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Abstract: The present paper presents the theoretical method for determination of the deformations and the loss of stability of the disk 
stressed by an axial – symmetric thermal field, variable according to disk radius and thickness, superposed with a field of membrane 

tensions given by the rotational motion. The experimental results confirm the theoretical hypothesis. This paper also presents the 

tension and deformation state of the disks being in a non – stationary field of temperature. The study is done until the plastic 

deformations occur. 
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1. INTRODUCTION. PROBLEM FORMULATION 
 

From the equilibrium element of disk and using the hypothesis that the load is zero, between tensions exists the 

following relation: 
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where σz=0. It is assumed that the disk stress given by the thermal field is realized inside of the elastic domain. There 

are to be used the known relations between tensions σ, deformations ε and temperature T as well as the relations 

between deformations u and specific deformations ε. We know that: 
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The next calculation relation is obtained: 
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with the solution of 
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Finally there are obtained the calculation relations for tensions: 
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The integration constants A and B will be determined with the mean of limit conditions, respectively with the mean of 

continuity conditions at the limits between the elastic domain and plastic domain. 

In the plastic domain there should be satisfied the plasticity criteria as well. 
In the case of ring – shaped disks the unified fields criterion is adequate. Essentially this criterion is based on the 

hypothesis which stipulates that the plastic yielding is checked by the action and combination of two shear stresses. 

The mathematical expression of the unified fields criterion is given by the following equations: 
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where b is a weight coefficient which shows the influence of the shear stresses τ12 or τ23 on the material and c is a 
material coefficient. 

The equations are valid in the following conditions: 

→ σ1 ≥ σ2 ≥ σ3 are main stresses; 

→ (σ1, σ2); (σ2, σ3) and (σ3, σ1) ar shear planes; 
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represents the shear stresses. 

With this explanation, Eqs. (4) become: 
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where σr is the tensile rupture limit of the material. 

Eqs. (5) have a general feature. One mention that: 
- for b = 0 one come to the TRESCA criterion; 

- for b = 0.5 one come to the MISES criterion; 
- for b = 1 one come to the unified fields criterion. 

In hypothesis of Huber, Mises, Hencky plasticity criteria, there should be fulfilled the condition expressed 

through relation: 

crprppp σσσσσ ϕϕ =+− 22            (6) 

where σc – flowing limit of the material at the uniaxial test of lengthening. From the above: 
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On the inner edge of the ring-shaped disk, from where actually the plasticity process starts, in the case they will be 

treated, σrp(a)=0. In front of the square root, the minus sign will be chosen at heating because of the negative tangential 

tension and at cooling there will be chosen the positive sign. Utilizing index1 for heating and index 2 for cooling it is 

obtained: 
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This equation may be solved, in the case of a variable flowing limit σc(r), by the mean of Runge-Kutta method, and the 

obtaining tensions will be approximated through parabola. For the mean flowing limit, constant:σc=σm, equation (8) may 
be integrated and therefore results: 
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σϕp1 value results from plasticity criteria: 
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In the same way, for he root case, the radial and tangential normal tensions will have their values given by the next relations: 
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In several cases is advantage the utilization of Tresca’s plastic condition. Usually deviations that result against 

the obtained results using the Mises’s condition are insignificantly. The main advantage of Tresca’s plastic 
criteria consists of the fact hat it offers relations much simplified and thus mathematical operations may be 

used. 
In this case the plasticity criteria may be wrote as follow: 
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flowing appears when one of the three plasticity forces disappears. In the studied cases, σϕp and σrp have the same sign 

and thus because σzp=0, plasticity criteria takes the following form: 
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The negative sign is valid for heating and the positive sign is valid for cooling the ring-shaped disk. Therefore: 
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Taking in consideration the limit conditions σrp(a)=0, after the integration operation there will be obtained: 
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Up to now, there have been determined the relations regarding to the elastic domain and plastic one. Next, the coupling 

of the two domains take place, through some binding relations. It may be assumed that the plastic domain is limited by 

the inner radius of the ring-shaped disk “a” and a radius of an elastic-plastic limit R1. Therefore:  

a ≤ r ≤ R1 

The above relation is valid at heating. In the case of cooling there will be a similar relation, but having another radius 

limit: 

a ≤ r ≤ R2 
Because the temperature may be lowered only to the value of ambient temperature; always:   

R2 < R1 

The integration constants A and B as well as the limit radius R result from the following reason: radial tension disappears 

at the outer radius level: 
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From equilibrium reasons, radial tensions from the plastic domain and elastic domain should have the same values for the 

limit radius between domains: 
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The plasticity criteria is satisfied in both domains for limit radius R. Therefore: 
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Next, it is assumed that before heating there were no residual tensions in the plate. Therefore σr=0 and σϕ=0. The 
hypothesis that there existed residual tensions is also used. For heating the value of final stationary temperature T is 

introduced. Through an accordingly mathematical development the tensions expressions result: 
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For numerical development there will be utilized for T1 a thermal stationary field using the approximated relations 15 

(from the paper “RING - SHAPED DISKS IN NON – STATIONARY THERMAL FIELD”). 

