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Abstract: The paper deals with a numerical approach of modelling of laminate plates and with their optimal design. It
provides bases for the modelling of mechanical behaviour of laminates by reviewing general assumptions of classical
laminate theory (CLT)). Elements of optimization of laminate plates are also discussed. The thicknesses of  layers with the
known orientation, referred as the thickness variables, will be used as design variables. The optimization problem with
strength constraints will be formulated to minimize the laminate weight. Analytical and numerical approaches outlined in
this paper are accompanied by computer generated example. There are depicted distributions of numerical results during the
optimization process.
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1. INTRODUCTION

The rapid growth in the use of composite materials in structures has required the development of the theory of
mechanics of composite laminates and the analysis and optimization of structural elements made of composite
laminates. In this paper there are included an explanation of the concepts involved in the analysis and
optimization of laminates, the mechanics needed to translate those concepts into a mathematical representation
of the physical reality, and a explanation of the solution of the resulting boundary value problems by using Finite
Element Analysis software.

2. MODELLING AND ANALYSIS OF LAMINATE PLATES, CLASSICAL LAMINATE
THEORY

In the classical laminate theory the Kirchhoff hypotheses of the classical plate theory remains valid [1-3].
These assumptions imply that the transverse displacement w is independent of the thickness coordinate z, the
strains xz, yz and z are zero and the curvatures i are given by
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The equilibrium equations will be formulated for a plate element dxdy and yield three force and two moment
equation
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The transverse shear force resultants Vxz, Vyz can be eliminated and the five equations (2) reduce to three
equations. The in-plane force resultants Nx, Ny and Nxy are uncoupled with the moment resultants Mx, My and Mxy.
The three equilibrium equations are



178

1p
y

N
x

N yxx 








2p
y

N
x

N yxy 








32

22

2

2

2 p
y
M

yx
M

x
M yxyx 












 (3)

The equations are independent of material laws and present the static equations for the undeformed plate
element. In-plane reactions can be caused by coupling effects of unsymmetric laminates or sandwich plates.
Putting the constitutive equations
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into the equilibrium (3) and replacing using the in-plane strains ε and the curvatures κ by
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we get the differential equations for general laminate plates [2].

3. DESIGN OPTIMIZATION AND SENSITIVITY ANALYSIS

Design optimization refers to the automated redesign process that attempts to minimize or maximize objective
function subject to limits or constraints on the response by using a rational mathematical approach to yield
improved designs. A feasible design is a design that satisfies all of the constraints. A feasible design may not be
optimal. An optimum design is defined as a point in the design space for which the objective function is
minimized or maximized and the design is feasible. If relative minima exist in the design space, other optimal
designs can exist.

3.1. Numerical aspects of optimization process

The basic problem is the minimization of a function subject to inequality constraints.
Z = F(X) min
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gj (X)  0 j = 1,2, ..., Nc (6)
where X is design variable.
Linear, quadratic, cubic, or quadratic cross-terms may be selected for the polynomial approximation depending
on the approximation type. They are as follows
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where:
dN is number of design variables,

Xi is ith design variable,
iijii dcba ,,, are coefficients to be determined.

Singular value decomposition (SVD) is used for regression analysis.
After the objective function and constraints are approximated and their gradients with respect to the design
variables are calculated based on the approximation, we are able to solve the approximate optimization problem.
One of the algorithms used in the optimization module is called the Modified Feasible Direction method (MFD).
Using the Modified Feasible Direction method (MFD) [4] the solving process is iterated until convergence is
achieved:
1. q = 0, mq XX  .
2. q = q+1.
3. Evaluate objective function and constraints.
4. Identify critical and potentially critical constraints cN .

5. Calculate gradient of objective function  iXF and constraints  ik Xg , where cNk ,...,2,1 .
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6. Find a usable-feasible search direction qS .
7. Perform a one-dimensional search qqq SXX  1 .
8. Check convergence. If satisfied, make qm XX 1 . Otherwise, go to 2.
9. qm XX 1 .
Within the Kuhn-Tucker conditions the Lagrangian multiplier method was used.
By using the Lagrangian multiplier method, we define the Lagrangian function as the following
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where j, j =1, ...,k and μj, j=1, ..., m are Lagrangian multiplicators and sj is a slack variable which measures how
far the jth constraint is from being critical.
Differentiating the Lagrangian function with respect to all variables we obtain the Kuhn-Tucker conditions
which are summarized as follows
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Stationarity with respect to j, j = 1, ... ,k gives following restrictions
hj (X1, ..., Xn) = 0, j = 1, ..., k. (10)

