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Abstract: The paper presents the contributions of the authors regarding the extension of boundary layer theory for a plane plate to a
quasi-cylindrical surface. Then the new model is applied to a ship’s hull in order to determine the friction drag.
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1. PRELIMINARY CONSIDERATIONS

Be T the draft ship full loaded. By cutting-off the hull with "m" equally spaced horizontal planes “/7;”, with the levels,

z,=j—, J= 1,2,...m we obtain the volumes VJ in Figure 1:
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Figure 1
By cutting-off the volumes Vj with horizontal planes taken to the levels
o1 T T T
Z = 5[(]'_1)_4”'—} = (2j—1)2— ,j=12,...,m
m m m , we obtain the water lines in Figure 2.
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T
If the ratio — is sufficiently small,then the bottom of the segments Vj are quasi-cylindrical, and the fluid flow around
m

them is almost flat. Outlines the current line of L; we choose thel;,2;,...,(n-1);, ;. In the proximity of the arc of the
curve (k - 1) I k ; the velocity of current potential is equal to the weighted average velocity of the fluid (k - l) Iz

and k ;» calculated by a procedure of Karman type. The arch of the curve (k - l) = k ; 1s then approximated through
the string (k - l)j —k..

J

If v g and Vv, are the velocities in points (k - l) I and k ID and 1, p W~ is their weight, then the average weighted

mead of fluid will be:

- V(k—l)j-l-pkj Vi

me = 1
TPy (1)

where V(x-1); andV; is considered to be included in water line plane L]. .

As the weight p K> it is determined from the condition that V ,; to have a direction and purpose-oriented segment

(k - 1)j —k; (see Figure 3).
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Figure 3

The above condition is equal to :

tan (go;g ) = tan (ij ) @
yields:

v .. .= .

wig Vg~ Y-y,
= B = mkj

VXP/V' xkj x(kfl)/' (3)
m,; is noted as slope the segment defined by the points (k - 1)‘ ; and k; (string).
From the relation (1) we deduce that :

Ve T PV, Ve T PV,
wy wg
f 1+ py and i 1+ py; @

Thus, relation (1) becomes an equation with the independent variable | p,; ™

Vi) + PV,

My

Vi) T PV g )

the solution
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V(i) T MY (),

Vykj - mij

Py =
i (6)

by having the weight p,; the relationship (1) is used to calculate the velocity V' pi and its module:

_ _ (Vx(k—l)j T PyVay )2 + (Vy(k—l)j TPy )2
" (1+p k f

Pikj

(7

Remarks:

A numerical calculation carried out in accordance with the relationship (6) can lead to the following critical situations:

Vyk 1)/

(a) my; = (the denominator= 0)

Vxkj ka 1)j

s
i g

Vxkj vxkl] 0

() Pij = -1 (denominator=0 in the formulae (7))

In the situation (a) the weight Dij becomes infinite, and the relation (7) equals:

2 2
: ((kl) +ijxkj) +( y(k-1) +ququ)
Vij: lim 2 =
2 2
= Vi +vi

0
In situation (b) the relationship (6) presents an indetermination, type (Ej, which amounts by applying the rule of

I’Héspital in relation to the variable my;

vx(k—l)j

1%

xkj ©

If the above value is different from "-1", the relationship (7) obviously leads to a finite amount of it.

P =~

If, however, Dkj from the relation (9) has the "-1"value,it will be taken into account the fact that v pkj velocity must be

0
finite, so the relationship (7) will present an indetermination type (6) compared to the variable Dij - Applying the rule

of the 1’Hospital, it issuccessively obtained:

2 2
I e I I
kaj_ p-lin—l 2 -
v (1+ py)
. (i) * Pigvi vty + (Vg + ot o
B p4lg—1 2 B (10)
kj (1+plg)

2 2
Vx]q' + Vy]g
the same as in the relation (8).
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Therefore, we can determine the velocity v

ki (k=1,2,...,n) in all situations.

