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Abstract: In this paper, reduced order models that do not preserve transfer function equivalence will be obtained by matching a subset of the frequency and power moments. High and low frequency moments are being simultaneously matched. The high and low frequency and power moments are input-output properties that remain invariant under a similarity transformation. Therefore, the minimal transfer equivalent realization preserves these parameters.
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1. INTRODUCTION
In the context of control synthesis the determination of the model of the plant the reduced order model and the design of the control law are not independent problems. The recognition of this fact (see the references has led to a large research effort devoted to the integration of the disciplines of model identification and control design.
Modeling physical systems usually results in complex high-order dynamic models. It is often desirable to replace (approximate) these models by simpler models with reduced order. In this process it is important to design the reduced model so as to capture the important properties of the original high-order model.

Given a linear system the fastest and simplest way to produce a reduced order model is by truncation. For instance, a “natural” frequency domain model reduction procedure is to truncate poles and zeros. While deleting poles and zeros may be simple in SISO (Single-Input-Single-Output) systems, the many subtleties involving the definition of zeros imposes some extra difficulties for MIMO (Multiple-Input-Multiple-Output) systems. In this aspect, state-space methods seem to provide a more adequate framework. 

2. Model Reduction Problem

In state-space, truncation of the state vector is the “natural” choice for obtaining a reduced order model. The fundamental question is what states are “important” and should be kept in the reduced order model? In the context of model reduction, and given a state-space realization (A,B,C,D) of order n, one might wonder whether the given realization is minimal in the sense that there exists no other transfer equivalent realization (Ar,Br,Cr,Dr) of order nr with nr smaller than n. The answer to this question relies on the concepts of controllability and observability [3].

The state-space realization (A, B, C, D) is minimal if, and only if, it is controllable and observable. In this case, all transfer equivalent realizations are related by a similarity transformation. The order of a minimal realization is called the minimal degree. An immediate implication is that if a given realization is not minimal, one should be able to obtain a transfer equivalent realization with reduced order. A transfer function with minimal degree is obtained when (Ar, Br, Cr, Dr) is controllable and observable. A constructive procedure to compute such a minimal realization is based on the calculation of the controllable and observable subspaces [4].
Consider a linear, continuous-time –invariant (LTI) dynamical systems of order 
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or in a input-output model
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where 
[image: image4.wmf]n

n

A

´

Î

R

 is the state matrix,
[image: image5.wmf]m

n

B

´

Î

R

, 
[image: image6.wmf]m

p

C

´

Î

R

, and 
[image: image7.wmf]n

x

R

0

Î

is initial state of the system. Here, n is the order (or the state space dimension) of the system. The associate transfer function matrix (TFM) obtained from taking Laplace transforms in (1) and assuming 
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In model reduction we are faced with the problem of finding a reduced-order LTI system
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of order 
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3. Frequency Moments and Markov Parameters
Assume that the transfer function G(s) is strictly proper (D = 0) and analytic on the imaginary axis. Its Fourier power series expansion around 
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where the matrices
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are known as the low frequency moments of the transfer function G(s). The high frequency moments
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can be obtained by performing a Laurent expansion around s = 0. The high frequency moments 
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are also called Markov parameters. In single input systems, the Markov parameters can be given a physical interpretation by applying a unitary impulse at the input channel, such input produces the output
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Therefore, Markov parameters are associated with the ith derivative (time moment) of the impulse response at instant zero
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Notice that the frequency moments are input-output properties and should remain invariant under a similarity transformation.

Another quantity related to the input-output behavior of a linear system is the deterministic output correlation for impulsive inputs [1], [4]. Assume that the linear model (1–2) is asymptotically stable and strictly proper (D = 0). The output correlation for impulsive inputs is defined by 
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where 
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 is the controllability Grammian, i.e., the positive semidefinite solution to the Lyapunov equation [3] . The output covariance (11) can be Laplace transformed and expanded in Fourier series
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The matrices
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are known as the low frequency power moments. The high frequency moments
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are called covariance parameters. Power moments Ri( jω), i = 0,1, . . ., are also invariant under a similarity transformation.

4. Matching Frequency and Power Moments

In Sections 3 shown that the high and low frequency and power moments are input-output properties that remain invariant under a similarity transformation. Therefore, the minimal transfer equivalent realization which preserves the transfer functions, also preserves these parameters. In this section, reduced order models that do not preserve transfer function equivalence will be obtained by matching a subset of the frequency and power moments. Matching low frequency moments guarantee that the steady-state values will be preserved. For instance, the steady-state value to a step response is matched when the first low frequency moment is matched (see example). High and low frequency moments can be simultaneously matched as in the next algorithm:
Algorithm 1. Given the minimal and asymptotically stable-space realization (A, B, C, 0) of order n, follow the steps:

Step1. Calculate the singular value decomposition


[image: image28.wmf][

]

T

T

T

p

q

V

U

V

V

U

U

W

W

1

1

2

1

2

1

0

0

0

S

=

ú

ú

û

ù

ê

ê

ë

é

ú

û

ù

ê

ë

é

S

=

ú

û

ù

ê

ë

é

 
(15)
where 
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Step2. The matrices 
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produce the state-space realization (4) with 
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of order 
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These results can be extended to cope with moments evaluated at any set of finite frequencies. It is interesting to notice that the projections generate reduced order models that are not guaranteed to approximate the original system according to any system norm. On the other hand, it gives the engineer the opportunity to tune up the reduced order model to an specific application by arbitrarily selecting the appropriate sets of frequencies and the order of moments that are significant to the problem. Furthermore, as the examples in Section 4.2 illustrate, this does not prevent the model reduction error to have a small norm.

