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Abstract: The paper presents the stiffness evaluation of various unidirectional quasi-isotropic fibre-reinforced composite laminates 
based on epoxy resin. The laminates are subjected to off-axis loading systems. The elastic constants have been determined. In order 

to obtain equal stiffness in all off-axis loading systems, a composite laminate have to approximates isotropy by orientation of plies in 

several or more directions in-plane. A comparison between the elastic properties of these quasi-isotropic laminates is presented. 

Tensile-shear interaction in a fibre-reinforced composite laminate occurs only if the off-axis loading system does not coincide with 

the main axes of a single lamina or if the laminate is not balanced.  
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1. INTRODUCTION 
 
In order to obtain a composite laminate is necessary to bond together various unidirectional laminae. For a specific 
application, the laminae orientation is for a great importance since the laminate exhibit different properties for different 
fibres orientations [1-4]. In practice, the most encountered composite laminates are: 

• Balanced angle-ply laminates; 
• Symmetric angle-ply laminates; 
• Anti-symmetric laminates; 
• Cross-ply laminates; 
• Cross ply, symmetric laminates; 
• Quasi-isotropic laminates. 

A quasi-isotropic laminate exhibits equal stiffness and approximates isotropy in all off-axis loading systems. Some 
authors relate that quasi-isotropic laminates are not completely isotropic showing that the laminate characteristics can 
differ perpendicular to the laminate [5]. It is well known that composite laminates with aligned reinforcement are very 
stiff along the fibres, but also very weak transverse to the fibres direction. This fact is more obvious in the case of 
advanced composite laminates reinforced with anisotropic carbon or aramid fibres but this is fair accurate for glass 
fibre-reinforced laminates also [6-10]. 
 
 
2. THEORETICAL BACKGROUND 
 
A composite laminate (fig. 1) formed by a number of unidirectional reinforced laminae subjected regarding to the 
loading scheme presented in fig. 2 is considered. The elasticity law for a unidirectional lamina K can be written as 
following: 
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where rijK  represent the transformed stiffness, σxxK , σyyK are the mean stresses of K lamina on x- respective y-axis and 
τxyK represent the mean shear stress of K lamina against the x-y coordinate system. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1:  Constructive scheme of a composite laminate 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2:  Off-axis loading scheme of a composite laminate 
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The balance equations of the laminate structure can be computed as following: 
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where nxx , nyy are the normal forces on the unit length of the laminate on x- respective y-axis and nxy represents the 
shear force, in plane, on the unit length of the laminate against the x-y coordinate system. σxx , σyy are the normal 
stresses on x- respective y-axis of the laminate, τxy represent the shear stress of the laminate against the x-y coordinate 
system. tK , t represent the thickness of the K lamina respective the laminate thickness, nxxK , nyyK  are forces on the unit 
length of K lamina on x- respective y-axis directions and nxyK is the shear force in plane, on the unit length of K lamina 
against the x-y coordinate system. 
Beside the balance equations, the geometric conditions must be also determined, to compute the stresses. For composite 
laminates these conditions imply that all laminas are bonded together and withstand, in a specific point, the same strains 
εxx, εyy, γxy as well as for the entire laminate: 
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According to equations (1)-(5), the elasticity law for the whole laminate can be computed [1]: 
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where the laminate stiffness rij are: 
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In other words, the laminate elasticity law becomes: 
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Computing the laminate strains as a function of stresses, the expressions (8) become: 
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where cij represents the laminate transformed compliance tensor. This tensor can be computed as a function of elastic 
constants. Thus [6, 10]: 
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It is obvious that the laminate will exhibit different elastic constants if the loading system is applied at a randomly 
angle, Φ, to the x-y coordinate system. The compounds of the transformed compliance tensor can be determined in the 
following way [1, 3, 11]: 
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3. RESULTS 
 
The output data have been generated using the software developed by Hull and Clyne from Materials Science 
Department at Cambridge University, UK [6]. The quasi-isotropic laminates taken into account in the numerical 
analysis present following plies sequence: [30/-30/90], [0/45/-45/90] and [0/18/36/54/72/90/-18/-36/-54/-72]. General 
input data are: fibres volume fraction φ = 0.5 in all cases, plies thickness t = 0.125 mm and off-axis loading systems 
varies between 0° and 90°. For the glass fibre-reinforced laminates, following data have been used [12]: 
• EM = 3.9 GPa;  
• EF = 73 GPa;  
• υM = 0.38;  
• υF = 0.25;  
• GM < 10 GPa;  
• GF < 25 GPa. 
For HM carbon fibres-reinforced laminates, following data have been used [12]: 
• EM = 3.9 GPa;  
• E║ > 300 GPa;  
• E┴ < 100 GPa;  
• υM < 0.5;  
• υF < 0.4;  
• GM < 25 GPa;  
• GF < 50 GPa. 
The elastic constants Exx, Eyy, Gxy as well as the Poisson ratio υxy are presented in figs. 3 – 5. 
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Figure 3:  Distribution of Young moduli Exx and Eyy of three epoxy based fibre-reinforced quasi-isotropic composite 

laminates: [30/-30/90], [0/45/-45/90] and [0/18/36/54/72/90/-18/-36/-54/-72] 
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Figure 4:  Distribution of shear modulus Gxy of three epoxy based fibre-reinforced quasi-isotropic composite laminates: 

[30/-30/90], [0/45/-45/90] and [0/18/36/54/72/90/-18/-36/-54/-72] 
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Figure 5:  Distribution of Poisson ratio υxy of three epoxy based fibre-reinforced quasi-isotropic composite laminates: 

[30/-30/90], [0/45/-45/90] and [0/18/36/54/72/90/-18/-36/-54/-72] 
 
 
4. CONCLUSIONS 
 
Under off-axis loading, normal stresses produce shear strains and of course normal strains. Shear stresses produce 
normal strains as well as shear strains. Usually, tensile-shear interaction is also present in common laminates but does 
not occur if the loading system is applied along the main axes of a single lamina or if a laminate is a quasi-isotropic one. 
From the stiffness point of view there is no difference if a quasi-isotropic composite laminate is designed with three 
layers (for instance [30/-30/90]), four layers (e.g. [0/45/-45/90]) or ten layers (for instance [0/18/36/54/72/90/-18/-36/-
54/-72]). 



 788

For the strength point of view the quasi-isotropic composite laminate with plies sequence [0/18/36/54/72/90/-18/-36/-
54/-72] can withstand at increased loadings than the quasi-isotropic composite laminate with plies sequence [30/-30/90]. 
The values of Young moduli Exx and Eyy as well as the shear modulus Gxy for HM carbon fibres laminates are more than 
four times greater than the Young moduli and shear modulus of the glass fibres ones. The distribution of Poisson ratio 
υxy are close in both cases of reinforcement. 
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