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Abstract. In this paper we discuss the efficient implementation of model reduction methods such as balanced truncation and Hankel norm approximation, employing the idea of spectral projection. We will be concerned with the major computational tool of the discussed algorithms. Implementation in MATLAB for large-scale problems will also be discussed.
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1. INTRODUCTION
The description of a physical dynamic system by a set of differential (or difference) equations is a very useful tool in science. These equations, refereed here as a mathematical model, can be obtained from basic physical principles or as a result of experiments. A measure of the “complexity” of the system model is the number of first order equations used to describe it. This number is often referred as the order of the model. Models with elevated order are able to describe very complex phenomena. Consequently, models with high order may be required in order to provide an accurate description of a dynamic system. For instance, models with an infinite number of differential equations often appears in several fields. To name one, the behavior of materials based on continuum physics is often described by partial differential equations or by an infinite number of ordinary differential equations. If the capacity of a model to accurately describe a system seems to increase with the order of the model, in practice, models with low orders are required in many situations. In some cases, the amount of information contained in a complex model may obfuscate simple, insightful behaviors, which can be better captured and explored by a model with low order. In cases such as control design and filtering, where the design procedures might be computationally very demanding, limited computational resources certainly benefit from low order models. These examples justify the need to develop procedures that are able to approximate complex high order models by generating adequate reduced order models. As a result, some degree of detailing will be permanently lost in the reduced order model. The differences between the dynamics of the high order model and the obtained low order model (the unmodeled dynamics) can be often taken into account in the low order model as a noise, which can be handled using stochastic process methods. In any case, the model reduction procedures might be flexible enough to let the user indicate the essential behaviors that need to be captured for its application. 
Given a dynamic system model G of usually high order n, a model reduction method is a procedure that yields 
some approximate model Gr of order 
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. We note that by abuse of notation, both the underling dynamical system and its transfer function (TMF) are denoted by 
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.  The quality of the approximation is usually evaluated by looking at the model reduction error, that is, the signal obtained as the difference between the outputs of the original system and the outputs of the reduced order model driven by the same input signal. That arrangement is depicted in Figure 1. With respect to this figure, the single component model reduction problem can then be loosely stated as follows: Given a system G, chose a procedure that yields a reduced order model Gr so that the model reduction error is small. 
The goal is to produce a low dimensional systems that has similar response characteristic as the original system with far lower storage requirement and evaluation time. The resulting reduced-order model might be used to replace the original system as a component in a large simulation or it might be used to develop a low dimensional controller suitable for real time applications.
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Figure 1 Single Component Model Reduction
2. Model Reduction Problem

Consider a linear, continuous time–invariant (LTI) dynamical systems in state space form
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or in a input-output model
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where 
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is initial state of the system. Here, n is the order (or the state space dimension) of the system. The associate transfer function matrix (TFM) obtained from taking Laplace transforms in (1) and assuming 
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In model reduction we are faced with the problem of finding a reduced-order LTI system
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of order 
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, and associated TMF 
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such that the following properties are satisfied:

· the predicted input-output behavior is close, e.g., 
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· system properties, like stability, passivity, are preserved.
· the procedure is computationally efficient.

2.1. Approximation Methods
Approximation methods can be cast into three broad categories: 
(a) SVD-based methods;
(b) Krylov-based methods;

(c) iterative methods combining aspects of both. SVD and Krylov methods [4], [1], [2]. 

Table 1 Overview of approximation methods

	Approximation methods for dynamical systems

	SVD
	Krylov

	Nonliniar systems
	Linear systems

	· POD methods

· Empirical grammians
	· Balanced truncation 

· Hankel approximation
	· Realization

· Interpolation

· Lanczos

· Arnoldi

	SVD-Krylov


We discuss the efficient implementation of model reduction methods such as balanced truncation and Hankel norm approximation, employing the idea of  spectral projection.

