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Abstract: One of the most important problems that the analysis of the systems reliability faces is the minimization of their costs. The paper presents the modality in which the cost of a serial system can be minimized by using a Lagrange function.      
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When analyzing the systems reliability one might face two types of problems that need to be taken into consideration: the increase of the reliability or/and the reduction of the system cost.
Supposing that the f(x) function must be minimized, there are given the following conditions:
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Also, both the f(x) function and the g1(x),…, gm(x) restrictions are continuous and differentiable. The g1(x) restrictions are real argument functions within 
[image: image5.wmf]W

. 


Regarding relation (1), a local minimum is represented by any solution 
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for all the admissible solutions in the nearby of x.
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for all the x in the nearby of 
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represents a local free restrictions minimum of f(x). If 
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for all the solutions within f(x) domain, x represents a global free restrictions minimum of f(x).

The relation (1) can be solved using the Lagrange functions. That means transforming a problem characterized by restrictions into a free restrictions sequence of problems.

There are certain conditions that need to be accomplished for the general problem concerning non-linear programming to be solved using the Lagrange multiplier method. These conditions are described below:

a) restrictions are inequalities free;
b) there are no dictated conditions that the variables should be positive and discrete;

c) the restrictions number is smaller than the variables number;

d) the objective function and the restrictions are continuous and do have partial second class derivatives.


These necessary and sufficient conditions result from the Taylor series increment [1].

The Lagrange multipliers method can be generalized to solve problems which deal with both inequality restrictions and positive variables. For optimizing such problems the conditions written in [2] are necessary and sufficient as concerns the global optimum, in the case of a convex non-linear programming problem, within the domain of admissible solutions.      

 Reference [3] takes into consideration a generalized version of the Lagrange function [4] and builds a solving method for the non-linear programming problems which face inequality restrictions. This solving method applies to optimizing systems reliability.

Being given a serial system, if the objective is the minimization of its cost, then the system reliability
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must exceed a certain imposed level.


Therefore it can be written:
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where Rsmin = 0,99 and xj ≥ 1, j = 1, 2, 3, 4 (round numbers).

The restriction is: 
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where: xj ≥ 1, j = 1, 2, 3, 4 (round numbers).


The cj  and rj  are constants and they have the following values:

Table 1:  Constants values

	j
	1
	2
	3
	4

	cj
	1.2
	2.3
	3.4
	4.5

	rj
	0.8
	0.7
	0.75
	0.85



The Lagrange function can be written as follows:
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The stationery conditions lead to the following equations systems:
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with k = 1, 2, …, N
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The minimum reliability has a high level and therefore it is generally accepted the approximation:
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Regarding relation no. (7) only the first two terms of the produce are taken into consideration:
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Calculating relation no. (6) it results:
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and
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The optimum real solution can be obtained out of the relation:
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Taking into consideration the example presented in the paper and using relations no. (11) and (12) the following real optimum solution is obtained:

x = 4.29; 4.95; 4.12; 3.03
Rs(x) = 0.990035

g(x) = 44.23 for λ = 748.
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