to add/retrieve custom data

PROPPATCH: set a (new) property for a
resource

PROPFIND: fetch a property from a
resource

Enter the resource (part) name – it is not
necessary to have the part opened on the
local system.

Enter the property name and click Apply.

The result:

The most challenging part of the application is to add versioning capabilities to Unigraphics. Next
we present an example of using the test application to save a new version of a resource (part)
on the server and retrieve a previously saved version.

Open a new part, with the name "example".
Create a very simple solid.

From the Neon_test menu, select Put.
Enter the name "example.prt".
This is a simple PUT, and will create the
initial revision on server.

Modify the part.

From the Neon_test menu, select
DeltaV_test.

Enter "example.prt" as the resource name,
and press SaveNewVersion.
The result must be "201 Created".

You can continue to add new features and
save new versions on the server.

In the same dialog box (DeltaV_test), press
REPORT.

The content of the list containing the
previous versions is changed. The new list
contains all the available versions for our
part.

To get a previous version from server, click
in the list on the desired version name.

The response from server must be "200 OK".

Now the resource name must be the name of
the part on the local system. If the filename
already exists on your hard disk, the
program will append an underscore "_" in
front of the existing name. The resource
name can remain the same. All the files are
saved in the root of your disk (c:\).
The result from server must be "200 OK".

Here is the version 1.0.

In the same way, retrieve another version.

Here is the version 1.4.

The search (DASL module) is done using metadata (properties).

Select from the pull-down menu Search.

Some fields will be filled-in by default.

A search example is attached.

In the search result, the lines /history/3/1.x
are history versions of the file example.prt.

This example can be written like that:

SELECT property “displayname” FROM
current path, with depth: infinity,
WHERE property “test_prop” is
defined, ORDER by property
“displayname”, ascending

Of course, in this paper are presented only few of the capabilities of the application. Our goal was to
demonstrate how the Neonplus library could be used to implement WebDAV under a CAD system.
The custom data and version information could be used to connect the CAD system to the enterprise
PLM system.

CONCLUSIONS

For many years, CAD was predominantly a tool for individual creativity. Now the enterprise
managers are focused to use the creative capital of the whole team. Designers will need to work at a
higher conceptual level in design terms, but within constraint systems that have been predefined.
This is collaborative engineering.

The aspects presented above represents an original contribution of the authors to this domain. This
demo application can be the basis for a light PLM solution. There is still much to do until this
solution will be used in real design and data management activities, but we hope that our future
work will allow us to put the entire PLM system on the market.

REFERENCES

(1) Jeffrey Rowe, “Is PLM software the real deal?”, Advanced Manufacturing magazine,
http://www.advancedmanufacturing.com, May/June 2004

(2) IETF, “RFC2518: HTTP Extensions for Distributed Authoring – WEBDAV”,
http://www.webdav.org, February 1999

(3) Jim Whitehead, “DeltaV: Adding Versioning to the Web”,
http://www.webdav.org/deltav/WWW10/deltav-intro.htm, 2001

(4) James J. Hunt, Jurgen Reuter, “Using the Web for Document Versioning: An
Implementation Report for DeltaV”, http://www.ipd.uka.de/~reuter/publications/deltav.pdf ,
2000

(5) Joe Orton, The Neon library, http://www.webdav.org/neon, 2000-2004

	MAIN SECTION

