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stract:  The paper presents the stiffness evaluation of some advanced composite laminates based on epoxy resin reinforced 
th HM-, HS carbon- and Kevlar49 fibers, with plies sequence [0/90/0/90], [0/45/-45/90] and [45/-45/45/-45], laminates 
bjected under off-axis loading system.  
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 INTRODUCTION  

is well known that composite laminates with aligned reinforcement are very stiff along the fibers direction, but 
so very weak in the transverse direction. The solution to obtain equal stiffness of laminates subjected in all 
rections within a plane is by stacking and bonding together plies with different fibers orientations [1-3]. 
 composite laminate (fig. 1) formed by a number of unidirectional reinforced laminas subjected regarding to 
e loading scheme presented in fig. 2 is considered. The elasticity law for a unidirectional lamina K is: 
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here rijK  represent the transformed stiffness, σxxK , σyyK are the mean stresses of K lamina on x- respective y-
is and τxyK represent the mean shear stress of K lamina against the x-y coordinate system. 
e balance equations of the laminate structure are: 
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here nxx , nyy are the normal forces on the unit length of the laminate on x- respective y-axis and nxy represents 
e shear force, in plane, on the unit length of the laminate against the x-y coordinate system. σxx , σyy are the 
rmal stresses on x- respective y-axis of the laminate, τxy represent the shear stress of the laminate against the x-
coordinate system. tK , t represent the thickness of the K lamina respective the laminate thickness, nxxK , nyyK  
e forces on the unit length of K lamina on x- respective y-axis directions and nxyK is the shear force in plane, on 
e unit length of K lamina against the x-y coordinate system. Beside the balance equations it must be 
termined the geometric conditions also to compute the stresses. For composite laminates these conditions 
ply that all laminas are bonded together and withstand, in a specific point, the same strains εxx, εyy, γxy as well 
 for the entire laminate:  
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for all K layers. 
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Figure 1:  Constructive scheme of a composite laminate 
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Figure 2:  Loading scheme of a composite laminate 
 
According to equations (1)-(5), the elasticity law for entire laminate can be computed [4]: 
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where the laminate stiffness rij are: 
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So, the laminate elasticity law becomes: 
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Computing the laminate strains as a function of stresses, the expressions (8) are: 
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where cij represents the laminate compliance tensor. This tensor can be computed as a function of elastic 
constants. Thus [5-6]: 
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It is obvious that the laminate will exhibit different elastic constants if the loading system is applied at a 
randomly angle, Φ, to the x-y coordinate system. 
 
 
2. EXAMPLES OF ADVANCED COMPOSITE LAMINATES 
 
The architectures of some advanced composite laminates based on epoxy resin reinforced with HM-, HS carbon- 
and Kevlar49 fibers are presented in fig. 3, laminates taken into account at stiffness evaluation. 

[0/45/-45/90] [0/90/0/90] 

[45/-45/45/-45]
 

Figure 3:  Architectures of some advanced composite laminates 
 

Carbon fibers of type HM (high modulus) present a value of Young modulus larger than 300 GPa. High strength 
(HS) carbon fiber is a general purpose, cost effective carbon fiber, designed for industrial and recreational 
applications and is usually used for non structural components of aircrafts. Kevlar 49 aramid fiber is 
characterized by low-density and high-tensile strength and modulus. These properties are the key to its 
successful use as reinforcement for plastic composites in aircraft, aerospace, marine, automotive, other industrial 
applications, and in sports equipment. It is available in continuous-filament yarns, chopped fiber, woven and 
unidirectional fabrics, tissues or veils and tapes for reinforcement applications. Kevlar 49 aramid is used in high-
performance composite applications where lightweight, high strength and stiffness, vibration damping and 
resistance to damage and fatigue are key properties. Reinforced composites can save up to 40% of the weight of 
glass-fiber composites at equivalent stiffness [7-8]. 
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3. RESULTS 
 
The elastic constants Ex, Gxy and υxy for fibers volume fractions of φ = 0.5 are presented in figs. 4 – 12. 
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Figure 4:  Ex Young modulus for a [0/90/0/90] epoxy based composite laminate 
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Figure 5:  Gxy shear modulus for a [0/90/0/90] epoxy based composite laminate 
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Figure 6:  υxy Poisson ratio for a [0/90/0/90] epoxy based composite laminate 
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Figure 7:  Ex Young modulus for a [0/45/-45/90] epoxy based composite laminate 
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Figure 8:  Gxy shear modulus for a [0/45/-45/90] epoxy based composite laminate 
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Figure 9:  υxy Poisson ratio for a [0/45/-45/90] epoxy based composite laminate 
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Figure 10:  Ex Young modulus for a [45/-45/45/-45] epoxy based composite laminate 
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Figure 11:  Gxy shear modulus for a [45/-45/45/-45] epoxy based composite laminate 
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Figure 12:  υxy Poisson ratio for a [45/-45/45/-45] epoxy based composite laminate 

 
 
4. CONCLUSION 
 
Tensile-shear interactions lead to distortions and local micro-structural damage and failure, so in order to obtain 
equal stiffness in all off-axis loading system, a composite laminate have to present balanced angle plies, e.g. 
[0/45/-45/90]. Under off-axis loading, normal stresses produce shear strains (and of course normal strains) and 
shear stresses produce normal strains (as well as shear strains). This tensile-shear interaction is also present in 
laminates (fig. 13), but does not occur if the loading system is applied along the main axes of a single lamina or 
if a laminate is balanced. 
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Figure 13:  Distribution of tensile-shear interaction in a [0/90/0/90] composite laminate 
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