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Abstract: In this paper, analytical methods for the solution of the plane problem of the thermoelastic equilibrium (PPTE) by

means of complex functions are presented. Supposing that the thermal complex potential t (Z, z ) and the thermoelastic
displacement potential ¢(Z ,Z ) are determined, one can compute the displacements, the deformations and the stress state in

plates (plane sections) (ul.,gl.j,ﬂ.j ) Two problems are presented: the decoupled problem (Pl) when the states

(ul. € ’Ti/') are generated by the thermal field T on the boundary (i.e. without mechanical loadings) and the coupled

problem (P2) when the medium is subjected to thermal stress and mechanical loadings on the boundary. These studies made
for the canonical domains (half-plane or circle) lead to boundary value problems with special boundary conditions for
harmonic or biharmonic functions. These methods can also be applied to composite media. At the end of this paper,
applications to half-plane or circle are presented. For more general domains, conformal transforms can be applied.
Keywords: thermoelastic, thermal potential, potential of displacements, biharmonic problem, analytical solutions.

1. THE PLANE PROBLEM OF THE THERMOELASTIC EQUILIBRIUM (PPTE)
Consider a homogeneous isotropic elastic medium in a state of plane thermoelastic deformation which parallel to
the xlez plane, i.e. a state in which the displacement 1, the deformation (81.1.), the stress (Ty) and the
temperature 7 depend only on (x1 R xz) in the stationary case, on every cross section X, = const

u; =ui(x1,x2), u; =0, ¢, =8i/.(x1,x2),

T, = Ti/.(xl,xz), T=T(x,x,), i,/ =12, (xl,xz)e D, (0]

where D is a bounded domain in x,;0Ox, with the boundary denoted by C. The constitutive equations, the
equations of thermoelastic equilibrium and the compatibility conditions are (see [2], [3], [5], [6])

T. = £ (g,.—vg..)—EaT,T = £ &y,
=) T ey T T 1)
1 2(1+
Eii :E(Tii _VT[f)+aT’ 3P :%Tm @)
28 = Uy, tup,,, & =, 0, j =12,

Hu;, +(ﬂ' + ;u)uj’ij_aT’i =0, 81,0+, = 2601
phu, +(A+ p)f, ,—al, =0, 0=u,, =&, +&,, €)

where E,v, A, M are the elastic coefficients and ¢ is the thermoelastic constant of deformation.

403



Generally, for the equilibrium equations 7),,, =0 and the temperature 7T’ (x, y), the following loading

i
conditions on the boundary are associated

lenj‘ =i (v, ). T(x,y), =T"(x,). i, j = 12. )
Let U (x y) eC* (D) be the Airy stress function; thus
T, =U,,6,-U,;, i,j=12. 5)
By using le s =0, (2) and (3), we obtain the equation (see [3], [5], [6])
AAU + aEAT =0 < AAU +@ET) =0 (6)
which gives solutions to problem (P1):
w

AAU =0,U|_. =0, =0,AT=0,T|.=T"(x,y). 0
c
For a = 0, we have the plane problem of the elasticity (PPE) (i.e. without changing of heat).

Assuming, in the absence of the mass forces, that rotu =0, then there exists the thermoelastic potential of

displacements (D(x, y), so that

u=grad®,divi=0=A0,u, =0,,,i=12. t))

By substituting (8) in (4), we get (according to [4])
1
(1-v)— 0 (AD)=(1+v)aT,,, Ad =— aT(x, ) (Poisson) ©)
Ox, l-v
If we find from (7) the temperature distribution 7" (x, y) in D, the Poisson equation (9) has the solution
I 1+
@(x,y)z——v H (& n)nrdédn foral (x,y)e D, (10)
2r 1
2 2 o . z+z z—z
where 7 = (f - 77) + (77 - y) . Taking into account the complex representation X = ;e y= Y we
1

can construct by using (10) the potentials 7 (x, y)z t(Z,Z) and (D(x, y)z (p(z,f). Hence, equation (9)
becomes

0* 1+
= ou(z,z)

AD=4—=——qt (1n
0z0z 1-v
and its solution (10) becomes
o(z,2)= aﬁ“Dt(z, Z)dzdz, (12)
: 1+v N L 4 . "o
with 48 = —— . Due to the linearity, we will split problem (P1) into two applications (A”) (u 811 ;U )
-V
and (A”’) (ul,é‘;',]:j",U ) where
w,=ul+ul, &, =gl +e) T, =T, +T/ i, =t/+1] . U=U"+U". (13)

it i L
For application (A’ ), we find T(x,y): t(z,z) from (7) and using (12), we compute (p(z,f)z (D(x,y).
Now, we can find ul.', 8.'. by using ul' = @, and according to (2), we find

Ty =2u(®,,~®,,8,). i,j=12.

