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Abstract: In systems used for transporting oil, there are cases when the flow 

is unsteady. These can be noticed when the pumping starts, or when a valve 

is suddenly open or closed. The paper shows a numerical model for 

simulation of unsteady flow of liquids though pipelines, able to take into 

consideration both elasticity of the system – oil-pipeline – and dissipation 

phenomena, that is, friction occurring in the system.   
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In pipe systems for the transport of liquid 
petroleum products there are situations in 
which the flowing is non-stationary. This 
situation can occur when starting pumping 
or at the moment of abruptly acting on an 
open or close valve.   

The article presents an original model of 
the crude oil non-stationary flow through 
pipes; the model is capable to take into 
account both the elasticity of the system 
crude oil-pipe as well as the dissipated 
phenomena, more precisely the frictions 
that appear in the system. We take into 
account the modelling of the non-
stationary crude oil flow phase in order to 
determine the intensity of the phenomenon 
and its duration. At the same time we 
analyse the impact of the elastic waves 
from the system on different obstacles, 
phenomenon known as ramming.  

 

1. The Mathematic Modelling of the 

Non-stationary Movement of Liquids 

Through Pipes  

 

Starting from the equations of mass 
conservation and of the impulse in the case 

of isothermic flow, for a system without 

losses, we obtain the following equations: 
 

0
1

0

=
∂

∂

ρ
+

τ∂

∂

x

pu
,  (1) 

 

02
00 =

∂

∂
ρ+

τ∂

∂

x

u
c

p
. (2) 

 

In the case of long pipes we must take 
into account friction, and in this case the 

equation (1) becomes 
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In the previous equations u and p 

represent the speed, respectively the 
pressure of the liquid through the pipes, 

0ρ represents the density of the liquid, and 

f the coefficient of hydraulic resistance. 

The compressibility of the environment is 

characterized by the sound speed 0c which 

represents the propagation speed of the 

perturbances in the system. This is defined 

according to the elasticity of the system: 
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In relation (5) Es represents the 

combined elasticity mode of the oil-pipe 
system, El – the liquid elasticity mode, EOL 

- the pipe elasticity mode, D – the pipe 

diameter and δ – the thickness of the pipe 
wall.  

In order to solve the system made up of 

the differential equations with partial 

derivatives (2) and (3) we will use the 
methodology described by S. Godounov 

through which the homogeneous system is 

solved; the system is made up of the 
differential equations with partial 

derivatives (1) and (2), then we correct the 

solution, taking into account the dissipative 
term from equation (3). Practically we look 

for a peculiar solution of the system made 

up of  equations (2) and (3) which fulfils 

the imposed limit conditions. 
The homogeneous system made up of 

equations (1) and (2) that represents the 

laws of mass conservation, respectively the 
impulse conservation, defined in a 

bidimensional field D(x,ι) accept 

continuous solutions. In order to also 

analyse the case of discontinuous solutions 
(continuous only on small fragments), 

which appear in the case of non-stationary 

movements, we integrate the homogeneous 
system of differential equations on field 

D(x,ι) and  we apply Green’s formula  to 

transform the surface equations in 

curvilinear integrals  on contour  Γ of the 

respective field, and the result is 
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The system made up of equations (3) and 
(4) replaces the integral of the vector 

divergence tpu ]/,[ 0ρ , tucp ],[ 2
00ρ  on 

field D, with the vector flux tpu ],[ 0 −ρ , 

tucp ],/[ 0
2
0 ρ− . May ( )τ,xu  and ( )τ,xp  be 

solutions of the system made up of 
equations (1) and (2). If these functions are 

discontinuous and the respective system is 

nonsensical, the integral conditions 
represented by relations (6) and (7) remain 

valid in this case. We designate the 

generalized solution of the system made up 
of equations (1) and (2) any pair of 

functions ( )τ,xu , ( )τ,xp  that can be 

derived on fragments for any close contour 

Γ, in the semi plan 0≥τ  relations (3) and 

(4) are checked. 

 

2. The Numeric Approach of the Model 

 

In order to define the scheme with finite 

differences we will consider a division of 
field D(x, ), in which we analyse the 

phenomenon. Thus the field is made up of 

constant intervals 1−−=∆ jj xxx . The 

functions that represent the measures that 
need to be determined (u, p) are considered 

network functions generically designated 

as f. We consider that the values of the 

functions are constant inside an interval 

1−− jj xx , the respective value is 

designated as 
n
jf 2/1−  and we consider it to 

be in the middle of the interval. The 
current time step is designated as index 

„n”, and the new values calculated for the 

following time step will be designated as 

index “n+1”. In the iterative integration 
process we will use auxiliary values 

considered at the middle of the temporary 

interval, these will be designated with 
capital letters and will have the temporary 

index “n+1/2”, for instance 
2/1+n

jF . 
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( ) 00 =τ−ρ∫
Γ

dpxdu  (8) 

For the construction of the scheme with 

finite differences referring to equation (8), 

we will notice that this is variable on any 

close contour on field D; thus we can 

particularize contour Γ as a network node, 
as it can be seen in figure1. 

