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Abstract:  The paper presents the contributions of the authors regarding the extension of boundary layer theory for a plane plate to a 

quasi-cylindrical surface. Then the new model is applied to a ship’s hull in order to determine the friction drag. 
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1. PRELIMINARY CONSIDERATIONS 
 

Be T the draft ship full loaded. By cutting-off the hull with "m" equally spaced horizontal planes “Πj”, with the levels, 

mj
m

T
jz j K,2,1, ==  we obtain the volumes  jV in Figure 1:  

 
Figure 1 

By cutting-off  the volumes jV  with horizontal planes taken to the levels 
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, we obtain the water lines in Figure 2. 
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If the ratio 
m

T
 is sufficiently small,then the  bottom of the segments jV  are quasi-cylindrical, and the fluid flow around 

them is almost flat. Outlines the current line of jL  we choose the1j,2j,...,(n-1)j, nj. In the proximity of the arc of the 

curve ( ) jj kk −−1  the velocity of current potential is equal to the weighted average velocity of the fluid ( ) jk 1− , 

and jk , calculated by a procedure of Kármán type. The arch of the curve ( ) jj kk −−1 is then approximated through 

the string ( ) jj kk −−1 . 

If ( ) jk 1−ν  and kjν  are the velocities in points ( ) jk 1−  and jk , and 1, kjp  – is their weight, then the average weighted 

mead of fluid will be: 
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where ( ) jk 1−

−

ν  and kj

−

ν  is considered to be included in water line plane jL . 

As the weight kjp , it is determined from the condition that pkj

−

ν to have a direction and purpose-oriented segment 

( ) jj kk −−1   (see Figure 3). 

 
Figure 3 

The above condition is equal to : 

 
( ) ( )tan tankj kjϕ θ=

 (2) 
yields: 
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kjm  is noted as slope the segment defined by the points ( ) jk 1−  and jk  (string). 

From the relation (1) we deduce that : 
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Thus, relation (1) becomes an equation with the independent variable „ kjp ”: 
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the solution 
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by having the weight kjp ,the relationship (1) is used to calculate the velocity pkj

−

ν and its module: 
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_______________________ 

Remarks: 

 

A numerical calculation carried out in accordance with the relationship (6) can lead to the following critical situations: 
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(c)  1kjp = −   (denominator=0 in the formulae (7)) 

In the situation (a) the weight kjp  becomes infinite, and the relation (7) equals: 
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In situation (b) the relationship (6) presents an indetermination, type
0

0

 
 
 

, which amounts by applying the rule of 

l’Hôspital in relation to the variable kjm : 

 

( )1x k j
kj

xkj

v
p

v

−
= −

 (9) 

If the above value is different from "-1", the relationship (7) obviously leads to a finite amount of it. 

If, however, kjp from the relation (9) has the "-1"value,it will be taken into account the fact that pkjv velocity must be 

finite, so the relationship (7) will present an indetermination type
0

0

 
 
 

compared  to the variable kjp . Applying the rule 

of the  l’Hôspital, it issuccessively obtained: 
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the same as in the relation (8). 
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Therefore, we can determine the velocity pkjv  (k=1,2,...,n) in all situations. 

_______________________ 

Furthermore, the problem is reduced to the calculation of the tangential effort of friction developed on a plate plan by a 

current which is  parallel to it,and having in the immediate vicinity of the boundary layer the velocity pkjv . 

 

 

2. THE CALCULATION OF THE TANGENTIAL EFFORT OF FRICTION AND OF THE 

FRICTION DRAG ON A SHIP 
 

We consider the turbulent boundary layer created on a flat plate by a stream of fluid parallel to the plate,with the 

velocity „ 0v ”. Kármán’s integral equation associated with the exponent law „1/n” of the velocity distribution, within 

the boundary layer is reduced to a simple differential equation of the form [2]: 
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where:  

ρ - fluid density;  

x - the direction of current fluid flow;  

δ – the thickness of  the boundary layer corresponding to an abscise (x);  

0τ - Tangential friction effort on plate item built on the abscise "x";  

n - a natural number { }7, 9,10n∈ , dependent on the degree of turbulence of the flow. 

As regarding the effort of friction „ 0τ ”, it is determined by the relationship (2): 
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where υ  is their kinematics viscosity of the fluid. 

Substituting „ 0τ ” in the above differential equation (11) and then integrating it, it is obtained: 
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The constant integration „C’ is determined in the condition:  

- for  x=0, δ=δ0  and so 
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Hence: 
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The effort tangential of friction „ 0τ ” becomes: 
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In the following we will expose the arguments that allow the extension of the validity of the relation (16) in the case of 

the boundary layer on a surface curve (the surface of the nautical careen):  
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• as resulting from chapter1 the surface of the careen was replaced by a union of flat panels with the height
T

m
 

and length (measured in horizontal plane) equal to the length of strings ( )1 jj
k k− −  (Figure 2);  

• along such a panel the thickness of the boundary layer is measured in the plane of the water line Lj,  in a 

normal direction on the string ( )1 jj
k k− −  (obviously, if the water line Lj is located in the area of high plating, then 

the normal line is rigorously included in the plan line Lj);  

• the direction „x” in the relationship (16) equals, in the case of the studied panel, ( )*x  the segment-oriented 

direction ( )1 jj
k k− −  ; 

 • the velocity v0 becomes pkjv ;  

• ( ) ( )01 ; 0, 1,2,...,jk j j mδ δ δ−= = ∀ =  

Substituting the tangential effort of friction 0τ with the symbol „ kjτ ”, the relationship (16) becomes: 
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(the corect kjα , kja , kjb  is obvious). 

Norming kjl the length of the string ( 1)k j kj− − , the average amount of the tangential effort of friction kj
τ , 

becomes: 
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The force of friction on the studied panel is : 

 k jf k j k jF Aτ=
 (19) 

The projection of the force in the transverse of the ship will represent the friction drag developed by the panel  „ jk ”: 
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(see fig. 2, 3).  

If we sum the friction drag both from the port and starboard side panel which are adjacent to the water line jL , then we 

obtain : 
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By adding the relationship (21) compared to „j”, it results the for calculus equation of the friction drag with the 

Appendix: 
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