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Abstract: Nonlinear, dynamic systems subject to random excitations are frequently met in engineering practice. The source of
randomness can vary from surface randomness in vehicle motion and environmental changes, such as earthquakes or wind exciting
high rise buildings or wave motions at sea exciting ofshore structures or ships, to electric or acoustic noise exciting mechanical
structures. The research goals are, firstly, the computation of stochastic, nonlinear response characteristics (with accuracy and
efficiency as important criteria) and, secondly, the investigation and thorough understanding of stochastic, nonlinear response
Pphenomena. The desire to compute response characteristics, such as the power spectral density of the response of these systems,
leads to the development of methods that can be used to approximate this response. The excitations, that will be studied, are
stationary, Gaussian processes.

1. INTRODUCTION

We present a method for estimating the power spectral density of the stationary response of oscillator with a
nonlinear restoring force under external stochastic wide-band excitation. An equivalent linear system is derived, from
which the power spectral density is deduced. The method of the stochastic equivalent linearization is based on the idea
that a nonlinear system may be replaced by a linear system by minimizing the mean square error of the two systems.
This method has seen the broadest application because of their ability to accurately capture the response statistics over a
wide range of response levels while maintaining relatively light computational burden

2. SOLUTION OF EQUATION OF MOTION

Consider the equation of motion

mn(e)+en(e) +kn(t)+akn’ (t) = F(t) . (1)
The reduced equation is

N0 +2&pn@)+ p’n@)+ pan’ O = 1(1). @
As anext let us consider excitation described by subsequent correlation function[29]

Ry (t)=De " cos fir , 3)

where parameters D>0, 1>0, > 0.
Power spectral density function [1] of excitation we obtain from the relation:

1 ©
Sp(@)=——[ Ry (@)dr 0
27 J—o
By substitution of the (3) in the (4) and integration we obtain
DA * + 2%+
Sy (w)y=—"= s 5 (5)
u |(ia))2 +2A(i@)+ A2+ ﬁ’2|
or
DA o+ 22+
S (@) =24 p ©)

4 (,12+ﬁ2—w2 )2 YL
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Fig. 1. The power spectral density Sy [N2 -s] of excitation for D =50 N2 A=1s" ,P= 3570
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Fig. 2. The power spectral density Sy [N2 -s] of excitation for D = 45N?, 1 = 1s’l,ﬂ =3,55".
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Fig. 3. The power spectral density Sy [N?-s] of excitation for D = 50N>, 1 = 25" ,B=355"
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Fig.4 The power spectral density Sy [N?.s] of excitation for D =50N*, A =1s"", # =6,55".

Power spectral density function of output we can obtain from the relation
Sy (w)/ m*

S (w)= : (7
. (p2—a? ) +482 prar”
So we obtain
S (@)= DA +72+ ) ®
U 5 .
i [ v, [y (245 - | 147t |
The displacement variance [2] of the single-degree of freedom system under
Gaussian white noise excitation can be expressed as,
o* =R, (0):J' S, (@)do. 9)
77 —00
Substitution of the (8) in the (9) and obtain
" 2
:QALO 2(“’2” ) . do. (10)
0o {[pz P 3R, | +4§2p2w2;[(f ) +4M}
Integration [3,4] obtain
o0 2 —
J‘ a)2 +d —do= 7(b,hy +h1h22 hy) . (11
- |(ia))2 +2ﬂ(ia))+d| |(ia))2 +h (ia))+b0| by (hhyhs=b,hy"d—hy")
where
hy=b+24, hy=by+2Ab+d, hy=21b,+db,. (12)
In this case
W=2Ep+A), hy=p, +4AEp+ AP+ B, by =2Ap, 2 +2E p(A*+ %) 13
by=p, =p’(143a0°, ), h=2&p.
, A
==, 14
o "B (14)
where
A=Dic’, [12ap*(ép+A)-6aip’ 1+ DA2p* (Ep+A)+ as)

+8AEP(EP+A)+2AEp+ANAT+B7)-2Ap” —2E p(A>+ )}
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B=108mc®, Aée’ p’ +360",, p*maiic] p* +4AEp+(A* +B(Ep+A)+
F2P(Ep+A) LY +HAEp A+ NAp+EX + el 2p A+
PR+ B VHEP+ A (A + B Aap’ 11ome?,, (P alEp+ Mlap+
+EA BN +HAAEpH A +BN-E oA+ 1) ~Ep a2+
+/° )2 pla—p a(Ep+AY (A + )+ p Ad PP +4AEpH(AP + B (Ep+A)+ (16)
L2p(EPAV 1P +HAAEP A+ NIAp+EA +f e 2p A7+
PR+ [PV Ep+ ) (X + B +40 mEp+ D Ap+E° + 5P+
HAAEpHAZ+BONAE P m(A + B -AEp mAR + -4 27 mp° —

