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Abstract: The paper offers a general method to study the motion of a mass particle with respect to a non-inertial reference frame. By 

using an adequate tensor instrument, we obtain a simplified form of the initial value problem that models the non-inertial motion. 

The study of the motion in a non-inertial reference frame in a central positional force field is then reduced to the study of the classic 

motion in a central force field. The applications to this method are in solving Kepler’s problem in non-inertial reference frames, 

solving the relative orbital motion problem and deriving the explicit solution to a classic Theoretical Mechanics problem: The 

Foucault Pendulum.  

The advantage of using this method in the study of the motion in a non-inertial reference frames is that is significantly reduces the 
amount of computations and it offers, in some important particular cases, closed form analytical solutions. 
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1. INTRODUCTION 
 

The motion in a non-inertial reference frame has important applications, both in theoretical and applied scientific 

problems. The present approach offers a general method to study such types of motion, with successful applications in 

some relevant classical and modern problems: the Kepler problem in a rotating reference frame, the Foucault Pendulum 

problem, the relative orbital motion problem. 

The tensor instrument that simplifies the complex initial value problem that models the motion was introduced for the 

first time in 1995 by D. Condurache [1] and it was used to approach several problems of Classical and Celestial 

Mechanics. The tensor operator which is presented in this paper is introduced by the Darboux equation [2], written here 

in its tensorial form [3]. In most situations discussed here, this operator has a time-explicit formula and it allows 

determining explicit or closed form vectorial expressions for the relative law of motion and the relative velocity. 

The motion in a central positional force field with respect to a rotating frame is briefly discussed, and an algorithm for a 

potential approach is proposed. The study of such type of motion leads to the three applications which are presented in 

the paper: the Kepler problem in rotating reference frames, the Foucault Pendulum and the relative orbital motion in a 

gravitational force field. The equations of the relative motion of satellites are presented here in a vectorial coordinate-

free form. 

 

 

2. PROBLEM FORMULATION 
 

The motion of a particle with respect to a rotating reference frame is described by the initial value problem [4]: 

( ) ( ) ( ) ( )0 0 0 0

1
2 , , , ,,Q t t

m
t+ × + × × + × + = = =r ω r ω ω r ω r a F r r r r r v&& & & & &      (1) 

where 
0 0t ≥  is the initial moment of time, ( ) 0,t t t= ≥ω ω  represents the instantaneous angular velocity of the non-

inertial reference frame, ( ) 0,Q Q t t t= ≥a a  represents the acceleration of the origin of the noninertial reference frame 

with respect to an inertial reference frame and ( ), , tF r r&  is the force that acts on the particle that has the mass m.. 

In the situation when the force is central and it depends only on the position vector magnitude, i.e. ( )r=F F , then the 

initial value problem (1) may be written as: 

( ) ( ) ( ) ( )0 0 0 02 , , ,Qf r t t+ × + × × + × + + = = =r ω r ω ω r ω r r a 0 r r r v&& & & &      (2) 
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where f is a continuous real valued map, 
1

f
m

= − F , depending only on the magnitude of the position vector, 

( )f f r= . The vector valued function ω  is supposed to be known. The problem is to determine the law of motion 

( )t=r r , which is the solution to the initial value problem (1) or, in the particular case, (2). 

 

 

3. A TENSOR INSTRUMENT 
 

In this Section we present the tensor instrument that allows reducing the problem of the motion in a non-inertial 

reference frame to the problem of the motion in an inertial reference frame. 

The key element of the method is represented by the Darboux equation, which has as solution the proper orthogonal 

tensor valued map that models the rotation with a known specific instantaneous angular velocity [5,6]. 

Let ( ) 0,t t t= ≥ω ω  be a continuous vector valued map and let ω%  be the associated skew-symmetric tensor valued 

function. Tensor ω%  is also known as the “cross-product tensor”, since: 

( ) 3, ,= × ∀ ∈ωx ω x x V%           (3) 

where 3V  denotes the three-dimensional linear space of free vectors. This property might also be extended to the set of 

vector functions of real variable 3V
� . The matrix correspondence between tensor ω%  and vector ω , in a right handed 

orthonormate base, is given by [7]: 

1 3 2

2 3 1

3 2 1

0

0

0

ω ω ω
ω ω ω
ω ω ω

−   
   = ⇔ = −   
   −   

ω ω%          (4) 

One particular form of the Darboux equation is the initial value problem: 

( )0 3, ,t= =Q Qω Q I%            (5) 

where 3I  represents the second order unit tensor. 

