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Abstract: The optimization of the transient regime is an important issue to 

be solved in nowadays engineering. The proposed paper deals with this topic 

applied to refrigeration machines treated in equilibrium thermodynamics. In 

transient regime, one of the most widespread problems is to determine the 

existence of a variation law for the refrigerant temperature that would 

convey to minimum energy consumption or maximum coefficient of 

performance. 
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1. Introduction 

 

The refrigeration systems have 

widespread applications and mostly in 
refrigeration and air conditioning fields. 

Therefore numerous valid contributions are 

dedicated to their study and optimization. 
An extensive study on the theory of 

irreversible heat transfer refrigeration 

systems has been done [1]. Other works 

give formulae for the COP and cooling 
rate of an endoreversible refrigeration 

machine [2] and also when maximum 

specific cooling load is required [3]. An 
analytical model for predicting general 

performance characteristics of an 

irreversible Carnot cycle machine has been 

achieved recently [4-6]. It may be applied 
to direct or reverse cycle machines. The 

optimization procedure focused on several 

objectives, namely maximum useful effect, 
minimum consumption or minimum total 

dissipation. Several operational and 

dimensional constraints were introduced in 
the model. Internal and external 

irreversibilities of the cycle were also 

taken into account by the internal and total 

entropy generation. The approach 
concerning the entropic analysis of 

machines and processes [7-10] becomes an 

important tool for the design of real 
operating machines. 

The authors of the present paper brought 

their contributions in the field [4-6], 
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adding some results to the previous cited 
works. The developed model provides an 

analytical method for optimizing the 

performance of an irreversible Carnot 
refrigerating machine for which 

dimensional or performance constraints 

were imposed. This method has 
applicability to the design of the 

refrigerating machines in terms of 

selection, design and optimization of the 
main parameters. The results of the model 

were compared with data from a 

refrigeration machine under operating 

conditions. The degree of correlation 
between the analytical and operational data 

indicated that the analysis accurately 

predicts the performance in terms of COP, 
power consumption and total entropy 

generation. 

The next step in developing this subject 
was to consider transient operating regime. 

Since each analysis starts with the simplest 

cases, the paper deals with the case of 

equilibrium thermodynamics (thermostatic 
thermodynamics) refrigeration machines. 

In transient regime, one of the most 

widespread problems is to determine the 
existence of a variation law for the 

refrigerant temperature that would be 

accompanied by imposed energy 

consumption. Another problem is to 
determine the minimum attainable 

refrigerant temperature to be reached in a 

given time interval with a given 
consumption of energy. Or, by imposing a 

given value for the system energetic 

consumption, to determine the refrigerant 
temperature variation law that will be 

attended. 

 

2. Mathematical Analytical Model 
 

A model for the study of transient regime 

in reversed cycle thermal machines with 
two heat reservoirs is presented. The 

mathematical model basically consists of 

the First and Second Laws of 

Thermodynamics applied to the cycle and 
the heat transfer equations at the source 

and sink. The entropy generation term 

considers the internal irreversibility of the 
cycle. Also, the sink source in fact is 

considered with finite thermal capacity, 

while for the heat source it is considered a 

constant temperature one. Equilibrium 
thermodynamics (no mass or heat 

gradients between working fluid and 

sources) is applied. 
The schematic representation of the 

studied case is shown in Figure 1. 

 
 

 

 

 
 

 

 
 

Fig. 1. “Thermostatic” machine 

 

The First Law of Thermodynamics for 
transient operating conditions is: 

 

dt

dE
EE

sys

outin =− &&  (1) 

 

When applied to the refrigerating 

machine, equation (1) becomes: 
 

HCHC QQQQW &&&&& −=+=  (2) 

 
where the indices “C” and “H”, 

respectively are for cold side and hot side; 

W&  is the consumed power (negative), 

while Q&  represents the thermal load 

(positive if received by the working fluid 

or negative if rejected to the source sink), 

corresponding to English sign convention. 

