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Abstract: In the paper, the buckling behavior analysis of a clamped, composite laminated quadratic plate under a uniaxial
and shear in-plane loading is presented. The imperfection is considered as the initial deformation due to the manufacturing
operations: cosine shape in both of the longitudinal and transverse direction. Usually, the initial deformation mode appears
in the form of the fundamental mode of the buckling or vibration. The boundary conditions are considered as the usual
condition of the structural composite ship panels. On the plate sides the loading is considered as an uniform pressure.
Variation of the maximum transverse displacement versus the in-plane load (displacement controlled after nonlinear
buckling analysis) for three cases. Maximum initial deformation magnitude is considered as a rate from the thickness, t, that

The parametric calculus was done for various values of loading ratio.
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1. INTRODUCTION

The outstanding performance of laminated composite plates, in terms of high strength properties and low
specific weight have found an increasing use in many engineering areas, especially in marine and shipbuilding,
where the corrosion is a dominant key factor. The lightweight structural parts of the ship hull are stiffened thin-
walled plates or shells. So, an important key factor in the design analysis of these types of structures is overall
buckling behavior.
A lot of studies were developed in last decade for postbuckling analysis of laminated imperfect plates.  In [1]
postbuckling behavior of rectangular orthotropic laminated composite plates with initial imperfection under
inplane shear load was investigated in a closed-form analytical manner.
In [2] a higher-order finite strip method based on the higher-order shear deformation plate theory is developed
for postbuckling analysis of laminated composite plates with initial geometric imperfection subjected to
progressive end shortening.
A postbuckling analysis is presented in [3] for a uniaxial in-plane loaded, simply supported, composite laminated
rectangular plate resting on a “softening” non-linear elastic foundation. The analysis uses a perturbation
technique to determine the buckling loads and postbuckling equilibrium paths, taking initial geometrical
imperfection into account.
In [4] the authors present the validation of finite element models against a series of plate tests that were
performed within this framework and parametric studies that were carried out to identify the effects of geometric
imperfections on the ultimate compressive strength of composite plates with three alternative lay-up
configurations.
A methodology to evaluate the influence of the imperfections on the buckling and postbuckling behavior of the
composite plates under shear and compression loading, used in ship hull structure, is presented in [5]. The
parametric calculus was done for various positions of delaminations and seven values of loading ratios.
Postbuckling analysis is essential to predict the capacity of composite plates carrying considerable additional
load before the ultimate load is reached, and manufacturing-induced geometric imperfections often reduce the
load-carrying capacity of composite structures.
In order to fully exploit the lightweight potential of such thin-walled structures, it is of practical importance to
consider load ranges beyond bifurcational buckling and to develop analysis methods that allow for a
postbuckling analysis and design to be used in day-to-day engineering practice.
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The behaviour of ship deck plating normally depends on a variety of influential factors, such as
geometric/material properties, loading characteristics, initial imperfections, boundary conditions and
deterioration arising from interlaminar fatigue cracking. The analysis is presented for a uniaxial and bi-axial in-
plane loading, clamped, composite laminated quadratic plate. The imperfection is considered as the initial
deformation due to the manufacturing operations: cosine shape in both of the longitudinal and transverse
direction. Usually, the initial deformation mode appears in the form like the fundamental mode of the buckling
or vibration. The boundary conditions are considered as the usual condition of the structural composite ship
panels. On the plate sides the loading is considered as an uniform pressure. Variation of the maximum
transversal displacement versus the inplane load (displacement controlled after nonlinear buckling analysis) for
three cases, obtained in numerical analysis are performed.
For maximum initial deformation magnitude three values are considered: 1.06mm, 3.2mm and 9.6mm.
A methodology to evaluate buckling and postbuckling behavior of the ship deck composite plates with
imperfections under biaxial compression loading is presented. The parametric calculus was done for various
values of loading ratio k=q/p (fig.1). The numerical tests are analyzed with respect to combined boundary biaxial
compression buckling on the imperfect composite plates.
The results are be presented, in terms of deflection, evolution of buckling load versus transversal displacement in
the middle point of the panel, for various loading ratios k and transversal imperfection magnitude.

2. BUCKLING THEORY OF ORTHOTROPIC PLATES

Recently a considerable effort has been dedicated towards the development of fast and reliable design procedures
for buckling, postbuckling and collapse analyses of fibre composite stiffened panels. It is well-known that thin-
walled structures made of carbon fibre reinforced plastics are able to tolerate repeated buckling without any
change in their buckling behaviour. However, it has yet to be established, how deep into the postbuckling regime
loading one can go without severely damaging the structure, and how this can be reliably predicted by fast and
accurate simulation procedures.
In this trend, in this paper, a methodology to establish the buckling and postbuckling loads of the laminated
plates with transversal imperfection is analysed.
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Figure 1: In-plane loading of imperfect plate