2.2 Balanced truncation

2.2.2 Balanced truncations

The basis idea of balanced truncation is to compute a balanced realization 
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where 
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, with r less that the McMillan degree of the systems, and then to use as the reduced-order model the truncated realization
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One model reduction scheme that is well grounded in theory and most commonly used is the so-called Balanced Model Reduction first introduced by Mullis and Roberts [8] and later in the systems and control literature by Moore [7]. To apply balanced reduction, first the system is transformed to a basis where the states which are difficult to reach are simultaneously difficult to observe. This is achieved by simultaneously diagonalizing the reachability and the observability gramians, which are solutions to the reachability and the observability Lyapunov equations
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If Wc is positive definite, then the system is controllable and if Wo is positive definite, the system is observable. Controllability plus observability is equivalent to minimality of the system so that for minimal systems, all eigenvalues of the product WcWo are strictly positive real numbers. Balanced truncation and its relatives such as singular perturbation approximation, stochastic truncation, etc., are the most popular model reduction techniques used in control theory. The advantages of these methods, guaranteed preservation of several system properties like stability and passivity, as well as the existence of computable error bounds that permit an adaptive selection of the order of the reduced-order model, are unmatched by any other approach.

The following results summarized the properties of balanced truncation.

Proposition 1. Let 
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be a realization of a stable LTI system with McMillan degree 
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 with associated transfer function 
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be computed as in (6) and (7). Then the following holds:

a) The reduced-order system 
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 is balanced, minimal, and stable. Its controllability gramian and the observability gramian are equal and diagonal 
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 are so-called Hankel singular values , the square roots of the eigenvalues of the product 
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b) The absolute error bound 
[image: image32.wmf]å

+

=

¥

£

-

n

r

k

k

r

G

G

ˆ

1

2

s


(8)
c) If 
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The two gramians are transformed by congruence, thus 
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 are input-output invariants of systems. This are fundamental invariants which determine how well the system 
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It is easy to check [3] that for a minimal system, the matrix
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provides a balancing state-space transformation. Here 
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 is a singular value decomposition. An observation in [10] allows us to compute (7) also for non-minimal systems without the need to compute the full matrix T. The first part of this observation is that for 
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The second part needed is the fact that computing
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and
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is equivalent to first computing a minimal realization of (1), then balancing the system as in (6) with T as in (9), and finally truncating the balanced realization as in (7). Also note that the product 
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 is a projector onto an r-dimensional subspace of the state-space and model reduction via (12) can therefore be seen as projecting the dynamics of the system onto this subspace.

The algorithm resulting from (12) is often refered [3], [10], to as SR method for balanced truncation.

Algorithm 1 SR method Spectral Projection Method for Balanced Truncation (SR method)
INPUT: Realization (
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 of LTI system (1); a tolerance 
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              the absolute approximation error or the order r of the reduced-order model.

OUTPUT: Stable reducer-order model, error bound 
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1. Compute full-rank factors S, R of the system gramians.

2. Compute the SVD (10) such that 
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is diagonal with the r largest Hankel singular values in decreasing order on is diagonal. Here r is either the fixed order provided on input or chosen as minimal integer such that 
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4. Compute reduced-order model (12) and the error bound 
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In all textbooks treating balanced truncation, S and R are assumed to be the ( square, triangular) Cholesky factors of the system gramians. Low numerical rank of the gramians usually signifies a rapid decay  of their eigenvalues and implies a rapid decay of the Hankel singular values. The algorithm derived in [BQQ00a], is summarized in Algorihm 1. An even more detailed analysis shows that the implementation of the SR method of balanced truncation outlined in Algorithm 1 can be significantly faster that one using Hammarling’s method for computing Cholevsky factors of the Gramians as used in SILCOT [3], [10] and MATLAB, [4].
2. 3 Optimal Henkel norm approximation
Balanced truncation model reduction methods aim at minimizing the H∞-norm of the error system . However, they usually do not succeed in finding an optimal approximation, [AA02]. If a best approximation is desired, a different option is to use the Hankel norm of a stable rational transfer function, defined by
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 where 
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is the largest Hankel singular value of G. It is shown in [6] that a reduced-order transfer function on G of order r can be computed that minimizes the Hankel norm of the approximation error in the following sense:
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for all stable transfer function 
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 of  McMillan degree less that or equal to r. Here we describe the computational tools required in an implementation of the HNA method. The computation of a realization 
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 of a reducer-order method consist of four steps.
In the first step a balanced minimal realization of G is computed. This can be done in Matlab using the balreal file or the SR version of BT method as given in Algorithm 1. 