4.1. Control Problems and Component Cost Analysis
Several system and control problems are formulated with the objective of monitoring or controlling the system output covariance. The trace of the output covariance is referred in this section simply as the cost function. When the system disturbance inputs are modeled as impulses (white noise), these problems can be seen as equivalent to the minimization of the H2 norm of the transfer function from the disturbances to the outputs. This justifies the need to develop reduced order models that are able to preserve the H2 norm of the original system. The analysis of this model reduction problem is significantly simplified when the original system is transformed into the particular set of coordinates defined below.

The asymptotically stable and time-invariant state-space realization (A,B,C,0) of order n, is said to be in cost decoupled coordinates if the H2 norm of the transfer function G(s) (cost function) can be expressed in the form
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The scalars 
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 represent independent contributions of each state to the cost function. For a given linear system, there exists more than one realization whose coordinates qualify as cost decoupled coordinates. The following lemma provides two of these realizations.

Lemma 1.  An asymptotically stable and time-invariant realization (A, B, C, 0) is in cost decoupled coordinates if
a) the controllability Grammian 
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b) the matrix 
[image: image52.wmf]C

C

T

C

G

 is diagonal

is in cost decoupled coordinates.

Proof: The proof of this lemma consists in finding the independent factors 
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and the row vector ci denotes the ith row of matrix C. In b), matrix 
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The next lemma shows how to transform a given realization into a realization with cost decoupled coordinates that simultaneously satisfies items a) and b) of Lemma 1.
Lemma 2. Given the controllable and asymptotically stable realization (A,B,C,0) of order n, compute the symmetric and positive definite controllability Grammian 
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For model reduction, the previous lemma can be used to transform the original system into cost decoupled coordinates while truncation follows as in the following algorithm.

Algorithm2 Given the asymptotically stable-and controllable time-invariant (LTI) space-state  realization (A, B, C, 0) of order n, follow the steps:

Step1. Calculate the controlabillity Grammian 
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Step 2. Compute the singular value decomposition 
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where
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Step 3. The matrices
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produce order state realization (4) with (17) of order 
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It is important to stress that the use of the results of this section require the careful intervention of the engineer in the selection of the system output. In the most common situations, an engineering system will have less outputs than its order. Hence, the square matrix 
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will be, typically, rank deficient. For single-output systems, for example, it will have rank one and, regardless of the order of the original system, Algorithm 2 is able to produce a reduced order model of order one that perfectly matches the H2 norm of the original system 
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. This fact reinforces the need for a good selection of the system output, which should be able to capture the important aspects of the system behavior. An appropriate output for model reduction will often be constituted by the measured output of the original system augmented by some of its derivatives3 and other selected important signals which are internal to the model.

4.2. Illustrative Example 

The use of the model reduction procedures discussed so far will be illustrated by one example, where the dynamical controlled system is the third order stable SISO system

A=[-2 3 0;-1 -1 1;2 -3 -4];  B=[-2;2;4];  C=[1 0 0]; D=0

with transfer function:
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Table 1 
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Figure 1 Bode plot: magnitude and phase
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Figure 2 Reduce order models of order one

Notice that this transfer function has a zero on the right half of the complex plane, hence it is non-minimum phase. First, three different reduced order models of order one have been produced using the techniques introduced in this paper. The bode diagrams of the full order model and the reduced order models is depicted in Figures 1. The impulse response and the step response are given respectively in Figure 2 (a) and 2 (b). All the obtained models and the H2 and H∞ norms of the model error are given in Table 1. 
Some comments on the generation of the reduced order models and their performance follow.

Reduced order model #1 (component cost analysis) has been obtained using Algorithm 3 with nr = 1. Notice that CCT has rank one and, as expected, the reduced order model matches exactly the H2. Notice that this does not guarantee any property on the H2 norm of the model reduction error. Indeed, Table 1 reveals that this reduced order model is outperformed by all other models.

The reduced order model #2 has been obtained using Algorithm 2 with q = 1, p = 0. That is, only the first high-frequency moment (Markov parameter) of system (21) has been matched. As the system is non minimum phase, the obtained reduced order model has phase 180deg at 
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. In this example, the reduced model #1, designed by component cost analysis, is coincidently the same as model #2. Notice that in the design of the reduced order model #1 only the first high-frequency power moment (and not the first Markov parameter) is guaranteed to be matched and the two distinct methods should provide different models in more complex situations.

The reduced order model #3 has been obtained using Algorithm 2 with q = 0, p = 1. The first low frequency moment has been matched, which guarantees that the steady-state value of the step response.

5. Concluding Remarks
Matching the first q Markov parameters guarantee that the first q time moments of the impulse response are matched. The preservation of this feature is especially important in non-minimum phase systems. For instance, the response of a non-minimum phase system to a positive step might present at time t = 0 a negative derivative. This behavior can be captured by matching high frequency moments. 

Matching low frequency moments guarantee that the steady-state values will be preserved. For instance, the steady-state value to a step response is matched when the first low frequency moment is matched. High and low frequency moments can be simultaneously matched.
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