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Abstract: In the case of the composite materials, made by two or more materials, currently is used the law of mixtures to compute the 

mechanical constants.      The relations for these constants, obtained at the beginning of the XIX century by Reuss and Voigt, has the 

great advantage to write these in terms of percent of the phases, without taking into account the geometrical and structural 

properties. It is natural for these relations to approximate very good the values of the elastic constants only for some particular 

cases.      The problem is how good are the presented formulas when is necessary to compute the values of the engineering constants 
and if it is necessary to use other formulas, that have the disadvantage to be complicated. The paper refers to the composite 

materials reinforced with long fibres in an elastic matrix. 
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1. INTRODUCTION 

 
To determine the elastic constants of a composite material is an important step in the design of a mechanical structure. 

In literature are presented many calculus methods used for different type of composites. In the paper are presented 

some method for the calculus of the elastic properties of the composite materials made by two phases and is performed 

a comparison between these formulae with the laws of mixtures (the laws of mixtures are often used in design due its 

simplicity). Usually is not possible to obtain analytical expression for the elastic constants and in these cases are used 

the upper and lower margins for the constants.  The problem was studied by a great number of scientists [3]-[8], [11]-

[12]. 

 
 

2. ELASTIC MODULI IN TERMS OF PHASES CONCENTRATION (Hill)  

 
 This method is one of the most used calculus method due to the fact that require minimum information concerning the 
two phases. It is necessary to know only the concentration of the phases and the properties of the two material of the 

composite. It is considered a two phases composite: a matrix with great elasticity and the fibre with very good 

resistance properties that play a reinforcement role. The fibres are considered very long cylinders oriented along the 

Ox1. In the following are presented the properties of the resulting composite considering only the properties of the two 

constituents and the ratio of the phases. The shape and the dimensions of the reinforcement fibres are not considered. It 

is considered that are valuable the hypothesis of linear elasticity. The basic idea is to determine the strain energy in two 

simplified cases, one to obtain an upper limit for the energy and other to obtain a lower limit for the strain energy. 

Considering the deformation energy of such system, Hill [5]-[7], using the classic models of the elasticity obtains the 

following bounds for the elastic constants (for a composite reinforced by cylindrical infinite fibres): 
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where: mf mm ≥ . It is obvious that in the proposed formulas we try to separate one part that represents the law of 

mixtures. We mention that these laws are linear in terms of concentration phases. 

In the following we present some elastic moduli in three cases.  In the first (case nr.1) is considered a composite made 

by a matrix with the Young modulus 0,4 Mpa and Poisson’s ratio equal to 0,35 and the fibre has the Young modulus 

10,5 Mpa and the Poisson’s ratio 0,22. In fig.1 are presented the bounds of the bulk modulus. 

    In the second case (nr.2) the composite is considered made by an epoxy resin with the Young modulus 2,7 Mpa and 

the Poisson’s ratio 0,35 and the fibre has the Young modulus 72,4 Mpa and the Poisson’s ratio   0,22. 

 

 
 

Fig. 1. The upper and lower bounds for the bulk modulus K23  in the case nr.1  

 

    In the 3rd case are considered the same values for the fibres like in the previous example and the matrix is considered 

with a Young modulus ten time greater at the same Poisson’s ratio.  We observe that the properties of the matrix and 

fibres in the three cases are different but the graphic for the Poisson’s ratio is practically the same. The Poisson’s ratio is 

not sensitive relating to the values of the properties of the matrix and fibres. 

     We can observe that the formulas obtained for the Young modulus calculus are very good and respect, 

approximatively the law of mixture.  
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Fig. 2. The upper and lower bounds for the bulk modulus K23  in the case nr.2  

 

The relations for the determination of the Poisson’s ratio are not so accurate to respect, with a good approximation, the 

law of mixtures.  

