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Abstract: The paper is analysing the mechanical vibrations in an electro-mechanic system, represented by the control mechanism of a solenoid controlled valve with direct action. For different work hypotheses, the periodic solutions are shown, as well as the “border” between the two operation domains of the solenoid controlled valve: with and without self induced vibrations. In order to study these aspects, specific methods of study for dynamic systems are used.
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1. Presentation of the studied problem

One of the possible methods used to operate the high voltage electrical devices is the compressed air control system. In this category are also placed the solenoid controlled valves with direct action or with a pneumatic relay, used for the admission, evacuation or reduction of the compressed air pressure [3].
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The paper is trying to study a solenoid controlled valve with direct action (see fig. 1), using the dynamic system theory [4]. While such an electromagnetic command is operating, the electromagnet (2) must develop a force F = Ac (p1 – p2) (where Ac is the surface of the valve, p1 – the pressure in the central tank, p2 – the work pressure of the device) able to overcome the elastic force in the spring as well as the frictions in the mobile air-tightening elements. The amount of force developed is determining the position of the valve and by this the volume of compressed air flowing. When electromagnetic force developed by the electromagnet (2) disappears, the spring (3) must develop a force capable to push back the valve (1), by overcoming the frictions in the mobile air-tightening elements.
When the air volume passing through the electro valve is big, the surface Ac of the valve is increasing to cm2 and the force developed by the electromagnet is increasing up to tens of kgf if the pressure in the compressed air tank is about 10-15 at.

Studying the construction of the solenoid controlled valve with direct action, as well as its operating method, we might conclude that the solenoid controlled valve with direct action is placed among acting-positioning mechanisms because the electro valve is both operating the valve (opening and closing the air flow) and setting the volume of the air flowing (setting the exact position of the valve).
2. The model used for the study

The dynamic analysis of the electro valve is done using a model that allows the deduction of the motion equation as well as its further study.

The adopted model of the solenoid controlled valve with direct action (see fig. 2) is characterised by the dry friction in the acting-positioning mechanism.
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The electromagnetic force that determines the displacement of the valve is modelled by the function u(t).

Due to the friction, the motion of the mass m is possible only when the elastic force in the spring is overcoming the friction force. The speed of the mass m is becoming zero when the right position of the valve is obtained. In that moment the electromagnetic force must be equal the elastic force in the spring. That means that the electromagnetic force is varying in order to displace the valve and to maintain it into the correct position. This process is determined by multiple varying parameters: pressure of the air, elastic force, electromagnetic force, friction force. The valve might move up or down, according to the value and direction of the resultant force When, at a certain moment, the speed of the mass m is becoming zero, the position is equivalent with the equilibrium position of a mechanical system that is vibrating.
In order to determine the motion differential equation, the d’Alémbert principle is used (see fig. 3).
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By applying the d’Alémbert principle, the following equation is obtained:
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(1)
where m is the valve mass, k – spring elasticity coefficient, T – friction force in the air-tightening elements, x – the displacement from equilibrium, u(t) – the function modelling the electromagnetic force that determines the displacement of the valve.

By using the following notations:
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(2)

the equation (1) might be rewritten as below:
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(3)
This form allows the study of the self induced vibration, determined by the dry friction force, for different situations.
3. The dynamic study

a) The first studied case is 
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, where v0 = const. is the motion speed.

Under these circumstances, the equation (3) becomes
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(4)

and by integrating it after multiplying it by 
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 one obtains the expression:
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(5)
Assuming:
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(6)
the equation (5) becomes:
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(7)
This is the equation of a family of circles. If we use the phase plane to represent this equation, the origin O of the axes is the equilibrium position, where the mass m is motionless (see fig. 4).
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If in the initial position 
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 (the circles K1 and, at limit, K2).
b) The second studied case is 
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By multiplying the equation (3) with 
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 and integrating it, we obtain the expression:

[image: image16.wmf]2

2

2

2

C

x

p

x

p

2

x

=

+

+

F

&

.









