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Abstract:  The paper presents a theoretical approach regarding the mechanical behaviour of two kinds of composite tubes: the cross-

ply and  the balanced angle-ply ones, subjected to internal pressure. An original pre-tensioning procedure of these tubes is 
presented. The theoretical approach is accomplished on a particular type of pre-tensioned balanced angle-ply composite tube with 

plies sequence [55/-55]3. Stresses and strains are computed in all unidirectional tube layers, tube subjected to the internal pre-

tensioning pressure pp = 1.37 MPa and under the influence of temperature T = 105°C. 
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1. I
TRODUCTIO
  
 

In a multilayered composite, at the cooling from the curing temperature, thermal internal stresses can form due to 
the obstacle opposed by the thermal shrinkage of different layers [1]. Since in an unidirectional lamina the coefficient of 
linear thermal expansion (CLTE) parallel to the fibers direction is lower than that perpendicular to the fibers direction, 
at the cooling appear tensile internal stresses perpendicular to the fibers direction. Another type of internal stresses that 
are formed in a multilayered composite is represented by the swelling internal stresses due to the matrix moisture 
absorbtion. Since, due to the matrix swelling, the lamina expansion perpendicular to the fibres direction is grater than 
that along the fiber direction, in the composite are formed compression internal stresses perpendicular to the fibers 
direction and tensile internal stresses along the fibers direction. This internal stress state is one desirable. Of course, in 
some cases, the swelling internal stresses may have a negative effect. For instance, by drying exterior layers of a 
multilayered composite these will contract. These shrinkages of the superior layers will be hindered by the still swelled 
interior layers, forming unfavourable tensile internal stresses [2]. The increase of loading capability of composite 
laminates can be accomplished introducing internal stresses in composite, so that at least partially, should be made up 
for the tensile stresses transverse to the fibers direction as well as dangereous shear stresses. A special importance is 
given by the manner and the types of internal stresses that could be introduced.  
 
 
2. THE THEORETICAL APPROACH 
 
In practice we can encounter two special cases of tubes: the cross-ply composite tube and the balanced angle-ply 
composite one. The cross-ply composite tube consists from unidirectional reinforced plies with the same basic elasticity 
constants. The entire thicknesses t1 (fibers on axial direction) and t2 (fibers on circumferential direction) can be different 
(fig. 1). We suppose that the individual plies of cylindrical tubes are orthotropic ones and the wall thickness t is much 
smaller than their curvature radius, r. Therefore, the loadings of the tube wall are: 

t

rpC ⋅=σ ,            (1) 

t2

rpA ⋅=σ ,            (2) 

,0AC =τ             (3) 

where A and C represent the axial/circumferential tube direction and p is the internal pressure. For the cross-ply 
composite tube subjected to internal pressure, the elasticity laws for the entire wall thickness are [3], [4]: 
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where IIc , ⊥c  and IIc⊥  are the elastic constants and the relative thicknesses '
1t  and '

2t  can be expressed as 
following: 
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Figure 1:  Cross-ply composite tube 

For the individual plies: 
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The tube strains are: 
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0AC =γ ,                        (10) 
where: 
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IIE , ⊥E  and II⊥υ  represent the basic elasticity constants and Cσ̂  is the medium stress that acts in the circumferential 
direction of the composite tube. At the Poisson ratio, the first index represents the shrinkage direction and the second 
one is the loading direction that produces this shrinkage. The stresses in each ply of the composite tube are expressed as 
following: 
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In the case of the balanced angle-ply composite tube, the unidirectional reinforced plies present the same mechanical 
properties and the fibers develop on parallel helicoidally lines (fig. 2). The entire fibers quantity, fibers that are disposed 
under the angles α = +ω and –ω, is half the fibers quantity disposed on axial direction. In the case of the balanced angle-
ply composite tube subjected to internal pressure, the elasticity laws for the entire wall thickness are: 





⋅



=





C

A

2212

1211

C

A

cc
cc

ˆ
ˆ

ε
ε

σ
σ ,                     (16) 



 193

 
Figure 2:  Balanced angle-ply composite tube 

For the individual plies: 
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From the concordance of the first two relations of the elasticity laws (16) and (17), it results: 

C2C1CA2A1A ˆ;ˆ σσσσσσ ==== .                     (18) 
The tube strains are: 
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The stresses in each ply of the tube are: 
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The basic elasticity constants of a composite can be determined either experimentally or from the basic fibers- 
respective matrix material data. The following relations are valid for isotropic fibers embedded in isotropic matrix. For 
the Young modulus along fibers direction, the mixture rule can be used: 

( )ϕϕ −+⋅= 1EEE MFII .                      (38) 
Transverse to the fibres direction, the Young modulus will be: 
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The shear modulus, parallel and transverse to the fibers direction can be computed as following: 
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For the transverse shrinkage perpendicular to the fibers direction, at a parallel loading to these fibers, the following 
relation can be used: 

( )ϕυυϕυ −+⋅=⊥ 1MFII ,                      (41) 
and the transverse shrinkage along the fibers direction, at a perpendicular loading to these fibers is: 
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The index F refers to the glass fiber and the index M to the matrix. 
 
