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Abstract: Between finite element applications, bending plate elements are the most frequently used in structural analysis. However
the advanced topics which are at the basis of the most part of these elements cannot be fully covered by the engineering educational
process. This paper contains a study of Mindlin plate finite elements in order to find or even reformulate elements, such that their
presentation becomes as simple as possible. Issues like, parametric functions, reduced and selective integration, bubble functions or
linked interpolation are avoided, but increased computational efforts are accepted if they simplify the formulation. A displacement
formulation triangle in metric coordinates was found, whith correct rank, reduced level of locking, and a  relative simple
formulation.  The presented numerical examples show an accuracy of the results, which is comparable with known elements from
available commercial structural analysis software.
Keywords:  finite elements, Mindlin plate triangle, displacement formulation

1. INTRODUCTION

The development of the six node Mindlin plate triangular finite element presented in this paper has an educational
purpose. The ecuations involved in the formulation of the element are simple. The element can be understood with the
basic plate bending theory and without advanced finite element knowledge. The elements pass the constant bending and
shear patch tests and have correct rank. The presented numerical examples show good performances.

2. MINDLIN PLATE ECUATIONS

For the plate of figure 1. the displacements of a point P(x,y,z) are:
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The plane xy of the reference system is the median plane of the plate. x  and y  are the rotations of the normal in the
xz and respectively yz plane.

yyxx uyvuxu ,, ;   . (2)

Figure 1:  Displacements and rotations
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The strains are pure bending strains:
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and transversal shear strains:
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For an izothrop linear elastic material the tensions are:
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The stress resultants used in bending plate applications are:
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a. b.
Figure 2:  a. Tensions, b. Stress resultants

Here mx and my are bending moments, mxy=myx is the torsional moment, tx and ty are the shear forces.
./6,/6,/6 2maxmin,2maxmin,2maxmin, tmtmtm xyxyyyxx   (7)

The transversal shear tensions xz  and yz  usually are small. Their variation is quadratic on the thickness of the plate.

./5.1,/5.1 maxmax tttt yyzxxz   (8)
From the equations (3)-(6), results:
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or: Dεσ  .

Here
)1(12 2

3




EtD , and k introduces the effect of nonuniform shear deformations on the thickness of the plate. For

isothropic material k=5/6.
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3. THE T6w3 ELEMENT

The element has six nodes. Nodes 4, 5, 6 are in the middle of the straight edges of the element. The coordinates of the
nodes are:  Te xxx 621 x  and  Te yyy 621 y .

The displacements of the nodes are:  Tyyyxxx
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Figure 3: The T6w3 element

The internal displacement field is:
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where  322322
3 1 yxyyxxyxyxyxP ,  02302010 22

,3 yxyxyxx P ,

 22
,3 32020100 yxyxyxy P  and  yx11 P .

P3 contains the functions of a complete polynomial of degree three in x and y, P3,x and P3,y are its derivatives, which are
incomplete degree two polynomials.

The rotations x  and y  are given by the derivatives of the transversal displacements, completed by linear
transversal shear deformations described by six independent parameters α11, ... , α16. By adding the terms

2
18172 yxyx   and xyxy 18

2
17 2  , the rotation fields become complete degree two polynomials.

The unknow parameters α=(α1 α2 ... α18)T can be determined from the nodal displacements of the element.
The relations between the nodal rotations  which are vectorial quantities and the internal rotations  which are slopes
are: yx    and xy   . The relation between the nodal displacements and the internal displacement field

parameters  is:
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Or: .Cαa 

Results aCα 1 .
Using the above relation, the displacement field becomes:

NaaPCu  1 . (12)
Here N contains the displacement interpolation functions. The transversal displacements depend both on the nodal
displacements and rotations. It can be shown that the displacements on the common edge of two neighbouring elements
are compatible.
The displacement derived strains are:
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where  0026002000,3 yxxx P ,
 yxyy 6200200000,3 P  and
 0440020000,3 yxxy P .

The equilibrium of an element can be expressed as:
fka  . (14)

Where


eV

T dvDBBk , (15)

is the stiffness matrix of the element and


eA

T dAqNf (16)

are the nodal forces resulted from the loads q distributed on the Ae surface of the element.
Integral (15) on the volume Ve of the element is computed by the midpoint quadrature rule which is exact for quadratic
integrands and reduces the shear locking effect introduced by the 2

18172 yxyx   and xyxy 18
2

17 2  ,
rotation terms.  For uniform transversal load q, (16) becomes: f = qAe/3*(0 0 0 1 1 1 0 0 0 0 0 0)T.

4. NUMERICAL EXAMPLES

4.1. Patch test

The T6w3 element passes the constant bending and shear patch tests given by MacNeal and Harder [2].

4.2. Cantilever beam

A cantilever beam modeled by two t6w3 elements fully clamped at one end is subjected to three load cases as shown in
figore 4. To avoid the anticlastic curvature effect, Poisson ratio of the material is taken to be zero.

Figure 4: Cantilever beam - E = 107 (kN/m2);  = 0.

Table 1:  Maximum tip displacements (mm)
Case A

Concentrated Moment
Case B

Concentrated Force
Case C

Uniform unit transversal load
Beam theory

T6w3 element
-0.075
-0.075

0.0512
0.0512

0.01935
0.01935

4.3. Uniformly loaded square plate

A square plate of side L is considered. A quadrant of the plate is modelled by 2x2, 4x4, ... , 32x32 meshes. In the table 2
centre transversal displacements are presented for hard simply support on the sides (w=0, n=0) and two L/t ratios.
Table 3 contains centre transversal displacements for the clamped case (w=0, t=0). Although the element is not
completely free of shear locking, the results are good, especially for thick plates. In the figures 6, 7 and 8 bending
moments, torsional moments and shear forces are presented for a  fully calmped thick plate (L/t=10, w=0, t=0, n=0).
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Figure 5: The model of a quadrant of a square plate (N=2); E=10.92, ν=0.3, L=10; q=1

Table 2: Centre displacements of the uniformly loaded simply supported plate
L/t=10, w·10 L/t=1000, w·10-7Mesh, N

T6w3 [1] T6w3 [1]
2
4
8

16
32

Series

4.2796
4.2734
4.2728
4.2728
4.2728

4.2626
4.2620
4.2727
4.2728
4.2728
4.2728

4.0756
4.0623
4.0624
4.0624
4.0624

4.0389
4.0607
4.0637
4.0643
4.0644
4.0624

Table 3: Centre displacements of the uniformly loaded clamped plate
L/t=10, w·10 L/t=1000, w·10-7Mesh, N

T6w3 [1] T6w3 [1]
2
4
8

16
32

Series

1.5170
1.5045
1.5044
1.5046
1.5046

1.4211
1.4858
1.4997
1.5034
1.5043
1.499

0.9863
1.2504
1.2648
1.2653
1.2653

1.1469
1.2362
1.2583
1.2637
1.2646
1.2653

Figure 6: Bending moments for the uniformly loaded clamped square plate
Reference values: 2.328,  5.021
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Figure 7: Torsional moments for the uniformly loaded clamped square plate
Reference value: 0.773

Figure 8: Shear forces for the uniformly loaded clamped square plate
Reference values: 1.327, 4.293

4. CONCLUSION

In this paper a six node Mindlin plate triangular finite element is presented. The internal displacements of the element
are described by a complete cubic polynomial for the transversal displacements and quadratic rotations in metric
coordinates. The element passes the constant bending and shear patch tests. Although the element is not completely free
of shear locking, from numerical examples results, that it has comparable performances with the best known elements
of its type.
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