Furthermore, the problem is reduced to the calculation of the tangential effort of friction developed on a plate plan by a

current which is parallel to it,and having in the immediate vicinity of the boundary layer the velocity v phj -

2. THE CALCULATION OF THE TANGENTIAL EFFORT OF FRICTION AND OF THE
FRICTION DRAG ON A SHIP

We consider the turbulent boundary layer created on a flat plate by a stream of fluid parallel to the plate,with the
velocity ,,V 7. Karman’s integral equation associated with the exponent law ,,1/n” of the velocity distribution, within
the boundary layer is reduced to a simple differential equation of the form [2]:

pvz do n .
0, "7 /..~ 0
dx (n+1)(n+2) ’ (n
where:
p - fluid density;
x - the direction of current fluid flow;
6 — the thickness of the boundary layer corresponding to an abscise (x);
7(y - Tangential friction effort on plate item built on the abscise "x";
n - a natural number 71 € {7, 9, 10} , dependent on the degree of turbulence of the flow.
As regarding the effort of friction ,, 7y 7, it is determined by the relationship (2):
1,75 0,25
n 14
70 =0, 028( 1 J (—5] ove
n+ V0 (12)
where v is their kinematics viscosity of the fluid.
Substituting ,, 7() 7 in the above differential equation (11) and then integrating it, it is obtained:
" 0,75 y
51,25:0,028(n+2)( 1) [—jx+C
+
n Y0 (13)
The constant integration ,,C” is determined in the condition:
- for x=0, =0, and so
0,75 0,25
14
612 =0,028(n+2) — | 4P s
n+l Vo
Hence:
0,2
5025 _ ( 51,25) _
0,75 0,25 0,2 (15)
n 14
=10,028(n+2) e
n+l )
The effort tangential of friction ,, 7(y ” becomes:
1,75 0,25
n 14
0,028 ]
n+l1 Vo
70 =
0,2
0,75 0,25 ’
n 14
0,028(n+2) R T
n+l1 Vo
(16)

In the following we will expose the arguments that allow the extension of the validity of the relation (16) in the case of
the boundary layer on a surface curve (the surface of the nautical careen):
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T
» as resulting from chapterl the surface of the careen was replaced by a union of flat panels with the height —
m

and length (measured in horizontal plane) equal to the length of strings (k - l)j -k j (Figure 2);

+ along such a panel the thickness of the boundary layer is measured in the plane of the water line L;, in a
normal direction on the string (k - l)j -k J (obviously, if the water line Z; is located in the area of high plating, then
the normal line is rigorously included in the plan line L));

« the direction ,,x” in the relationship (16) equals, in the case of the studied panel, (x*) the segment-oriented

I

« the velocity v, becomes

direction (k—l)
Vpkj ;
.5:5(1(—1)]; 50120,(\7]:1,2,.,711)

Substituting the tangential effort of friction 7() with the symbol ,, Tkj ”, the relationship (16) becomes:
0,25

1,75 v
0, 028( j PV
. n+1 Vpkj _ y
9 0,2 0,2
, 0,75 Y 0,25 Lo ’ (aijx +bkj) >
0,028(n+2)( j X, +0,7 7
n+1 Vphi * k=D

)
(the corect Qi > Akj» bkj is obvious).

Norming [1; the length of the string (k—1)j—kj, the average amount of the tangential effort of friction 7 j; s
ki SN ki

becomes:
Ty =7 02 P =l 0,2
kj (aijx+bkj) ’ k% Y u”
(18)
Qi 0,8
= Y . Ny, .08
=1,25 I [(ak]lk] +bk]) ij }
ki Uk
The force of friction on the studied panel is :
F =71 Ar;
Sk kj “kj (19)
The projection of the force in the transverse of the ship will represent the friction drag developed by the panel ,, k b ”:
Rfkj = ka_/ cos dy;
x .
cosfy; = ki
kj , (20)

(see fig. 2, 3).
If we sum the friction drag both from the port and starboard side panel which are adjacent to the water line L s then we
obtain :
n
Ry =2% R, , 21
/i szl T @

By adding the relationship (21) compared to ,,j”, it results the for calculus equation of the friction drag with the
Appendix:

m
Rf = z Rfj (22)
j=1
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