The solution to the initial value problem (5) will be denoted by 
ωF . This tensor valued function might be treated as an 

operator on the set of vector valued functions of real variable, 
3 3: →ωF V V
� � .  

The properties of this tensor valued function of real variable are listed below; their proof may be found in Ref. [6] 

1. ( ) 3, , V⋅ = ⋅ ∀ ∈ω ωF a F b a b a b
�  (it preserves the dot product). 

2. ( ) 3, V= ∀ ∈ωF a a a �  (it is an isometry). 

3. ( ) 3, , V× = × ∀ ∈ω ωF a F b a b a b
�  (it preserves the cross product). 

4. ( ) ( ) 3,
d

V
dt

= + × ∀ ∈ω ωF r F r ω r r �
& . 

5. ( ) ( )
2

32
2 ,

d
V

dt
= + × + × × + × ∀ ∈  ω ωF r F r ω r ω ω r ω r r

�
&& & & . 

6. ( )
0

0 0 0 3
, ,

t t

d
V

dt =

= + × ∀ ∈
ω
F r v ω r r

�  where ( ) ( )0 0 0 0,t t= =v r ω ω&  

The tensor function of real variable 
ωF  is invertible, since it is proper orthogonal, and its inverse is its transpose. We 

denote: 
T

− =ω ωR F             (6) 

The tensor function −ωR  models the rotation with instantaneous angular velocity −ω . It is the solution to an initial 
value problem similar to Eq. (5): 

( )3 0 3, t− − −+ = =ω ω ωR ωR 0 R I& %           (7) 

In the situation when the instantaneous angular velocity −ω  has a fixed direction, i.e.  

( ), tω ω ω= =ω u            (8) 

with u a constant unit vector, then we may explicitly write the expression of the tensor valued function −ωR  with the 

help of a Rodrigues-like formula (see Ref. [7]): 

( )( ) ( )( )
0 0

2

3 sin 1 cos
t t

t t
s ds s dsω ω−

 = − + −  ∫ ∫ωR I u u% %        (9) 

The authors of the present paper have proved that the Darboux equation (5) has closed form solutions in a much larger 

number of cases. For instance, when the angular velocity −ω  has uniform precession, i.e. there exists a proper 
orthogonal tensor valued function of real variable 

1R  such as: 
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( ) ( )
1 0

2

1 3 1 0 1 1 0 1sin 1 cost t t tω ω

− =
  = + − + − −        

ω R ω

R I u u% %
      (10) 

where 
0ω  is a constant vector, 1u  is a constant unit vector and 1ω  is a real number, then the solution to the initial 

value problem (9), which offers the rotation tensor function associated to the instantaneous angular velocity −ω , is 
given by (also see Ref. [3]): 

( ) ( ){ }
( )( ) ( ) ( )( ) ( ){ }

2

3 1 0 1 1 0 1

2

3 0 1 0 0 1 0 1 0 0 1

sin 1 cos

sin 1 cos

t t t t

t t t t

ω ω

ω ω ω ω

−
 = + − + − − ×       

 + − − − + − − − −       

ωR I u u

I u u u u

% %

% % % %

  (11) 

 

 

4. A GENERAL APPROACH TO THE MOTION IN A NON-INERTIAL FRAME 
 

By using the tensor instrument introduced in the previous Section, we will offer a general method to deal with the initial 

value problem (1). First, let us apply operator 
ωF  to the initial value problem (1). By using the properties mentioned in 

the previous Section, we might state that Eq. (1) is equivalent with: 

( ) ( ) ( ) ( )
2

0 0 0 0 0 02

1
, , , ,,Q

d
t t

mdt
t+ = = = + ×  ω ω ωF r F a F F r r r r r v ω r& &     (12) 

The form of Eq. (12) suggests the introduction of a change of variable in Eq. (1): 

( ) ( )( ) 0: ,t t t t= ≥ωρ F r .         (13) 

We now may state the main result of this paper. 

