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Abstract:  For studying the motion of a robot fish we calculate the jump of pressure over a flexible hydrofoil performing oscillatory 

or undulatory motions. For a certain class of motions we find that if the frequency of the motion surpasses a critical value there 

appears the thrust. 
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1. INTRODUCTION  
The wide interest shown to robot fishes has many reasons. The use of fish robot for ship propulsion will help prevent 

shoreline erosion and the undermining of submarine installations caused by ships screw. The soft drive action of the 

robot fish also prevents the churning of the watercourse and sea beds and its effects on marine aquatic plants and animal 

populations. We present below two pictures taken from the internet. The first picture is the picture of the robot fish 

created at the University of Essex, in order to detect the pollution in water.  

 

 
 

Figure 1: Robot fish created at the Essex University.  

 
The second picture presents the skeleton of a robot fish created at the Technical University of Darmstadt. 
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Figure 2: Skeleton of a robot fish constructed at TU Darmstadt.  
 

     The kinematics and hydrodynamics of the robotic fish is investigated in many papers. For example in  [4] one 

presents theoretical and experimental results concerning the kinematics and hydrodynamics of the robot fish in a 

simulator. In the present paper we calculate the hydrodynamic coefficients for a robot fish which is considered a 

flexible hydrofoil subjected to oscillatory or undulatory motions. For certain motions we put into evidence the average 

thrust which causes the translation motion of the hydrofoil.  

 

   2. THE INTEGRAL EQUATION FOR THE JUMP OF THE PRESSURE  

 

Let us consider a flexible hydrofoil whose equation (in dimensionless coordinates) is 

( ) ( )tiyxhz ωexp,=                            (1) 

 As it is shown in [1], [2], [3] the equation for the jump of the pressure over the hydrofoil is in dimensionless 

variables 
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where D is the projection of the hydrofoil onto the Oxy – plane, f is the jump of the pressure, ϖ  is the aspect ratio and 

., 00 ηξ −=−= yyxx  The asterisk indicates the finite part in the Hadamard sense of the integral. 

The 2D integral equation is singular. In order to put into evidence the kind of the singularity of the kernel we shall 

split it into several kernels 
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Figure 3: Pressure coefficient over a flexible hydrofoil. 

 

For these kernels one provides in [2] adequate quadrature formulas in order to discretize and solve the integral 

equation. In figure 3 we present the pressure coefficient α/f  over the undulatory delta hydrofoil having the 

equation ( ) ( )xiyxh 1exp, ωα=  at various moments. We considered .,4/ 1 πωπω −==  

 

2. CALCULATION OF THE THRUST 

 
The pressure coefficient is 

( ) ( ) ( )[ ] ./exp,Re,, αωtiyxftyxC p =                                                                                                                   (12) 

We calculate numerically the drag coefficient 
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and the average drag coefficient 
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In figure 4 we present the average drag coefficient versus the reduced frequency ω . We notice that starting from a 

certain value of  the reduced frequency the average drag coefficient becomes negative i.e. it appears a propulsive force 

(thrust). 
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Figure 4: Average drag coefficient against reduced frequency. 

 

3. CONCLUSION 
 

The undulatory or oscillatory motion of a flexible hydrofoil in a fluid may determine a thrust force. In this paper we 

presented a method to calculate the thrust force by solving an integral equation which appears in the hydrodynamics of 

non-viscous fluids. This approach is a simplified one because one has to take also into account the viscous drag and 

other hydrodynamical effects. For a complete study of the motion of a robot fish one has also to take into account the 

motion control, the autonomous navigation and other aspects of the interaction between the robot fish and the water.   
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