The energy balance equation applied to 
the refrigerating chamber (cold source) 

gives: 

Refrigerating 

machine 
Sink 

source 

TCS(t) 

Ambient 

TA 

W&  



C. PETRE et al.: Optimal Conditions in Transient Operating Regime for Refrigeration …  

 

81 

( )
dt

dT
mcQ CS

CSpC
−=&  (3) 

which is positive since the cold source 
temperature TCS decreases in time t. The 

product ( )
CSpmc  represents the thermal 

capacity of the cold source fluid and will 

be denoted by CCS, in J/K. 

The Second Law of Thermodynamics 

applied to the cycle gives: 
 

0=++ i

C

C

H

H S
T

Q

T

Q &
&&

 (4) 

 

where 
i

S&  is the internal entropy 

generation. 

Considering thermal equilibrium (no heat 
gradient between working fluid 

temperature and heat reservoirs: TCS = TC  

and THS = TH = TA = const.) and replacing 

H
Q&  from equation (2) in equation (4), one 

could get: 
 

CS

i

ACSCSA

CS

C

S

TC

W

TTdt

dT &&
−−=








−

11
 (5) 

 

By integrating this equation and taking 

into account the analytical expression for 
the internal entropy generation and the 

imposed considered constraints, one could 

obtain the variation law for the cold source 

temperature, TCS as a function of time t. 
Let us denote the variation law for the 

cold source temperature TCS by x as it is the 

unknown. The variation law in time will be 
x(t). 

The mathematical procedure for 

searching the minimum of a function 
(unknown function x(t)) is based on the 

Euler method for which the objective 

function (OF) and the constraints (C) are 

considered. The modified Euler equation 
allows us to find an integral function 

having a maximum or minimum value 

among all functions having this property: 

0
'

=








∂

∂
−

∂

∂

x

H

dt

d

x

H
 (6) 

 

which will give the function x(t), where the 

Hamiltonian H is: 
 

COFtxxH ⋅+= λ),',(  (7) 
 

This equation is to be solved for different 
cases, function on the imposed constraints 

and considered objective function. 

 

3. Different study cases 

 

Some study cases could be considered. 

For example: 
Study A: for imposed power 

consumption W&  we look for the cold 

source temperature variation law in time. 
Study B: for imposed power 

consumption W&  we look for the cold 

source temperature minimum value 
reached after a time period tf. 

Study C: for imposed cold source 

temperature TCSf reached after a certain 
final time tf, we look for that variation law 

of the cold source temperature TCS which 

assures minimum energy consumption 

Wmin, if there exists such a law. 
Study D: the same problem as for study 

B, but considering heat losses through the 

cold source insulation. 
Study E: the same problem as for study 

C, but considering heat losses through the 

cold source insulation. 

For each study case, different sub-cases 
could be considered as function of the 

entropy generation variation law. In the 

absence of an empirical one, in technical 
literature, three laws have been proposed 

[11]: 
 

a) constant:     constS i =&  (8a) 
 

b) linear variation law with temperature: 

( )
CSAi

TTconstS −⋅=&  (8b) 

c) logarithmic variation law with 
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temperature:     
CS

A

i
T

T
constS ln⋅=&  (8c) 

If other variation laws are available, they 

could be used. 

 

4. Study A 
 

For imposed power consumption W&  

we look for the cold source temperature 

variation law in time. 
Let us consider firstly the sub-case (8a). 
By separating the variables in equation 

(5), one obtains: 

 

dt
C

S

TC

W
dT

TT

const

CS

i

ACS

CS

CSA 444 3444 21

&&











−−=








−

11
(9) 

By integrating this equation and 

computing the constant integral (taking 

into account that at moment t = 0 the 

cold source temperature is equal to the 

ambient temperature TCS(0) = TA), 

which resulted to be ATln1− , one gets: 
 

1ln +









−−=−

CS

i

ACSA

CS

A

CS

C

S

TC

W
t

T

T

T

T &&
 

(10) 
 

which gives the variation law of TCS. 