The state of equilibrium of a plate deformed by forces acting in the plane of the middle surface is unique and the
equilibrium is stable if the forces are sufficiently small. If, while maintaining the distribution of forces constant
at the edge of the plate, the forces are increased in magnitude, there may arise a time when the basic form of
equilibrium ceases to be unique and stable and other forms become possible, which are characterized by the
curvatures of the middle surface.
The equation of the deflected surface of symmetrically laminated plates for combined axial loading is

02)(2
2

2

2

4

4

2222

4

66124

4

11 






















yx
wN

x
wN

y
wD

yx
wDD

x
wD xyx

(1)

where D11, D12, D22, D66, are the orthotropic plate stiffnesses, calculated according to the equation

 



N

k
kk

k
ijij zzQD

1

3
1

3

3
1 (2)



185

The thickness and position of every ply can be calculated from the equation
1 kkk zzt (3)
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Linear buckling of beams, membranes and plates has since been studied extensively. A linearized stability
analysis is convenient from a mathematical viewpoint but quite restrictive in practical applications. What is
needed is a capability for determining the nonlinear load-deflection behaviour of a structure. Considerable effort
has also been expended on this problem and two approaches have evolved: class-I methods, which are
incremental in nature and do not necessarily satisfy equilibrium; and class-II methods, which are self-correcting
and tend to stay on the true equilibrium path ([6]).
Historically, class-I was the first finite element approach to solving geometrically non-linear problems ([7]). In
this method the load is applied as a sequence of sufficiently small increments so that the structure can be
assumed to respond linearly during each increment.
To solving of geometrically and material nonlinear problems, the load is applied as a sequence of sufficiently
small increments so that the structure can be assumed to respond linearly during each increment ([8]).
For each increment of load, increments of displacements and corresponding increments of stress and strain are
computed. These incremental quantities are used to compute various corrective stiffness matrices (variously
termed geometric, initial stress, and initial strain matrices) which serve to take into account the deformed
geometry of the structure. A subsequent increment of load is applied and the process is continued until the
desired number of load increments has been applied. The net effect is to solve a sequence of linear problems
wherein the stiffness properties are recomputed based on the current geometry prior to each load increment. The
solution procedure takes the following mathematical form
  QdKK  i1-iI (4)

where
K is the linear stiffness matrix,
KI is an incremental stiffness matrix based upon displacements at load step i-1,
di is the increment of displacement due to the i–th load increment,
Q is the increment of load applied.
The correct form of the incremental stiffness matrix has been a point of some controversy. The incremental
approach is quite popular (this is the procedure applied in all studies in this chapter). This is due to the ease with
which the procedure may be applied and the almost guaranteed convergences if small enough load increments
are used.
The plate material is damaged according to a specific criterion.
For various materials classes three dimensional failure criteria are developed. These include both isotropic and
anisotropic material symmetries, and are applicable for macroscopic homogeneity. In the isotropic materials
form, the properly calibrated failure criteria can distinguish ductile from brittle failure for specific stress
states. Although most of the results are relevant to quasi-static failure, some are for time dependent failure
conditions as well as for fatigue conditions.
The buckling load determination may use the Tsai-Wu failure criterion in the case if the general buckling does
not occurred till the first-ply failure occurring. In this case, the buckling load is considered as the in-plane load
corresponding to the first-ply failure occurring.
The Tsai-Wu failure criterion provides the mathematical relation for strength under combined stresses. Unlike
the conventional isotropic materials where one constant will suffice for failure stress level and location,
laminated composite materials require more elaborate methods to establish failure stresses. The strength of the
laminated composite can be based on the strength of individual plies within the laminate. In addition, the failure
of plies can be successive as the applied load increases. There may be a first ply failure followed by other ply
failures until the last ply fails, denoting the ultimate failure of the laminate. Progressive failure description is
therefore quite complex for laminated composite structures. A simpler approach for establishing failure consists
of determining the structural integrity which depends on the definition of an allowable stress field. This stress
field is usually characterized by a set of allowable stresses in the material principal directions.
The failure criterion is used to calculate a failure index (F.I.) from the computed stresses and user-supplied
material strengths. A failure index of 1 denotes the onset of failure, and a value less than 1 denotes no failure.
The failure indices are computed for all layers in each element of your model. During postprocessing, it is
possible to plot failure indices of the mesh for any layer.
The Tsai-Wu failure criterion (also known as the Tsai-Wu tensor polynomial theory) is commonly used for
orthotropic materials with unequal tensile and compressive strengths. The failure index according to this theory
is computed using the following equation ([9], [10]).
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The coefficient F12, which represents the parameter of interaction between 1 and 2 , is to be obtained by a

mechanical biaxial test. In the equations (6), the parameters T
i

C
i R,R are the compressive strength and tensile

strength in the material in longitudinal direction (i=1) and transversal direction (i=2). The parameter R12 is in-
plane shear strength in the material 1-2 plane.
According to the Tsai-Wu failure criterion, the failure of a lamina occurs if

F.I.>1 (7)
The failure index in calculated in each ply of each element. In the ply where failure index is greater than 1, the
first-ply failure occurs, according to the Tsai-Wu criterion. In the next steps, the tensile and compressive
properties of this element are reduced by the failure index. If the buckling did not appeared until the moment of
the first-ply failure occurring, the in-plane load corresponding to this moment is considered as the buckling load.