Determination of residual tension state is done in the same way but taking in consideration that before beginning the 

process of cooling there are the following tensions σr1 and σϕ1. Knowing these values is only important for elastic domain. 
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Tensions from plastic domain σrp2 and σϕp2 may be calculated, independently of thermal tensions, for constant 

flowing limit at ambient temperature T2=0. 
In the case of first ratio, the following approximate relation is obtained: 
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Representations from Fig. 5-6 (from the paper “RING - SHAPED DISKS IN NON – STATIONARY THERMAL 
FIELD”), had been done based on the following relations: 
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where T0=400 and 600 C and a/b=1/3. If calculations are made for a/b=1/10 ratio and temperatures T
1
0 equals 

with 400 and 600 C, the following relations are obtained: 
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The above relations are particularization of relations (15) (from the paper “RING - SHAPED DISKS IN NON – 
STATIONARY THERMAL FIELD”). We specify that the above relation is an approximated relation of thermal field; 

in this way a simplification of numerical calculation is obtained, in the way that the tensions state can be determined. It 

is emphasize that the determined thermal fields using this method differs very little of those considered to be exact 

(thermal accepted without any reserves). 

 

 

2. PROBLEM SOLUTION. CONCLUSIONS.   

 

 

 

 

 

Figure 1 

In Fig.1. are presented the residual tensions values for the case of b=1 m, T0=600
°
C and ratios of a/b=1/3 and a/b=1/10. 

 

 

 

 

 

Displacement’s w variation according to the 
temperatures’ changes on the radius 

Rotation’s variation according to the temperature’s 
changes on the radius 

Figure 2 

In Fig. 2 are shown some diagrams, which show the deformation state (rotations and movement) and tension 
state for thin  rotating disks in a thermal axial-symmetric state. 
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Fig 3 
In Fig. 3 is shown the thermal and residual tensions variation for a ring-shaped plate with b=1 m, a/b=1/3 and 

T0=400
°
C. With continuos line were presented the calculated variations using Tresca’s criteria, and with dashed line 

were presented the calculated variations using Mises’s criteria. There are no differences for σr tensions. 

Conclusions are very important and very useful in practice. If curves from Fig.8.b. (from the paper “RING - 
SHAPED DISKS IN NON – STATIONARY THERMAL FIELD”)  are compared with those from Fig. 2. and 

3. there should be seen great similitude. 
This may be explained by the correct way in which the temperature effect for planar plates had been seen and 

approached. 

In conclusion we may say that the elastic stability problems are necessary, their study being as necessary as the static 

one. In this way it is shown which are the “reserves” of a structure, finishing with a design based on new considerations. 

The study of behavior and stability for thin rotating disks in thermal axial-symmetric state, done in the hypothesis of 

bending stresses as well as membrane stresses, are decoupled (linear theory-first rank calculation), as well as in the 

hypothesis inter-independence study between this (non-linear behavior-second rank calculation) are necessary. If the 

disk’s thickness is big enough and disks are placed in a non-stationary thermal field, then is taking account of apparition 

of local plastic deformation, which lead to the apparition of residual tensions (is a natural consequence of dynamic 

character of thermal processes). 

The Unified Fields Criterion can also be named “the uniform yielding criterion” and it is suitable for thin disks. 

The previous mentioned criterion contains a “family” of cases, which are obtained by variation of parameter b 
between the values 0 and 1. 
For the specific cases when b = 0; b = 0.5 and b = 1, the unified fields criterion allows the checking and 
analysis with maximum efficiency of all structures which are subjected to the TRESCA and MISES criterion. 

This criterion offers the advantage of allowing the analysing of complex situations, numerical applications 
which can be solved with help of “linear programming methods”. 
The disk cannot be perfectly planar; it always has small geometrical flaws. In this situation, the field of membrane 

tensions produces displacement w perpendicular to the median surface of the disk, even if the field level is bellow the 

stability loss value. This dependence is not linear. 

According to the nature and size of inhomogenies, loss of stability may take place by “axial-symmetrical modes”(with 

nodal circles) or “axial unsymmetrical modes” (with nodal diameters). 
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