Fig. 1 
 

In the equation there are two functions, 
and the speed u is integrated along OX axis 

and pressure p which can be integrated 

according to time. The contour Γ on which 
the scheme with finite differences is built 

is the close contour ABCD. Going on it 
counter clockwise  we will define on each 

size the corresponding network functions: 

• On side AB  the value of speed at the 

temporary moment n 
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• On side BC defines the auxiliary 

measurement P representing the pressure 

at the middle of the temporary interval 
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• On side CD the speed  u is defined at 

the temporary  moment n+1 
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• On side DA the auxiliary measurement 

P representing the pressure at the 

middle of the temporary interval  
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Applying relation (8) on the contour 

defined above, we get a relation in finite 
differences for the speed calculation 
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For the second integral relation we will 

do a similar thing, meaning we will define 

a close contour  Γ, EFGH on the network 
nodes, figure 2, and we will get 
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Fig. 2 
 

According to relation (14) on side OX 

we define the pressure and for speed we 
use the auxiliary quantities designated and 

defined at the middle of the temporary 

interval.  

• On side EF the value of the pressure at 

the temporary moment n is defined  

  xxp
x

p
j

j

x

x
n

n
j d),(

1

1

2/1 ∫
−

τ
∆

=− . (15) 

• On side FG the auxiliary measurement 

U is defined  representing the speed at the 
half of the temporary interval in node j 
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• On side GH pressure p at the temporary 

moment n+1 is defined 
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• On side HE the auxiliary measurement 

U is defined; it represents the speed at the 

half of the temporary interval in  node j-1 
 

  ττ
τ∆

−= ∫
+τ

τ

−
+
− dxuU

n

n

j
n
j

1

),(
1

1
2/1

1 . (18) 

 

Applying relation (14) on contour EFGH 

we get the second relation in finite 
differences 
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The system made up of equations (13) 
and (14) allows the determination of speed 

and pressure of thin shock waves, in time 

and space, with the condition of defining a 
rule for the calculation of the auxiliary 

values 
2/1+n

jP , 
2/1

1
+

−
n
jP , 

2/1+n
jU , 

2/1
1

+
−

n
jU  

at the half of the temporary interval.  
In order to define this problem, we 

consider in the space ( ) 0;, ≥ττx , at the 

initial moment 0=τ , the following 

conditions: 

Iuxu =)(0 ,  Ipxp =)(0 ,  *
xx < , 

 IIuxu =)(0 ,  IIpxp =)(0 ,  *
xx > .(20) 

The measures Iu , IIu , Ip , IIp  are 

constant data that obey at least one of the 

relations III uu ≠ , III pp ≠  or both of 

them simultaneously. The discontinuity 

defined by relations  (20) are propagated in 

time and space with the sound speed under 
two discontinuity waves - thin shock 

waves – represented in Figure 3.  

ID , *
0 xcx =τ+ ,the left wave, IID , 

*
0 xcx =τ− , the right wave. 

 

 

Fig. 3 

 

These discontinuities ( ID , IID ) share 

the space (x, τ) in three zones defined as 
following:  

• Zone I, undisturbed by the shock 

waves, represented by the points from the 
left discontinuity with the following 

properties: 

Iuu = , Ipp = ,  τ−< 0
* cxx . 

• Zone II, undisturbed by the shock 

waves, represented by the points from the 

right discontinuity with the properties: 

IIuu = , IIpp = , τ+< 0
* cxx . 

• Zone III, disturbed by the shock waves, 

represented by the points inside the two 
waves, for which the values of speed and 

pressure will be designated  as U and P, 

different from Iu , IIu , Ip , IIp , whose 

mathematical expressions will be further 
deduced. 

• Functions  ( )τ,xu  and ( )τ,xp  which 

represent the solution of the system made 

up of equations (1), (2) are continuous 
inside fields I, II and III but they are 

discontinuous on the axes  τ+= 0
* cxx  

and τ−= 0
* cxx , which separate the 

above mentioned fields. The two 

discontinuity steps appear and are formed 

due to the initial discontinuity 
*

xx = .  
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From the above mentioned reasons, the 
issue that we presented above is called the 

issue of decomposing a discontinuity. 