However, following the idea of Goodier-Lebedev [6], by introducing the potentials # (Z, z ) and qD(z,E ), one
can formally verify some relations of Kolosov-Mushelishvilii type (see [2], [3]) and, solving (A’), we have

u +uy = a,BJ.t(Z,E)dz, T, +T), =—4aput(z,z),

T, — T/ +2iT}, = 4afu j %t(z,f)dz. (14)
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For application (A”’), we will transform problem (PPTE) into a problem (PPE) for U" (see (15) below). By
considering with (7) the absence of the stress caused by loadings for problem (P1), loadings for U" due to

, , oUu ou’ ou”
U’ will appear. In view of U|C =0=U |c +U"|C ,— =0=—— +——| , we obtain the problem
on | on|. On|.
, ou” ou’
AAU"=0,U"| . =-U'|,=R.,—| =—— =R,, (15)
on |, on |

where R, R, are givenby U’ on C'.
2. THERMAL POTENTIAL
Consider a plane heat field which actin D

Q(x’ y) = Qxi + Qyj > (16)
where Q is a potential which satisfies

divQ=0,rotQ=0. a7
We have

O =gradT(x, y), (18)

where T (x, y) is the thermal potential (temperature) and 7' (x, y) = ¢ are isothermal curves. It follows from
(17) that

AT(x,y)=0in D, (19)
which is the heat equation. Let H (x, y) be the harmonic conjugate of T (x, y). The relation between 7' and
H is given by the Cauchy-Riemann relations. Thus, AH (x, y) =0 in D,and H (x, y) = k are thermal field

lines for which () are tangent vectors. Now, we construct the holomorphic function

W(z)=T(x,y)+iH(x,y), with T = RW(z). (20)
By using the complex heat potential W, we have (see [6])

ul +iu} = aﬂj W(z)dz = aﬂjt(z,z)dz inD. @1)
By using (15) with T, =T,/ +2u(®,,~®,, 5,) and 1| =0=4]| +£] . we obtwin the following
conditions for U"

fi,|C = —2u(®,ij n,—o,, ni]c, 22)
ie.

Il d " d I d ” d

t11c = g(U ’2): 2/’5((1)’2): It c- _g(U ’1): _2ﬂg(q)’l): L. 23)
Therefore, knowing (D(x, y) and using (22) and (23), we can find U",, and U",,; thus U" - and aai

nlc

can be found. Let

C:x=x(s), y=y(s), 0<s <1,

o ~(dx dy (dy dx ]
be the arc-length parameterization of the curve C. Then, | —,—— | and n| —,——— | are the unit tangent
ds ds ds ds

vector and the unit outer normal vector to the curve C, respectively. In this case of (PPE) we have
AAU" = 0in D and the boundary conditions (see [4])

ou” oD
U” — 2 :R —
o =24D(s) IQJLB;C e

= R,(x,y). @4)

C
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By solving the problem (15) with the boundary conditions (24) we find U" and then we can compute the
parameters for application (A™): T\} =U",,,, T, =U",,,, T\; ==2U",,, and &, u; can be computed
with the help of (2).

Remark. In the case of problem (P2) when the thermal boundary conditions 7' *(x, y) are coupled with the

given mechanical loadings { l.* (x, y), the argument is the same by adding to { i,lc in (23) the data { l.* (x, y), ie.

¢ i!lc =/ ;t+ tl.* (x, y). Consequently, the method is based on the calculus of the potentials t(z, z ), (0(2, z )

3. THE BOUNDARY VALUE PROBLEMS FOR THE CANONICAL DOMAINS HALF-
PLANE AND CIRCLE

3.1. The Dirichlet problem in a half-plane (DPH)

We seek for a holomorphic function f° (Z)z U (x, y)+i V(x, y) in the upper half-plane D" :y >0,
knowing that

AU(x,y)=0in D",

U(x,y)y=0 = ‘Rf(zlyzo = U*(x).

By Cisotti’s formula we have the solution of (DPH)

f(z)zirO L(t)a't+ik, zeD".

MY t—z
If U *(x) is a rational function, we form the complex function U *(Z) = Pp” U *(Z)-i- PPIU *(Z), where
P; U *(Z ), P;U *(Z ) are the principal parts of U *(Z) for the upper half-plane D" and for the lower half-
plane D™ : y <0, respectively. Then f™ (Z) = 2PPIU*(Z).