The refrigerating load is: 
 









+









−

=−= i

A

CSA

CS
CS S

T

W

TT

dt

dT
CQ &

&
&

11

1
0

 

(11) 

Some graphical results are illustrated 

in Figures 2-5. 

 

Similarly one can solve the other sub-

cases (8b) and (8c). For example, for 

the case (8b), one gets a nonlinear 

equation in x that is to be integrated: 

CS

AS

ACSCS

S

A C

TK

TC

W
x

C

K
x

xT
−−=−








−

&
'

11
 

(12) 

 

where KS is the constant that appears in 

the expression of iS&  - equation (8b). 

By integrating this equation 

(numerical results), one can get the 

variation law for the cold source 

temperature (here x). 
 

5. Study B 

 

For imposed power consumption W&  we 

look for the cold source temperature 

minimum value reached after a time period 

tf. 
In order to solve this problem, we write the 

expressions of the Hamiltonian as 

considering the power consumption as 

constraint and the objective function the 
minimum attainable cold source 

temperature at a time period tf: 
 

WxtxxH &⋅λ+= '),',(  (13) 
 

Replacing W&  from equation (5), the 

Hamiltonian becomes: 
 









−








−λ+= iACS

A STxC
x

T
xH &'1'  (14) 

 

Let us considering a general expression 

for the internal entropy generation iS&  as a 

function of x (as it is the case 8b or 8c). 

The modified Euler equation (6) is 

composed of the following derivatives: 
 

x

S
TxC

x

T

x

H i
ACS

A

∂

∂
λ−λ−=

∂

∂ &
'

2
 (15) 

 

CS
A C
x

T

x

H








−λ+=

∂

∂
11

'
 (16) 
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'
' 2

xC
x

T

x

H

dt

d
CS

Aλ−=








∂

∂
 (17) 

 
Replacing these derivatives in equation (6), 

we get: 

0=
∂

∂
λ−

x

S
T i

A

&
 (18) 

 

which obviously represents a constant internal 
entropy generation solution, being a 

contradiction with the considered hypothesis 

(a function of x). This means that for the 

above stated problem (“thermostatic” 
machine with imposed power consumption) 

there is no minimum attainable cold source 

temperature in a given time period tf. Some 
interesting results are obtained for other 

constraints of the problem (e.g. considering 

losses between sources, finite heat transfer 

between sources and the working fluid, etc), 
but they are not the aim for the present paper.  

 

6. Study C 

 

For imposed cold source temperature TCSf 

reached after a certain time duration tf, we 
look for that variation law of the cold 

source temperature TCS which assures 

minimum energy consumption Wmin. 

Thus the objective function is: 
 

iA
A

CS ST
x

T
xCW && −








−−= 1'  (19) 

And the Hamiltonian becomes: 
 

'1' xST
x

T
xCH iA

A
CS λ+−








−−= &  (20) 

 

For the case of constant 
i

S&  – equation 

(8a), the derivatives composing the 
modified Euler equation (6) are: 

 

2

'

x

x
TC

x

H
ACS−=

∂

∂
 (21) 

 

λ+







−−=

∂

∂

x

T
C

x

H A
CS 1

'
 (22) 

 

2

'

' x

x
TC

x

H

dt

d
ACS−=









∂

∂
 (23) 

 
Replacing them in equation (6) will get: 
 

0
''
22

=+−
x

x
TC

x

x
TC ACSACS  (24) 

 

which is a mathematical identity, so the 
problem has one physical solution satisfied 

whatever is x. 

Let us consider now the case (8b). The 

objective function is: 
 

( )xTKT
x

T
xCW ASA

A
CS −−








−−= 1'&  (25) 

 

where KS is the constant that appears in 

the expression of 
i

S&  - equation (8b). 

