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Abstract: The circular plate of small thickness is subjected to uniform distributed loads, q=q(r), perpendicular to the mean plane. The basis hypothesis in the classic theory of elastic bending of circular plates is a general feature. Under these circumstances they remain valid in the case of bending, until the plastic deformations field. In order to simplify the calculus, one studies a circular plate made of a rigid-plastic material. In this case, the plate will be not deformed until the limit load beard by the material is reached.
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1. GENERAL CALCULUS RELATIONS

One considers a circular plate, subjected to bending, in the plastic deformations field, by the uniform distributed load q=q(r), where r is the current radius and 2h is the plate thickness. In cylindrical coordinates, a random point is defined by r,(, z – being the axis normal to the mean plane, downwards directed.

The plate is made of a rigid-plastic material. Under these circumstances, the plate will be not deformed until the limit load beard by the material is reached and which leads to the transition in plastic field. One plots the real characteristic curve of the material and one adopts a corresponding scheme of the rigid-plastic material, Fig. 7.a.
The calculus hypotheses are those from the circular plate’s elastic bending theory:

1. The mean plane’s size remains unchanged even after it’s deformation;

2. The hypotheses of the straight normal is valid too: the straight lines perpendicular to the mean plane, before deformation remains perpendicular too after deformation;

3. The stresses components (r and (rz can be neglected relative to the radial stress (r and the circumference stress ((, respectively;

4. From the condition of symmetric loaded symmetric structure, the tangential stresses (r( and ((z are null.
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Figure 7. Plate element in equilibrium
Under these circumstances, in the plate a plane state of stress is achieved. For a certain plate element, defined by r=const., (=const., the bending moments which act upon it are (the relations are found in the general theory of elasticity):
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 (1)
The shear force Q which acts upon the analyzed element (defined by r=const.), is:
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  (2)
Mr and M( represent the bending moments for a length unit of plate, Nr being negligible for the case of bending (Fig. 7.b.). The plate element in Fig. 7.b. is in equilibrium. Under these circumstances the following relations are valid (t=1; the relations are written for the mean plane):
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Equation (4) is written for the ring-shaped plate of inner radius a and external radius b. For a full circular plate, a=0.
One denotes w=w(r) the plate deformation, measured perpendicular to the mean plane (the deflection upon axis Oz). The calculus hypotheses show that in plastic field one may uses the curvatures expressions, on radial direction kr and upon the circumference k(.:
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  (5)
On basis of the straight normal lines and of the symmetric structure and symmetric loaded structure, it is obvious that the displacements of a random particle, belonging to the plate thickness, are proportional to the coordinate z, measured from the mean plane to the considered particle, on the normal line.

Thus, the deformations components yield:
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2. CALCULUS RELATIONS IN PLASTIC FIELD, BASED ON THE VON MISES PLASTICITY CRITERION
The calculus is performed taking into account following reasons:

· the plate material is isotropic;

· the strain is denoted by (((( and is proportional to the mean value of the stress (((m, around the considered elementary volume:
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so that one may write:
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· the total increasing of the of the strains d( consists of elastic strains and plastic strains:
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· the elastic strains is owned to the corresponding stresses ( and it is expressed on basis of Hooke’s law:
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  (9)
where the component d( is calculated with help of the expression 
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 (10)
· the changes of the stresses deviator D( and of the deformations deviator Dde are proportional. In the case of the active load, the variation law of the shape in plastic deformation field is:
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 (11)
One generalizes equation (11) and one writes:
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where d( is a coefficient calculated on basis of the deformation modulus second type. 

Equation (12) represents a generalization of the experimental results, in case of complex loads. From experimental determination one demonstrates that the plastic deformations depend on the state of stress at a certain instant. Based on equation (12), one writes:
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At an instant one may neglect the elastic components; in this case the Saint-Venant(von Mises equations give the relation between the strain and the corresponding stresses:
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 (14)
Observing the yielding criterion:
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where:
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Based on notation (16), relations (14) become:
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One ascertains that the strain vector v is normal to the yielding curve. One calculates the ratio [4]:
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On basis of the above mentioned yielding criteria one writes:
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Equations (19) show that (r and (( are unchanged with respect to the considered normal, the bending being positive according to the convention of signs. 

Based on the above presented conditions and on the paper “Plasticity”, by Ilyushin, A.A., the moments can be calculated with the following equations:

     
[image: image36.wmf]2

r

r

h

M

×

s

=

;

[image: image37.wmf]2

h

M

×

s

=

j

j









 (20)
Analogous to the equation (15), one can write:
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where Mc is the limit bending moment:
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Equation (21) has been established by Ilyushin and represents an ellipse in Mr-M( coordinates.

One makes the following notation:
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Equations (14) become:
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With the notation (17) one obtains:

     
[image: image43.wmf]r

r

M

F

k

¶

¶

l

=

;

[image: image44.wmf]j

j

¶

¶

l

=

M

F

k

,







 (25)

equations where the changing frequency of the strains, denoted by (, was replaced by the curvatures kr, k( and (, which is a constant value, a scalar multiplier. The two ellipses obtained (in stress or moments), show that the yielding law is valid as a relation between generalized quantities (the moments Mr and M( and the deformed mean surface curvature kr and k().

One eliminates the moment M( in equations (3) and (21) and one gets:
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In each case, to the equation (26) one attaches the boundary conditions (conditions of connection and of continuity) and one finds the load or the limit loading.

One analyses equations (6) and (14), taking into account relations (24) and (25). One gets the differential equation:
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Equation (27) can be easy integrated and so one leads to the establishing of the deformed mean surface, by getting the deflection w, perpendicular to the mean plane. This is possible for all the cases where the bending moments Mr and M( are known.

3. BOUNDARY CONDITIONS

a) Free outline
· the condition is: Mr = 0

b) Supported outline

· the conditions are: Mr = 0; w = 0

c) Fixed outline

· conditions: w = 0; 
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From equation (21) yields:
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With the previous notation, from equation (21) one gets:
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