Formally we cannot consider functions 

( )τ,xu  and ( )τ,xp  as solutions of the 

system made up of equations (1), (2) as 

these are discontinuous. From this cause the 

functions above represent the generalized 
solution of the system (1), (2) of the issue of 

the decomposing of a discontinuity.  

If we apply the integral equation (5) on 

the close contour Γ defined in the vicinity 
of a discontinuity, as in Figure 4, we get 

the relation  

0D][
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ρ
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  Fig. 4 

 

The symbol [ ]u  represents the sprint of 

speed on the discontinuity cure, speed 

defined by 
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Using the notations from the figures, 

from relation (21) the following system of 

equations result: 
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Solving the above system we get the 

auxiliary measurement that represents the 
speed at the half of the temporal interval, 

value valid for field III from figure 4.  
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Similarly, from the integral equation (11) 

applied on the closed contour Γ from the 

vicinity of the discontinuity curve, we get 
the relation 
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The measure [ ]2

0/ cp  represents the 

sprint of pressure on the discontinuity cure. 

Taking into account the way in which the 
discontinuity speed D is defined, we get 

the equation system: 
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By solving the system above we get the 

expression of auxiliary quantity that 

represents the value of pressure defined at 
the half of the temporary interval, value 

which has sense only in the field  III. 
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Combining the relations (10), (16), (20) 
and (23) we get the following equation 

system in finite differences, which allows 

us to numerically determine the solution of 

the equation system (1), (2) on the basis of 
discontinuity decomposing: 

 







−













 −
ρ−

+
ρ

∆

τ∆
−=

−+−+
−

+
−

22

2/12/1

00

2/12/1

02/1
1

2/1

n
j

n
j

n
j

n
jn

j
n
j

uu
c

pp

x
uu

                              



















 −
ρ−

+ −−−−

22

2/32/1

00

2/32/1
n
j

n
j

n
j

n
i uu

c
pp

                              (27)

as well as   
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In order to analyse the conditions in 

which the approximation scheme (27), (28) 

is established we use Fourier method and 
the notation 

x
c

∆

τ∆
=γ 0 , 

 

that is called  Courant’s number. From the 

stability condition the second degree 

equation in λ  results with the solutions: 

( ) ϕγ±ϕ−γ−=λ sincos112,1 i . (29) 

We look for the condition for Courant’s 

number  that satisfies  1≤λ , meaning 
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Finally the condition for which the 
scheme is stable results, meaning 
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3. The Validation of the Calculation 

Method 

 

We made an analysis in order to validate 
the model; the analysis was made on a 40 

kilometer-long pipe that transports crude 

oil. We considered initially the pipe full of 
oil and then we analyzed the non-

stationary flow from the moment we 

started pumping to the moment in which 

the flow became stationary.   
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We compared the slope of the pressure 
fall from the non-stationary movement 

with the slope corresponding to the 

stationary movement, the result being that 
they are identical. This thing leads us to 

the hypothesis that the stationary 

movement of the crude oil in the pipe is 

gradually developed behind the 
discontinuity wave. Practically, beginning 

and developing the movement of the crude 

oil through the pipe is done progressively 
from the pumping head to the supply head, 

behind the discontinuity wave. The 

phenomenon is a phenomenon that 
develops rapidly in time. 

In figure 5 the synthesis of the results is 

presented for the non-stationary period, 

with friction, of the crude oil. 
 

 

  

Fig. 5 

 
At the top of the graphic the pressure 

variation appears, and at the bottom the 

speed variation in the non-stationary 

movement period. The time expressed in 
seconds is inscribed on each curve. Once 

the pumping process starts along the pipe a  

pressure wave is created; it propagates 

along the column due to the environment 
elasticity.   

 

4. Conclusions 
 

From the analysis of the results above we 

can notice the influence of the dissipative 

term, actually the influence of friction on the 
non-stationary movement. The intensity of a 

discontinuity wave characterized through 

the pressure value is diminished as the wave 
advances in the pipe to the supply head. In 

spite of these the crude oil speed from 

behind the wave remains constant, 

according to the mass conservation law. 

We compared the slope of the pressure 

drop from the non-stationary movement 
with the corresponding slope of the 

stationary movement and the result was 

that they were identical. This led us to the 
hypothesis that the stationary movement of 

the crude oil through the pipe is gradually 

developed behind the discontinuity wave. 

Practically, beginning and developing the 
crude oil movement is done progressively 

from the pumping head to the supply head, 

behind the discontinuity wave. The 
phenomenon is a phenomenon that 

develops rapidly in time. 
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The numerical model presented in this 
article describes phenomena from the 

period of the non-stationary movement, the 

results obtained with it are according to the 
experimental measurements.  
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