 

 
 

Fig.  3. The upper and lower bound for the Young modulus are practical the same in the case nr.1 

 

 

3. EXACT SOLUTION FOR SOME PARTICULAR ARRAYS 

 

     It is considered that the fibres are parallel disposed. For the calculus is considered a cylindrical specimen long 

enough where the fibres are parallel with Ox1 axes. [2]-[3]. The end effects are neglect. Other hypothesis is that the 

fibres end at the transversal surface considered. In this case is possible to obtain an exact solution for the field of the 

displacement for a composite cylinder made by a matrix around a cylindrical fibre. If the displacement field is known is 

possible to determine the bulk modulus, the Young modulus, the transversal modulus and the Poisson’s ratio. It is 

possible to obtain, for bulk modulus, the bounds: 
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1̂v  and  2v̂  are the phases fractions: 
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If the fibres are disposed in hexagonal arrangements we have: 
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and are obtained: 
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Fig.4. Bulk modulus in the case nr.1 for an hexagonal array 

 

    In the first case (nr.1) it is considered a two phases composite made by a matrix with the Young modulus 0.4 Mpa 

and the Poisson’s ratio 0.35 and the fibre has the Young modulus 10.5 Mpa and the  Poisson’s ratio 0.22. In the figure 4 

are represented the upper and lower bounds for the bulk modulus.  

 

     In the second case (nr.2) we have considered the composite made by an epoxy resin with the Young modulus  2.7 

Mpa and the Poisson’s ratio  0.35 and the fibre with the Young modulus  72.4 Mpa and the Poisson’s ratio 0.22.  

 

In the 3rd case (nr.3) the fiber is the same that in the precedent case, the matrix has the Young modulus 0.27 Mpa and 

the Poisson’s ratio 0.22.  

 
 

Fig.5. Bulk modulus in the case 2, hexagonal array 
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Fig.6. Bulk modulus in the case nr.3, hexagonal array 

 

For the transversal modulus 
*

23G  are obtained the relations: 
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and for the Young modulus E1* : 

 

    mEr EmE =*

1             (7) 

This expression is very closed to the law of the mixtures: 

   mmff EvEvE ˆˆ*

1 +=                        (8) 

 

and it is easy to apply. If the Poisson’s ratio for the fibre and for the matrix is the same, the law of mixture is practically 

the same with the obtained formulas. In the case of the hexagonal arrays it is difficult to obtain bound for the Poisson’s 

ratio. But is possible to compute this value considering the bounds for the other elastic constants. The relations between 

these and Poisson’s ratio make possible to obtain bound for Poisson’s ratio. It is difficult to obtain the results and the 

formula is not so useful. 

 

 

4. VARIATIONAL FORMULATIONS   

 

    A very used method is the application of the variational calculus to compute the upper and lower bounds for a 

composite material. Is considered the internal energy for the composite resulting better bounds for the values of the 

constant elastic for the considered composite [4]. In the following we present some results obtained in [4]: 
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These bounds are the best obtained in terms of phase concentrations. We make the observation that if there are great 

differences between the values of the two phases it results a great difference between the upper and the lower bounds 

for the computed elastic constants. To obtain better results is necessary that the two phases to have comparable 

properties or the concentration of one phase to be small.  
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    If the fibres are cylindrical are obtained better results with the relations (the supplementary information concerning 

the shape of the fibres permit to obtain better results for the upper and lower bounds for the elastic constants): 
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In these cases the obtained relations are semnificatively different from the law of mixtures. 

 

 

5. CONCLUSIONS 

 

   If we make a comparison between the calculus methods we observe that the simplest expression is obtained in the 

case when only the phase’s ratio is considered (for two or more constituents). If supplementary information are 

considered (for example the cylindricity of the fibres or the ellipticity of fibres) the relations obtained to computes the 

elastic constants become more complicated.   A comparison between the computed values considering these two cases 

show that in many cases the differences are not significant. In the reality the supplementary information concerning the 

shape of the fibres are many times very poor due to the extreme variability of the results in the process of the 

fabrication of fibres. In conclusion the formulas obtained in terms of the concentration ratio can be enough precise to 

offer the values of elastic constants in many cases. In the paper was presented some of such situation and is indicated 

when the law of mixture can not offer good approximations.  
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