After computing the three derivatives 

from the Hamiltonian and replacing them 
in equation (6), we obtain: 

 

0=
SA

KT  (26) 
 

which is obviously a contradiction with our 

hypothesis (KS = 0 means no internal 
entropy generation). 

For the case (8c) we obtain: 
 

( )xTKT
x

T
xCW ASA

A
CS lnln1' −−








−−=& (27) 

 

and equation (6) becomes: 
 

0
1

=
x

KT
SA

 (28) 

 

which doesn’t have any physical solution. 

But generally speaking, considering 

internal entropy generation as a function of 

x and x’, one could obtain: 
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0
'

=
∂

∂
−










∂

∂

x

S

x

S

dt

d ii
&&

 (29) 

 
which doesn’t provide a variation law for 

the cold source temperature. So, the 

considered problem doesn’t have a 
physical solution. 

 

7. Study D 

 

For imposed power consumption W&  we 

look for the cold source temperature 

minimum value reached after a time 

duration tf, considering heat losses 

through the cold source insulation. 
In this case, equation (3) becomes: 
 

( )CSAL
CS

CSC TTK
dt

dT
CQ −+−=&  (30) 

where KL is the heat loss conductance. 
The power consumption becomes: 

( )[ ] iAALCS
A STxTKxC
x

T
W && −−−








−= '1  

 (31) 

The associated Hamiltonian is: 
 

WxH &⋅λ+= '  (32) 
 

After computing the three derivatives 
and replacing them in equation (6), we get 

a solution for x: 

 























∂

∂
−

∂

∂

=

'x

S

dt

d

x

S

K

T

T
x

ii

L

A

A

&&
 (33) 

 
If one takes into account the expression 

of internal entropy generation (which 

could be a function on x and x’), this 

solution gives us the possible cold source 
temperature variation law, obtained with 

minimum energy consumption.  

 
 

8. Study E 
 

For imposed cold source temperature 

TCSf reached after a certain time tf, we 

look for that variation law of the cold 

source temperature TCS which assures 

minimum energy consumption Wmin, 

but considering heat losses through the 

cold source insulation. 
In this case, instead of equation (3) we 

use equation (30). 

Supposing that the internal entropy 

generation depends on x, we get the 

Hamiltonian from equation (32) with W&  

given by (31).  

Solving the equation (6), we get a 
solution for x: 

 

x

S

K

T

T
x

i

L

A

A

∂

∂
+

=
&

1

 (34) 

 

By introducing the expression of internal 

entropy generation, the problem is solved. 

 

9. Results and Discussions 

 

For study A some graphical results are 
illustrated in Figures 2-5. Equation (10) 

imposes the variation law for cold source 

temperature TCS as a function of time t 
under the imposed conditions. 

Figure 2 represents a sensitivity study 

with respect to the internal entropy 

generation constant value. One can notice 

that higher values of iS&  constraints the 

system to reach a certain value of the 

cold source temperature after a longer 

time period. 

 In figure 3, the refrigerating load is 

represented, as a function of time and 

also internal entropy generation 

constant values, respectively in Figure 

4, the coefficient of performance. 
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Fig. 2. Cold source temperature as a 

function of time duration and iS& . 

 
 

 

 

 
 

 

 
 

 

 
 

 

Fig. 3. Refrigerating load as a function 

of time duration and iS& . 
 

 
 

 

 

 
 

 

 
 

 

 

 

Fig. 4. Coefficient of performance as a 

function of time duration and iS& . 

 

 

 

 
 

 

 

 
 

 

 
 

Fig. 5. Refrigerating load as a function 

of time duration and thermal capacity CCS. 
 

The main conclusion of this analytical 

development is related to the possible 

solution for TCS in different cases. The 

considered hypotheses are very important. 
In our future studies, we are going to 

consider experimental relations for iS& . 
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