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Abstract:  The paper studies the motion of a system consisting in a shaft with noncircular cross‑section and a rotor. The conditions are determined, under which the bending vibrations are unstable, for different values of the parameters. The system has two degrees‑of‑freedom and is autonomous. The stabilization of the system by using feed‑back control circuits is considered.
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1. PESENTATION OF THE MODEL
The paper studies a noncircular cross-section shaft, of length L and negligible mass, with a rotor of mass M, fixed at its middle. The system has a rotation motion, with the angular velocity (=constant (Fig. 1).
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	Figure 1:  Rotating shaft
	Figure 2:  Cross-section displacement


In order to determine the differential equations of the bending vibrations of the shaft, two coordinate systems are used (Fig. 2):
· the fixed one X0Y0Z0;

· the movable one, XYZ, rotating together with the shaft, chosen so that the axes X and Y are parallel to the principal axes of inertia of the rotor X’Y’.

The mass centre of the rotor coincides with the mass centre of the shaft and the gyroscopic effect is neglected.

The position of the mass center, with respect to the two coordinate systems, is defined by the vector
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(1)
In the kinematics of the relative motion, the accelerations can be composed according to the well-known formula [3]
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(2)

where the following notations were used:

· the absolute acceleration
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the relative acceleration


[image: image6.wmf]j

y

i

x

t

r

a

2

2

r

&

&

&

&

+

=

¶

¶

=

,









(4)

the transport acceleration
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(5)

and the Coriolis’ acceleration.
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(6)

The formulae above have been written considering the relations:
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The fundamental equation of the dynamics will be applied,

[image: image12.wmf]F

a

m

=

,










(10)

considering that the force 
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 represents the action of the weight
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(11)

and of the elastic force
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(12)

where the rigidities are determined by formulae [1]
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By introducing expressions (2)‑(6) and (11)-(12) in (10), the differential equations of the bending vibrations of the shaft are obtained:
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(14)

Equations (14) show that the system is subject to a harmonic perturbation.
2. THE STABILITY OF THE FREE VIBRATIONS
The free vibrations are obtained when the terms containing the weight are neglected.

By introducing the notations
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(15)

as well as the non‑dimensional time
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(16)

equations (14) become
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This system has solutions of the form
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(18)

where C’ and C” are constants.

The algebraic system that results by substituting relations (18) in (17),
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(19)

must admit nontrivial solutions, which is equivalent to the condition
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By expanding the determinant, the characteristic equation is obtained, whose roots are
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The general solution of the system (17) is a linear combination of the fundamental solutions (18) and it is bounded only if the roots (21) are purely imaginary, which is equivalent to
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since
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for any values of parameters ( and (.
Inequality (22) is fulfilled only if
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or
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From the conditions above, the stability and instability domains shown in Figure 3 result.
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Figure 3:  Stability and instability domains

3. THE DESIGN OF A DYNAMIC SYSTEM WITH PRESCRIBED EIGENVALUES (BY USING FEED‑BACK CONTROL CIRCUITS)
By using the notations
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and by introducing the perturbation u((), system (17) becomes


[image: image31.wmf]ï

ï

ï

ï

ï

þ

ï

ï

ï

ï

ï

ý

ü

+

+

-

=

=

+

=

=

)

(

ν

τ

τ

δ

τ

τ

t

u

x

x

2

d

dx

x

d

dx

x

x

2

d

dx

x

d

dx

3

2

4

4

3

1

4

2

2

1

.








(27)

The matrix of the system is
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and its eigenvalues are the roots of the characteristic equation
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or, equivalent,
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It follows that the eigenvalues are
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If matrix [A] has real negative eigenvalues or complex ones, with negative real parts (the equilibrium configuration x = 0 is asymptotically stable), the system will behave satisfactorily, oscillating with damping about the equilibrium configuration and tending towards this configuration when the perturbation stops. For small moduli of the real part, the time interval needed for the system the reach this configuration is relatively high.
If matrix [A] has real positive eigenvalues or complex ones, with positive real parts, the system is unstable, i.e. it evolves far from the equilibrium configuration, even for small perturbations u(().
If a small number of pairs of purely imaginary roots exists, under the action of the perturbation u((), the system neither tends towards the equilibrium configuration, nor evolves to far from it.
As an example, numerical values corresponding to the instability domain in Figure 3 have been chosen for the parameters of the system (
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It follows that
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i.e. the system is unstable because of the real positive value 
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Figure 4:  Block diagram of the uncontrolled system

In order to get the block scheme of the unstablized system (Fig. 4), the operator D will be used, so that equations (27) become
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hence
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Figure 5:  Block diagram of the feed‑back controlled system

By considering that roots
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 are given, negative or one negative and two complex conjugate one, with negative real part (large enough in absolute value) and by replacing
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in (27), the system
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is obtained, whose matrix is
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Its characteristic equation is
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or
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and, by using Viète’s formulae,
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the expressions for 
[image: image57.wmf]1

g

, 
[image: image58.wmf]2

g

, 
[image: image59.wmf]3

g

, 
[image: image60.wmf]4

g

 can be determined:

[image: image61.wmf](

)

[

]

(

)

(

)

(

)

ï

ï

ï

ï

î

ï

ï

ï

ï

í

ì

+

+

+

=

-

=

ú

û

ù

ê

ë

é

+

+

+

+

+

-

-

-

+

-

-

=

+

+

+

+

+

+

+

=

.

ρ

ρ

ρ

ρ

δν

ρ

ρ

ρ

ρ

δ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

δν

ρ

ρ

ρ

ρ

δ

ν

δ

ρ

ρ

ρ

ρ

δ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

4

3

2

1

4

4

3

2

1

3

4

3

4

2

3

2

4

1

3

1

2

1

4

3

2

1

2

4

3

2

1

4

3

2

4

3

1

4

2

1

3

2

1

1

g

1

g

1

4

2

1

g

2

1

g



(42)
The block scheme of the stabilized system is shown in Figure 5.
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