 

Theorem 1 The solution to the initial value problem (1) is obtained by applying the tensor operator −ωR  to the 

solution to the initial value problem: 

( ) ( ) ( )0 0 0 0 0 0

1
' , , , ,,Q t t

m
t+ = = = + ×ωρ F a F ρ ρ ρ r ρ v ω r&& & &       (14) 

where ( )' , ,tF ρ ρ&  is linked to ( ), , tF r r&  by: 

( ) [ ]{ }' , , ,, tt − − −= − ×ω ω ω ωF ρ ρ F F R ρ R ρ ω R ρ& &        (15) 

 

Proof. The form of the term in the left of the differential equation (14) is deduced from Eqs. (12) and (13). The initial 

conditions of the initial value problem (14) are deduced from the property (4.) of the tensor operator ωF . We have only 

to justify the existence of the term − −− ×ω ωR ρ ω R ρ&  in the expression (15) of the force. 

From Eq. (13) and from the property (4) of the tensor operator ωF  it follows that: 

( )= + ×ωρ F r ω r& &           (16) 

By using Eqs. (6) and (13), we deduce: 

− −= − ×ω ωr R ρ ω R ρ& & ;          (17) 

this finalizes the proof. �  

 

Remark 1 Theorem 1 offers a method to study the motion of a mass particle with respect to a non-inertial reference 

frame. the original initial value problem that models the motion is transform, by an adequate change of variable, into a 

simpler model. This method is useful to  be use din multiple problems related to the non-inertial motion: Kepler’s 

problem in rotating reference frames, the Foucault Pendulum, relative orbital motion.. 

 

 

5. MOTION IN A CENTRAL FORCE FIELD WITH RESPECT TO A ROTATING FRAME 
 

This type of motion refers to multiple Theoretical Mechanics and Astrodynamics problems. The initial value problem is 

derived from Eq. (2) by eliminating the transport acceleration Qa : 

( ) ( ) ( ) ( )0 0 0 02 , , ,f r t t+ × + × × + × + = = =r ω r ω ω r ω r r 0 r r r v&& & & &      (18) 

By applying Theorem 1, it follows that the solution to the initial value problem (18) is obtained by applying the tensor 

operator −ωR  to the solution to the initial value problem [5,6]: 

( ) ( ) ( )0 0 0 0 0 0, , ,f t tρ+ = = = + ×ρ ρ 0 ρ r ρ v ω r&& &        (19) 

This statement leads immediately to a very interesting geometrical interpretation of the motion in rotating reference 

frame in the presence of a central force field: the motion takes place in a plane, as if it was described by the initial value 

problem (19). This plane is formed at the initial moment of time 0t  and it rotates with angular velocity −ω . 
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One of the classic ways of dealing with the initial value problem (19) is by using polar coordinates in the plane 

described above. If one chooses the polar axis such as its orientation coincides with that of 
0r  and he chooses the 

increasing sense of the polar angle θ  having the orientation given by the initial angular momentum of the planar 
motion,  

( )0 0 0 0 0 ,= × + ×h r v ω r          (20) 

then the algorithm for solving the initial value problem (18) has the following steps: 

1. Consider the system of scalar differential equations for ρ  and θ : 

( )2

2

0

0f r

h

ρ ρθ

ρ θ

 − + =


=

&&&

&
, with the initial conditions ( ) ( ) ( )0 0

0 0 0 0

0

, , 0t r t t
r

ρ ρ θ
⋅

= = =
r v

&    (21) 

2. Solve the initial value problem for the magnitude of the position vector r: 

( ) ( ) ( )
2

0 0 0

0 0 03

0

0, ,
h

f r t r t
r

ρ ρ ρ
ρ

⋅
− + = = =

r v
&& & ,       (22) 

where 
0h  is the magnitude of the vector defined in Eq. (20).  

3. Obtain the expression of the real function θ  from the second equation in (21). 
4. Express vector ρ , the solution to the initial value problem (19). 