 
3. THE PRE-TE
SIO
I
G PROCEDURE OF COMPOSITE TUBES 
 

The purpose of pre-tensioning glass-fabric/polyester-resin tubular composite laminates is to introduce internal 
stresses in tube wall structure that can work against the operational stresses. These internal stresses may increase tube 
loading capability and its cracking limits. To attain this aim, an original mechanical device has been designed and 
developed. It consists, generally, of the following parts: a support that can be properly positioned and fixed, a lower and 
upper piston that can perform only a translation movement and a silicone rubber that can be pressed at the inner of a 
tubular specimen. The pre-tension method consists in the accomplishment of following successive steps [5], [6]. First, 
the tube specimen is manufactured in the fabric-winding process. After curing, the specimen is pulled-out of the 
mandrel. Second, the pre-tension device is positioned and fixed vertically. Third, at this stage, the tube specimen is 
heated up to 10°C above the glass transition temperature TG. In this field of temperature, the resin elasticity modules 
decreased quickly and the resin matrix became highly elastic. Fourth, the heated tube specimen is introduced into the 
pre-tension device and then the silicone rubber is pressed at the inner of the tube. Since during the heating of the tube 
specimen the matrix elasticity moduli decrease, the inner pre-tension pressure will be taken over by the fiber network. 
Fifth, while keeping the inner pre-tension pressure, the tube specimen is cooled at the environmental temperature. Sixth, 
after cooling, the tube specimen is discharged from the inner pre-tension pressure. Now, the fiber network will relax and 
in wall structure will remain a status of internal stresses. After these six stages, the tube specimen is removed from the 
device and it is stored 24 hours in a controlled atmosphere room (T = 20°C and 50% relatively air humidity). This is 
necessary to reduce the internal stresses relaxation due to possible strong temperature and humidity changes. A special 
note regarding the silicone rubber used for the pre-tension operation can be added here. This material acts like a liquid 
with extreme high viscosity and its volume decreases very little with the increase of the pre-tension pressure, so that 
theoretically it can be considered incompressible. 
 
 
4. MECHA
ICAL BEHAVIOUR OF [55/-55]3 PRE-TE
SIO
ED COMPOSITE TUBE 
 
Using the above described pre-tensioning method, a [55/-55]3 balanced angle-ply composite tube based on unsaturated 
polyester resin have been heated at 105°C (fig. 3). At this temperature, the matrix basic elasticity constants pE⊥  and 

p#G  are strongly diminished until pE⊥ ≈ 250 MPa and p#G ≈ 100 MPa. According to these values and using the 
relations (38) – (42), in tables 1 – 3 the following input data are presented. 
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Table 1:  Basic elasticity constants at pre-tension 
Young modulus, pIIE  [MPa] 27350 

Young modulus, pE⊥  [MPa] ≈ 250 

Shear modulus, p#G  [MPa] ≈ 100 
Fibers volume fraction [%] 35 
Poisson ratio, pII⊥υ  [-] 0.36 

Poisson ratio, pII⊥υ  [-] 0.11 

 
Table 2:  Basic elasticity constants at pre-tension for isotropic materials 

 E-glass UP resin 
Young modulus, E [MPa] 73000 ≈ 95 
Shear modulus, G [MPa] 29200 ≈ 33 

Poisson ratio, υ [-] 0.25 0.42 
 

Table 3:  Geometric and pre-tension data 
Tube diameter [mm] 80 
Plies thickness [mm] 0.4 

Tube wall thickness [mm] 4 
Internal pre-tension pressure, pp [MPa] 1.37 

Fibers winding angle [°] ± 55 
 

 
Figure 3:  Schematic representation of [55/-55]3 tube windings 

According to these input data, the relations (28) – (37) can be then computed. The pre-tensioning circumferential 
stresses, pCσ  according to the tube winding 1 (ply UD1 and UD2) are: 
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for tube winding 2 (ply 3 and 4): 
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and for tube winding 3 (ply 5 and 6): 
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Similar judgements regarding the calculus of the pre-tensioning axial stresses can be made: 
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Stresses and strains can be computed in all unidirectional tube layers, tube subjected to the internal pre-tensioning 
pressure pp = 1.37 MPa and under the influence of temperature T = 105°C. The results are shown in table 4. 
 

Table 4:  Windings stresses and strains 
Winding 1 Winding 2 Winding 3 Stresses and strains at pre-tension 

UD1 UD2 UD3 UD4 UD5 UD6 
Circumferential stress [MPa] 69.18 69.18 34.93 34.93 23.51 23.51 

Axial stress [MPa] 34.59 34.59 17.46 17.46 11.75 11.75 
Circumferential strain [-] 0.0036 0.0036 0.0018 0.0018 0.0012 0.0012 

Axial strain [-] 0.0038 0.0038 0.0019 0.0019 0.0013 0.0013 
Shear stress, pACτ [MPa] -47.57 47.57 -24.02 24.02 -16.16 16.16 

Stress, pIIσ [MPa] 102.53 102.53 51.77 51.77 34.84 34.84 
Stress, p⊥σ [MPa] 1.28 1.28 0.64 0.64 0.43 0.43 

Shear stress, p#τ  [MPa] 0.013 -0.013 0.006 -0.006 0.004 -0.004 
 
 
5. CO
CLUSIO
S 
 
Regarding the mechanical behaviour of a balanced angle-ply [55/-55]3 composite tube, the following conclusions can be 
drawn: due to the low values of internal stresses p#τ , these can be neglected so that in the case of a tube pre-

tensioning, the tensile internal stresses along the fibers direction FpIIσ play a significant role in a further tube’s 

reloading; these tensile internal stresses FpIIσ can cause compression internal stresses in matrix FpIIMcII σσ −=  
that act in the sense of the increase of tube’s loading capability. In the case of reloading the [55/-55]3 composite tube, to 
reach the value of compression internal stress in matrix 53.102McII −=σ  MPa is necessary a tube reloading by an 
internal pressure of 1.74 MPa, which means an increase of tube’s loading capability of 16% versus the reference 
internal pressure of 1.5 MPa 
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