Next a transfer function 
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 with the same McMillan degree as the original systems is computed as follows: first, the order r of reduced-order model is chosen such that the Hankel singular values of G satisfy 

[image: image65.wmf]1

,

0

....

....

.....

ˆ

1

1

2

1

³

>

³

>

=

=

>

³

³

+

+

+

+

k

n

k

r

k

r

r

r

s

s

s

s

s

s

s


Then, by applying appropriate permutations, the minimal balanced realization of G is reordered such that the Gramians become .
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Finally, is computed an additive decomposition of the 
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. Thus, the main computational tasks of a spectral projection implementation of optimal Hankel norm approximation is a combination of Algorithm 1, the formula (44) and Algorithm 2 , see [4], [2], for further details.

3. Application to Large-Scale Systems.  
3.1 Model reduction algorithms based on spectral projection methods

Model reduction algorithms based on spectral projection methods are composed of basic matrix computations such as solving linear systems, matrix products, and QR factorizations. Efficient parallel routines for all these matrix computations are provided in linear algebra libraries for distributed memory computers such as PLAPACK and ScaLAPACK [5]. Using the kernels in ScaLAPACK, Benner implemented a library for model reduction of LTI systems, PLiCMR, in Fortran 77, availlable from http://spine.act.uji.es/~plicmr.html. The library contains a few driver routines for model reduction and several computational routines for the solution of related equations in control. 

A more detailed introduction to PLiCMR and numerical results showing the model reduction abilities of the implemented methods and their parallel performance can be found in [4].

3.2 Computational Routines
Balanced truncation, implemented as Matlab function btsr following Algorithm 1 are available from http://www.tu-chemnitz.de/-benner/software.php.
In the comparison we included several Matlab implementations of balanced truncation based on using the Bartels-Stewart or Hammarling’s method for computing the system Gramians:

– the SLICOT [3], available from www.win.tue.nl/niconet, implementation of balanced truncation, called via a mex-function from the Matlab function 
   bta [11];
– the Matlab Control Toolbox, [12], function balreal followed by modred; 
– the Matlab Robust Control Toolbox, [12], function balmr.
Table 2 lists all the driver routines in Matlab and table 3 list all the driver routines in PLiCMR:

We present, Figure 2, a comparison of balanced truncation based on Algorithm 1 and the SLICOT model reduction routines see [4].
The frequency response errors for the chosen examples are shown in Figure 2. For the implementations of balanced truncation, we only plotted the error curve for btsr as the graphs produced by the other implementations are not distinguishable with the exception of filter2D where the Robust Control Toolbox function yields a somewhat bigger error for high frequencies (still satisfying the error bound (8). Note that the frequency response error here is measured as the pointwise absolute error  
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Table 2 Computational routines in Matlab

	Purpose
	Routines

	Create reachable and observable realization

Balancing on infinite horizon only

Computation of gramians

To reachable and observable realization

Relevant factorization

Model truncation
	ctrbf, obsvf

bareal ,dbalreal

lyap, gram

minreal

chol, svd, eig

modred


Table 3 Computational routines in PLiCMR

	Purpose
	Routines

	Balanced-state truncation

HNA algorithm

Solve dual Lyapunov equations and compute HSV

Compute Tl , Tr from BFSR formula
Obtain reduce-order Tl , Tr
Spectral division by sign function
	pab09ax

pab09cx

pab09ah

pab09aw

pab09at

pmb05rd
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Figure 2 Frequency response error for Examples Rail1357, Filter2D

The error bound (8) for FILTER2D as computed by the Robust Control Toolbox function computes an error bound 10,000 times larger than the other routines and the actual error. This suggest that the smaller Hankel singular values computed by balmr are very incorrect.
5. Conclusion
The results show that balanced reduction and approximate balanced reduction are the best over the whole frequency range. Between these two, approximate balancing has the advantage that it computes an almost balanced reduced system iteratively, thus reducing the computational cost and storage requirements.
Spectral projection-based balanced method is a viable alternative to other balanced truncation method implemented in Matlab. Spectral projection methods, in particular those based on the matrix sign function, provide an easy-to-use and easy-to-implement framework for many model reduction techniques. The major costs associated with computing balanced and Hankel norm approximations are approximately 30n3 for computing the grammians and 25n3 for performing the balancing. 
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