—4p* m(Ep+AY (A +5).
Using the notation

1=108mAca’p’ (17)
n=36p" amiAal p* +4AEp (2 + FEP+ AR 2p(Ep+A[P° +4AE pH(A*+
AP +EA*+ el 2p* P4 pEAA + fYHEp+A) (22 + 1)+ Aap’y
r=12m{p e Ep+ AAP+E R+ NP +4AEp+ R+ N-E p' e 2+ )~
~£p’ 2P+ )22 pa-paEpr Ay (P4 ) +p" Aal P +4AEp (A +
HBNEP+AR2PEpHAY [P +4AEp+ (A4 BNAP+EA + ) el 2p7 27 +
PR+ ) HEP+A) (A + )]}
s=4p m{(EpHAAP+ER +BNP +4AEp+A7+ B4 b (2 + )~
—AEP AR+ B)-407 PO ~4p* (Ep+A) (A + )| -DA12ap’ (EprA)y-6a2p’]

q=—DARP (Ep+A)-8AEP(EP+A)-AEP+ANA + )+ 2Ap” +2Ep(A>+ %)} (1)
obtain the equation

(18)

(19)

(20)

108,7 +n0'6,7 +r0'4,7 +SO'2,7 +q=0. (22)

We can always find a way to decompose the nonlinear restoring force to one linear component plus a nonlinear
component

h(n) = p* (7 +G(me) , (23)
where ¢ is the nonlinear factor to control the type and degree of nonlinearity in the
system. The idea of linearization is replacing the equation by a linear system:

n(e)+2E, p, (1) + p,2n(e) = £ (), (24)
where
g=L¢ (25)

e
is the damping ratio of equivalent linearized system and p, is the natural frequency of the equivalent linearized system.
To find an expression for p,, it is necessary to minimize the expected value of the difference between equations

(2) and (24) in a least square sense. Now the difference is the difference between the nonlinear stiffness and linear
stiffness terms , which is

e =h(n(®) =~ p’1(). (26)
The value of p, can be obtained by minimizing the expectation , of the square error:
2
£ {62 iy 27)
dp,

Substituting the equation (26) into equation (27) performing the necessary differentiation, the expression of p,
can be obtained as:

2

p. =p’(+a

E{UGZ(U)}) = pA(1+3a0?,). (28)
O,

n
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where o, is the standard deviation of 77(t) . This equation shows how the nonlinear component of the stiffness element

affects the value of p,.

3. NUMERICAL RESULTS:
Consider in this example,

m=1kg,k=36ﬁ,c=4&,a=3m_2. (29)

m m

Let us set the subsequent values of excitation parameters

D=50N?,A=1s",8=3s"". (30)
Obtain:

214+16200>
2 n
o = , (31
7 2692-10°0° +7481,91-10°c* +8354,52-10°c% +3240
n n n

or

2692-10°c° +7481,91-10°c° +8354,52:10°c* +16200° —214=0, (32)

n n n n
o =0,052m?>. (33)

"
Substituting the equation (33) into equation (28), obtain

p. =p (1+3ac’, )=7,26s". (34)
In literature, very little attention has been paid to the frequency domain characteristics of nonlinear, dynamic systems

excited by stochastic processes. It will be shown that this information can be of great value for the understanding of the
system's stochastic behaviour.

In the figures 1, 2, 3, 4 and 5, the power spectral density of the excitation, S, [N 2.5], is plotted for the differents
parameters D, A, . Figure 6 describes the harmonic peak with the same parameter values.
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Fig. 5 The power spectral density Sy [N 2.5] of excitation

D=50N?A=1s"",B=3s"", m=1lke.k —36Y coaS foam2
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Fig.6. The power spectral density S, [m*-s] of response. m = lkg,k = 36E,c = 4&,(1 =3m™2.
m m

3. CONCLUSION

The statistical linearization technique can also tackle a wide variety of problems and also provides approximate
information on the frequency domain characteristics of the stochastic response. In this technique, a linear model, which
optimally ts the original, nonlinear system (in some statistical sense), is constructed. Due to the fact that response
statistics of such a model can, in general, be evaluated analytically, statistical linearization is computationally very
effcient. However, it only provides accurate approximation of the response statistics for weakly nonlinear systems. In
this chapter, it is shown that the statistical linearization technique structurally underestimates the variance of the
response of the piece-wise linear system (even for a moderate nonlinearity). This is dangerous when these estimates are
used in failure criteria for practical systems. The cause for this underestimation of the variance can be found by
comparing accurate, simulated frequency domain characteristics with those determined using the linear model.
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