Problem (DPH) with rational data on portions of the boundary is

mf(zlyzo _ {g(x) on (a,b),

0 on (—o0,)\(a,b),

where g(x) is a rational function. The solution of this problem is

1(2)=2(z)6(z)- P (2) - P (),

where G(z)= 1022 ana P*(2) = P {g(2)G(z)}. P~(z)= P'{g(z)G ()}

a z—da

3.2. The fundamental biharmonic problem in a half-plane (FBPH)

Consider the boundary value problem [4]

AAU =0 in D",

oU oU
Ul =R (x), = =-"F =R,(x)
=R 5 == =r

where C : y =0 is the boundary of D™ . We seek the solution of (FBPH) under the form U (x, y) =RF (Z),

where F' (Z) = A(Z)+ yB(Z) and the functions A(Z), B(z) are holomorphic in D™ . The solution to (FBPH)
will be

1 = Rt)-R, (¢t 1~ R, (¢

aE)= L[ ROROy g gy i) L[ Ry, s
7 e t—z meeet—z

Problem (FBPH) with rational data on portions of the boundary can be discussed as in Subsection 3.1 (see [4]).
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3.3. The Dirichlet problem for a circle (DPC)
We seek for a holomorphic function f (Z) =U (x, y)+ i V(x, y) in the disk D' : |Z| < a, knowing that

AU(x,y)=0 in D',

Ulx,y), =U"(x,y)= U(%&ﬂ-ﬂ%(z—‘éﬁ

where C:|z| = a is the boundary of D". The solution of (DPC) is given by the Schwarz-Villat formula
f(z):ij mdgﬂk, zeD'.
2mde ¢(¢-2)
If U *(z) is a rational function, we form the complex function U : (Z) = P;U *(Z)+ Ppe U *(Z), where
P;U " (Z ), Ppg U’ (Z ) are the principal parts of U~ (Z ) for the interior of the circle D’ and for the exterior of
the circle D° :|Z| > a , respectively. Then f' (Z) = ZP;U*(Z).

Problem (DPC) with rational data on portions of the boundary is (see [1])

_ go(xay)on G,
OonC\C,,

where g, (x,y) is a rational function and C, = {Z =ae’ .0, <0< 9h+1} is a portion of C. The solution

E

of this problem is .
16)=2,(:)6() - P<z)—p(ﬁj |

1 1 1041
where G(Z):_Z(Hhﬂ _H”)+Elncfeiﬂh—_z’ gh(Z)ng(x,y)G(Z), P(Z):Pp{go(x’y)G(Z)}'

—Zz

3.4. The fundamental biharmonic problem for a circle (FBPC)

Consider the boundary value problem [1]

AAU =0 in D',

1 a’)1 a’
Ul =R (xy)= RI(E(ZJr?}Z_i(Z_?D’
2 2
c 2 z ) 2i z

on
where C: |Z| =a is the boundary of D' : |Z| <a. We seek the solution of (FBPC) under the form
U(x, y) = iRF(Z), where F(Z) = A(Z)+ (a2 — ZZ)B(Z) and the functions A(Z), B(Z) are holomorphic in
D' . The solution to (FBPC) will be

_ 1 RENCHE) oz oy, e R(NSH) ,.
Alz)=——, ¢ d¢ +iky. Bz) = 5 A()+ 5§, oo ik e D

4. APPLICATIONS

Application 1. Consider problem (P1) for the half-plane D :y >0 where the boundary C:y =0 is
subjected to thermal stress and there are no mechanical loadings. More precisely, we have the following
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boundary conditions
T, = const, if x €(—11),
T(x,y),,=1.".
’ 0, if x € (—0,00)\ (= 1,1).

According to Subsection 3.1 and (12), we have

W(z)=T(x,y)+iH(x,y)= 2in 2L
/1)

z+1

T(x,y)ziRW(z)zEarctgz—y t(z,Z):—Earctg Z_ z,
V4 ¥+t -1 Vs zZ —

go z Taﬂ{—zln(zz— = zzarctg—(z_z)},
2 zz—1

\®)

CD(x, y) = {(x2 +y° )arctg# — xarctg 2%y

x*+y -1 x*—y? -1

erln\/(x2 -y’ —1)2 +4x2y2}.

Then the biharmonic problem can be solved.

Application 2. Consider the thermoelastic problem (P1) in the interior D’ :|Z| <1 of the unit circle. The
boundary conditions for the harmonic function 7' (x, y) in D' are
T, = const, if O € (0,7[),
T(X’ y]c = .
0,if Be (72',272'),
where C = 0D’ = {Z =e?:0€ [0 272']} According to Subsection 3.3 we have

W(z)=T(x,y)+iH(x,y)= —T?— 7;’1 i

z—1

T(X,J’)ZmW(Z)Z—%—Larctg—zy ,t(z,E):—£+ T arctg i(z—2)

7 x +y -1 2 =z zz—1
o(z.2)= Taﬂ{—arctg e - Zl)—z—j+2i—zln(22—1)—251n(22—1)},
zz — /4 T
1 2xy AT -
(D(X,y):Toaﬂ{_{xarctg#—yln\/(x -y _1) +4x y :|
V4 x =y -1
b o 2]

Then the biharmonic problem can be solved.
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