5. Determine vector r, the solution to the initial value problem (18), by using: 

−= ωr R ρ            (23) 

Note that the above algorithm may be considered just a suggestion to approach the initial value problem (19). If vector 

ρ  is obtained by whatever means, only the last two steps of the above algorithm must be executed, which in fact 

transfer the problem from the inertial frame back to the rotating frame. 

The next subsections present some important applications to this method. 

 

5.1. The Kepler problem in rotating reference frames 
The initial value problem that models the motion has the form: 

( ) ( ) ( )0 0 0 03
2 , , ,t t

r

µ
+ × + × × + × + = = =r ω r ω ω r ω r r 0 r r r v&& & & &      (24) 

where µ  is the gravitational parameter of the attraction center. Following Theorem 1, the solution to the initial value 

problem (24) is obtained by applying the tensor operator −ωR  to the solution to the initial value problem: 

( ) ( )0 0 0 0 0 03
, , ,t t

µ
ρ

+ = = = + ×ρ ρ 0 ρ r ρ v ω r&& &        (25) 

Note that Eq. (25) models the Keplerian motion with respect to an inertial frame, and its solution is considered to be 

known. A comprehensive approach to the Kepler problem in rotating reference frames may be found in [5].  

 

5.2. The Foucault Pendulum 
The initial value problem that models the Foucault Pendulum motion is: 

( ) ( ) ( )2

* 0 0 0 02 , , ,t tω+ × + × × + × + = = =r ω r ω ω r ω r r 0 r r r v&& & & &      (26) 

where *ω  is the pulsation of the pendulum (it depends on its length and the gravitational acceleration at the experiment 

place). Here vector ω  is constant and it models the Earth rotation around its pole axis. Following Theorem 1, the 

solution to the initial value problem (26) is obtained by applying the tensor operator −ωR  to the solution to the initial 

value problem: 

( ) ( )2

* 0 0 0 0 0, , ,t tω+ = = = + ×ρ ρ 0 ρ r ρ v ω r&& &        (27) 

The amazing quality of this method is that in the particular case of the Foucault Pendulum motion (which in most 

Theoretical Mechanics textbooks is considered to lack a closed form solution) offers a simple way to solve it by 

reducing it to the elementary problem of a harmonic oscillator described by the initial value problem (27). The solution 

to the initial value problem (27) is: 

( ) ( ) ( )0 0

0 * 0 * 0

*

cos sin ,t t t t tω ω
ω
+ ×

= − + −      
v ω r

ρ r       (28) 

so the solution to the initial value problem (26) is: 

( )t =r ( ) ( ) ( ) 0 0

* 0 0 * 0

*

cos sint t t tω ω
ω− −

 + ×
− + −        

 
ω ω

v ω r
R r R     (29) 

By taking into account that the angular velocity ω  of the rotating frame is constant, then the tensor operator −ωR  is 

expressed like: 

( ) ( ){ } 2

3 0 0
sin 1 cost t t tω ω− = − − + − −      ω

R I u u% %       (30) 
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where u is the unit vector associated to vector ω . The explicit solution to the Foucault Pendulum motion described by 

the initial value problem (26) may be written as: 

( ) ( ) ( ) ( ){ }{ }
( ) ( ) ( ){ }

2

* 0 0 0 0 0 0

20 0 0 0 0 0

* 0 0 0

* * *

cos sin 1 cos

sin sin 1 cos

t t t t t t t

t t t t t t

ω ω ω

ω ω ω
ω ω ω

= − − − + − − +          

 + × + × + ×
+ − − − + − −           

 

r r ur u r

v ω r v ω r v ω r
u u

% %

% %

 (31) 

A comprehensive approach of the Foucault pendulum – like motion may be found in […]. 