3. ANALYSIS OF AXIAL AND SHEAR BUCKLING OF COMPOSITE PLATES

In the study, the numerical analysis was carried out using COSMOS/M finite element package software. The
square plates (320x320mm), are made of E-glass/polyester concerning 16 biaxial layers having the orthotropic
directions and thickness (4.96mm) according to the topological code of the plate: [02/45/902/45/02]s.

a) pure compression (q=0) b) q/p=0.4 c) pure shearing (p=0)
Figure 2: Variation of axial loading p (shear q) versus transversal displacement

The material characteristics, determined in experimental tests are:
Ex=38.6 GPa, Ey=8.27 GPa, Ez=8.27 GPa, Gxy=4.14 GPa, Gxz=4.14  GPa, Gyz = 4.6 GPa;
xy=0.3, yz=0.42, xz=0.3; T

xR =1.062 GPa, T
yR =0.031 GPa, C

yR =0.118 GPa, xyR =0.72 GPa.
The direction of the axial loading is considered along the symmetry geometrical axis of the plate.
The loading was considered to be a combination between axial compression (p) and shear (q) acting on the plate
sides as it is presented in the figure 1. The combination is determined by the loading ratio k=q/p. For the loading
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ratio, 6 values were considered: 0 (pure axial compression); 0.2; 0.4; 0.6; 0.8; 1.0 and ∞ (pure shearing). In the
table 1, the values of ultimate strength (buckling load) for the all analyzed loading ratios, for the three cases of
initial transversal imperfection magnitude are given.
In the figure 2, the variation of the axial loading p (q for pure shearing) versus the magnitude of the transversal
displacement are presented for pure compression, loading ratio equal to 0.4 and  pure shearing for the three cases
of initial transversal imperfection magnitude are presented.

Table 1: Buckling load [MPa]
k=q/p w0=0 w0=1.06 mm w0=3.2 mm w0=9.6mm

0 1.94 5.103 6.612 1.028
0.2 0.243 0.288 0.222 0.134
0.4 0.211 0.266 0.111 0.087
0.6 0.243 0.288 0.088 0.071
0.8 0.244 0.277 0.111 0.071
1.0 0.285 0.305 0.124 0.081
∞ 1.468 2.330 2.448 2.764

Table 2: Buckling load [MPa] for all cases, according to Tsai-Wu criterion
k p/q FAIL w0=0 w0=1.06 mm w0=3.2 mm w0=9.6mm

0 FAIL 1 2.561 1.89 1.77 6.9
FAIL 2 - 1.93 1.81 1.38

0.2 FAIL 1 2.499 0.706 0.605 0.403
FAIL 2 - 1.413 1.312 1.211

0.4 FAIL 1 2.499 0.706 0.504 0.403
FAIL 2 - 1.311 1.211 0.999

0.6 FAIL 1 1.874 0.504 0.504 0.302
FAIL 2 - 0.908 0.876 0.802

0.8 FAIL 1 1.562 0.403 0.403 0.302
FAIL 2 - 0.806 0.706 0.706

1 FAIL 1 1.249 0.302 0.302 0.302
FAIL 2 - 0.706 0.563 0.563

∞ FAIL 1 2.0 1.5 1.5 1.5

For each case in the parametric calculus, according to the changing in the slope of the curves, the value of the
buckling load (determined by graphical method, by drawing a tangent line in the point of suddenly changing the
curve slope) is presented in the table 1.
In the table 2, the values of ultimate strength (buckling load) determined by Tsai-Wu criterion for all cases are
presented. As it is seen, the first failure for all cases occurs for the tension case (FAIL 1).

4. CONCLUSION

This paper presented a detailed numerical investigation on the post-buckling behaviour of composite panels
subjected to shear and axial loads.
From the comparative analysis it can be concluded that the numerical model provides a good approximation to
the actual behaviour of imperfect plates. Thus, it can be used as an useful analysis tool in order to develop and
establish new design rules for the composite ship structures. Moreover, the phenomenon study requires a stress
analysis in order to improve the evaluation of the structural response of the composite plates with transversal
imperfection.
As it is seen in the table 2, the buckling load is decreasing as the magnitude of the transversal deformation is
increasing. But for the magnitude of 1.06 mm the plate behavior looks to be as a corrugated plate, having a good
endurance to the buckling.
The proposed methodology accounts for failure, material non-linearity/degradation, geometric imperfections and
geometric non-linearity effects. The numerical results indicated that the post-buckling behaviour of the panels
prior to collapse was not significantly affected by the geometric imperfections and their magnitudes.
The numerical results obtained from the tests and allow to reach certain conclusions related to the behaviour of
imperfect composite plate under combined axial and shear loads.
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