Stationarity L with respect to sj, gives jsj = 0 and 22 / jsL  for minimum of F implicates j  0, j= 1,..., m.
Finally we get the following equations:
j = 0, if gj (X1, ..., Xn)  0 , j=1, ..., m
j  0,            if gj (X1, ..., Xn) = 0 (11)

The physical interpretation of these conditions is that the sum of the gradient of the objective function and the
scalars λj times the associated gradients of the active constraints must vectorally add to zero as shown in Figure
1.
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Figure 1: Kuhn-Tucker conditions at a constrained optimum

The Kuhn-Tucker conditions are also sufficient for optimality when the number of active constraints is equal to
the number of design variables. Otherwise, sufficient conditions require the second derivatives of the objective
function and constraints (Hessian matrix) similar to the unconstrained one. If the objective function and all of the
constraints are convex, the Kuhn-Tucker conditions are also sufficient for global optimality.

4. MINIMUM WEIGHT OF A LAMINATE PLATE SUBJECT TO STRENGTH
CONSTRAINT

Design of a laminate plate (Fig. 2) with orientation of angle [0/45/-45/90]S under loading Nx = 725.6 kN/m, Ny =
181.4 kN/m. Properties of the layers correspond to that of AS4/3501-6 Carbon/Epoxy material. The maximum
strain failure limits for the material are 0115.011  ct  , 00535.022  ct  and 02.012 

s .
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Figure 2: Problem of geometry

Table 1: Design set number:    1
Design Variable       Value

1                  0.2000000E-03
2                  0.2000000E-03
3                  0.2000000E-03
4                  0.2000000E-03

Table 2: Design set number :   44
Design Variable       Value

1               0.3521971E-03
2               0.1680379E-03
3               0.1696104E-03
4               0.4895812E-04

We consider the optimal design of a symmetric laminate with fixed orientation of angles. Because of the
laminate symmetry, only the thicknesses ,,...,1, Iktk  of one-half of the total number of layers, I = N/2, are used
as design variables. The laminate is considered to be under the action of combined uniform in-plane stress
resultants Nx and Ny.
The optimization problem is formulated in the following form
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for k = 1,…,I, j = 1,…,J,
where k and kt are the density and the thickness, respectively, of the kth layer,  k

jP ,  k
jQ ,  k

jR , are coefficients
that define the jth boundary of a failure envelope for each layer in the strain space, and the kkk 1221 ,,  are the
strains in the principal material direction in the kth layer. For a maximum strain criterion, which puts bounds on
the values of the strains in the principal material directions, the failure envelope has four facets with P and Q
defined as a inverse of the normal failure strains in the longitudinal and transverse directions to the fibers, once
in tension and once compression. The coefficient R is the inverse of the shear failure strain for positive shear and
for negative shear. The nonlinear programming problem is transformed to a linear by the help of sequential
linear programming. The strength constraint of Eq. (13) is a nonlinear function of the thickness variables and,
therefore, is linearized as
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where ik t /1 , ik t /2 , it /12 are the derivatives of the principal material direction strains in the kth layer
with respect to the thickness of the ith layer. For a specified in-plane loading, the derivative of the laminate
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strains with respect to the thickness variables can be determined by differentiating in-plane part of stress-strain
relation
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The derivatives of the strains in the fiber and transverse to the fiber are calculated from
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the linear approximations to the strain constraints can be constructed using Eq. (13) at any step of the sequential
linearizations.

Figure 3: Design variables during the optimization process
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Figure 4: Objective function during the optimization process

5. CONCLUSION

The example combines describing of laminate plate modelling with optimization techniques that enable to find
the best design.
For the modelling and analysis we used the classical laminate theory. We assumed the assumptions according to
the Kirchhoff´s classical plate theory.
The general optimization contains [5, 6]:
1. Initial analysis with input dates.
2. Mathematical optimization problem as follows (Eqs. 12-18).
3. Linear approximation of objective function and constraints.
4. Own algorithm of MFD method with convergence criteria.
5. Convergence or termination checks of general optimization.
The maximum number of MFD iterations was 100. The general optimization process was stopped after 44 design
sets (Figs. 3, 4), because the difference between the current value and the one or two previous designs was less
than tolerance. Results of the optimization process following (Figs. 3,4) are listed in the Table 2.
This research has been supported by the Ministry of Education of the Slovak Republic under the Research
Project No.: VEGA 1/0201/11.
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