(8)
Assuming, as done above:
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(9)

the equation (8) becomes:
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(10)
The circles family described by the equation (10) is shown in figure 5.
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If in the initial position 
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, the trajectory is the arch 1-2 on the circle having the centre in O’ and the radius R2. At the intersection with the line of equation 
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, the trajectory becomes the arch 2-3-4 on the circle having the center in O. From point 4, the trajectory is the segment 4-5, on the straight line of equation 
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. From this point forward the trajectory becomes the circle K2 for the rest of the motion.
This trajectory is showing, in fact, the self-regulation mechanism of the electro valve.

c) The third studied case is 
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For this study case we assume that 
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In these conditions, the equation (1) becomes:
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(11)
For this equation we consider the initial conditions:
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(12)

The equilibrium of the elastic force u(t0) with the maximum friction force T0, at the initial moment t0 (see fig. 6)

is given by the following expression:


[image: image26.wmf](

)

0

T

t

ku

0

0

=

+

-

.









(13)

Out of the equation (11), considering the initial condition (12) and the expression (13), we can deduce the time t0:
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(14)
The solution of the differential equation (11), considering the initial conditions (12) is [1]:
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(15)
This result is allowing the calculation of the time derivate for displacement:
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(16)
Another form for the above expression is:
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(17)

Considering the expressions (13) and (14) we obtain the following result:
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(18)

In this study case, in order to determine the domains where the system is function with or without self induced vibrations, we consider the condition that acceleration 
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, meaning that the speed is having a minimum value. According to this hypothesis, we obtain:
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(19)

For any a given time t = t1, the following conditions are fulfilled:
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(20)

This is allowing us to write the following equations system:
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The solutions of the above equations system are:
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It is thus possible the separation of the two domains: the stable domain (A) – the one without self induced mechanical vibrations, and the non-stable domain (B) – the one with self induced mechanical vibrations (see fig. 7).

From these results, considering the conditions for t1 and β, we obtain the domain for θ:
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Choosing different values for the parameters and performing the calculations, in order to compare the results with the ones given in the specialized literature, we obtain the results shown below (see tab. 1)

Table 1: The results obtained for different parameters values

	Values considered for θ
	5,1
	5,2
	5,3
	5,4
	5,5
	5,6

	Corresponding point on fig. 7  
	1
	2
	3
	4
	5
	6

	Values calculated for α
	10,522
	19,507
	35,794
	66,095
	124,831
	245,626

	Values calculated for ß
	0,056
	0,454
	0,668
	0,797
	0,877
	0,929


We mention that the calculations were performed, as well as the plotting of fig 7 using MATLAB software.
From the graphic representation we may observe that with the decreasing of the parameter β, the possibility of apparition of self induced mechanical vibration is increasing. 
4. Conclusions
The study cases a) and b) are showing, for the considered hypotheses, the existence of multiple periodical solutions represented as circles in the phase plane. These circles are having the centre in O and radiuses 
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). If these conditions are not fulfilled, we obtain the limit circle K2 of radius 
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The study case c) is showing the border between the stable domain, without self induced mechanical vibrations, and the non-stable domain, with self induced mechanical vibrations, allowing one to avoid the parameters values combinations that are making the valve to function with self induced mechanical vibrations.
The self induced mechanical vibrations are having as immediate result the incorrect positioning of the valve. The overall result is a wrong value for the pressure p2 making the valve to operate out of the prescribed domain.

The study did not consider the damping of the dynamic system. For motions with a small acceleration this assumption is not significantly affecting the final results. If the motion is produced with high accelerations, the mechanical vibrations are only damped ones so the analysis must take into consideration the damping in the mechanical system.
REFERENCES
[1] Deciu,E, Dragomirescu,C.: Maschinendynamik, Ed. PRINTECH, Bucureşti, 2001.

[2] Holzweißig,D, Fischer,St.: Machinendznamik, Schwingungslehre, VEB Fachbuchverlag, Leipzig, 1987.

[3] Hortopan,G.: Aparate electrice, Ed. Didactică şi Pedagogică, Bucureşti, 1972.
[4] Voinea,R., Stroe,I.: Introducere în teoria sistemelor dinamice, Ed. Academiei Române, Bucureşti, 2000.
Figure 1: The solenoid controlled valve with direct action
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Figure 2: The model used in the study
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Figure 3: Application of the d’Alémbert principle with the valve oppened
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Figure 4: The circles family described by the equation (7)
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Figure 5: The circles family described by the equation (10)
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Fig 7: The separation of the two domains
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Figure 6: Elastic and friction forces equilibrium
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