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Abstract: The paper presents the modality for maximization the reliability of a serial system that has “N” floors and is subject to “r” restrictions. In this respect are used the Lagrange multipliers and the Kuhn-Tucker conditions.      
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Sometimes it is necessary to maximize the reliability of a N floors serial system which is subject to r restrictions. In other words, the following reliability formula must be maximized:
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In the same time the conditions below must be fulfilled:
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Considering the notations:  
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relation (1) can be written as follows:
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According to relation (1) the objective function can be written:
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Relation (5) can take place because maximizing relation (5) also implies maximizing relation (1).


Substituting 
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it results:
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Substituting relation (6) into relation (2) it can be obtained:
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or:
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where:
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According to relation (2) the global optimum conditions are fulfilled because the objective function (5) is concave and the restrictions (8), having Qj variables, are convex.  


The stationery points of the Lagrange function must be determined. Therefore the Lagrange function can be written as follows:
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where: 
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The Kuhn-Tucker conditions can be written as follows:
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The (1) and (2) relations representing N+r equations can be solved using the Newton iterative method which has relation (14) as stopping criteria. 


By simultaneously solving the equations which derivate from the Kuhn-Tucker conditions together with relation (5) and (9) it can be determined the optimum solution of problem (1) being given the conditions (2).


Example: It is required the maximization of the reliability of a serial system:
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satisfying the following two linear restrictions:
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where xj ≥ 1, j = 1, 2, 3, 4 (round numbers).


The coefficients used within relations (15) and (16) are presented in the table below:

Table 1:  Constants values

	j
	1
	2
	3
	4

	rj
	0.8
	0.7
	0.75
	0.85

	cj
	1.2
	2.3
	3.4
	4.5

	wj
	5
	4
	8
	7



and C = 56 and W = 120.


This problem implies the maximization of the following function:
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The conditions below must be fulfilled:
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The Lagrange function associated to this problem is:
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The Kuhn-Tucker conditions become as it follows:
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The result are the following vectors: (r1, r2, r3, r4) = (0.999735; 0.999494; 0.999294; 0.999388) and (λ1, λ2) = (0.00019994; -0.00003730). 


Using relations (5) and (6) it will be obtained the real optimum allocation: x = (x1, x2, x3, x4) = (5.11; 6.30; 5.23; 3.90) and Rs(x) = 0.997914.


If further on it is used the exhaustive searching procedure around the real solution it will be obtained the round numbers optimum allocation: x = (x1, x2, x3, x4) = (5, 6, 5, 4). The associated reserve consumption will be g1(x) = 54.8 and g2(x) = 117. Finally, the system reliability is: Rs(x) = 0.997471 [3], [4], [6].
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