 

5.3. The relative motion of satellites 
Consider two spacecrafts orbiting around the same attraction center under the influence of an unperturbed gravitational 

field. One of them will be referred as the Chief, and the other one the Deputy. The reference frame where the motion of 

the Deputy satellite is studied is named LVLH (Local-Vertical-Local-Horizontal) and its axes are oriented as it follows: 

the Ox axis has the same orientation as the inertial position vector of the Chief satellite, the Oz axis has the same 

direction and sense as the angular momentum of the inertial orbit of the Chief satellite; the Oy axis completes a right 

handed orthogonal frame. This frame has the origin in the Chief satellite center of mass. Denote by 
C−r  the position 

vector of the attraction center with respect to the LVLH frame and denote by ω  the angular velocity of the LVLH 

frame. The initial value problem that models the motion of the Deputy satellite with respect to LVLH is: 

( ) ( ) ( ) ( )0 03 3
2 , ,C C

CC

t t
r

µ µ
+ × + × × + × + + − = = ∆ = ∆

+
r ω r ω ω r ω r r r r 0 r r r v

r r
&& & & &    (32) 

The problem is of great interest for this approach, since it is the same type as Eq. (1). The force in the right hand term 

depends only of time and the position vector. 

A direct approach by using the tensor instrument introduced in Section 4 does not lead to satisfactory results, but there 

exist a very ingenuous way to solve the problem. The initial value problem (32) may be seen as the difference between 

two initial value problems of the same type, having different initial conditions. One is: 

( ) ( ) ( ) 0 0

0 0 0 03 2

0

2 , ,t t
r r

µ ⋅
+ × + × × + × + = = + ∆ = + ∆

v r
r ω r ω ω r ω r r 0 r r r r r v&& & & &    (33) 

and the other one is: 

( ) ( ) ( ) 0 0

0 0 0 03 2

0

2 , ,t t
r r

µ ⋅
+ × + × × + × + = = =

v r
r ω r ω ω r ω r r 0 r r r r&& & & &     (34) 

where vector 
0−r represents the position vector of the attraction center with respect to LVLH at the initial moment of 

time 
0t  and 0v  represents the initial velocity of the Chief satellite with respect to an Earth centered inertial frame. The 

solution to Eq. (34) is 
Cr , and it models a rectilinear motion. From a geometrical point of view, it models the motion of 

the Chief satellite with respect to a LVLH frame originated in the attraction center. 

The inertial orbit of the Chief satellite is associated to a Keplerian  motion, so vector 
Cr  might be expressed as: 

0

01 cos

C

C

C C

p

e f r
=

+

r
r ,          (35) 

where 
Cp  is the semilatus rectum, Ce  is the eccentricity and ( )C Cf f t=  is the true anomaly, all associated to the 

inertial orbit of the Chief satellite. Also denote by 
Ch  the specific angular momentum of the inertial orbit of the Chief 

satellite. The angular velocity of the LVLH reference frame may be expressed as: 

( )2
2
1 cosC

C C

C

e f
p

= +
h

ω          (35) 

By applying the tensor instrument presented before in this paper, we may state that the solution to the initial value 

problem (32) is: 

0

*

01 cos

C

C C

p

e f r
−= −

+ω

r
r R r ,         (36) 

where 
*r  is the solution to the initial value problem: 

( ) ( )0 0 0 0 03
, , ,t t

r

µ
+ = = + ∆ = + ∆ + ×∆r r 0 r r r r v v ω r&& &       (37) 

The result expressed in Eq. (36) allows us to determine the relative velocity of the Deputy satellite with respect to 

LVLH. It is: 

0

* *

0

sinC C C

C

e h f

p r
− −= − −
ω ω

r
v R r ωR r& %         (38) 

A comprehensive analysis of the relative orbital motion by using this procedure may be found in [8,9,10]. The solution 

for the relative orbital motion presented here is a generalization of several particular solutions for the situations when 

the reference trajectory is circular [11] and when the reference trajectory is elliptic [12-14] 
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6. CONCLUSIONS 
 

The paper presents a general method for the study of the motion in a non-inertial reference frame. This method is based 

on proper orthogonal and skew-symmetric tensor valued functions, which are introduced by the Darboux equation. The 

case of the motion in a central force field with respect to a rotating reference frame is studied and an algorithm for 

determining the law of motion in this situation is proposed. Three applications are presented: the Kepler problem in 

rotating reference frames, the Foucault Pendulum and the relative motion of satellites. The solution offered for the 

relative orbital motion is a generalization of the solutions offered by Clohessy and Wiltshire for the circular reference 

trajectory and by Lawden and Tschauner – Hempel for the elliptic reference trajectory.  
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