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Abstract: In nuclear power plant reactors, the mechanical components are surrounded by heat-conducting fluid in steady
motion. Some of them, such as fuel-rod assemblies, are separated by very small clearances. Non-linear vibratory behavoir
can be induced either by the steady excitation or accidentally, due to seismic excitation for example. An approximate
analytical procedure is presented to estimate the power spectral density of response of n random excitation of non-linear
oscillator with non-linear damping characteristic in the fluid medium. A natural method of attacking non-linear problems ist
a replace the governing set of non-linear differential equations by an equivalent set of linear equations. The method will
be briefly discussed in the following sections. Fundamental theory of this Iinearization procedure
can be found in Caughey, Koberts and Spanos.
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1. SYSTEM MODEL

For the sferic body with a mass m, caught at end of a spring with a elastic constant k ,when the lenght of the
undeformed spring is /,, at random excitations in a liquid with the viscosity coefficient y .

Consider a n-degree-of-freedom system, exposed to the simultaneous action of n forces: W,(¢),W,(t) ... W, (¢)
Let 77y, ®, Ty, ®,... Ty, (¢) denote the effect of the forces W,(¢),W,(t) ...and W, () on the system response,

when the forces are applied separately. As the loads are applied on different degrees of freedom, the transfer of
the excitations is described by two different mechanical transfer functions [1], H,(®),H,(®),... H,(®). To
illustrate the procedure, let us consider the following oscillator with a nonlinear restoring force component. If the
distance in the horizontal direction OA is equal with d>/;, the motion equation is
. ' 3 5 204l

mn(t)+c[n(t)+eryn ()+ersn (O+..+er,,n  (OFF.+FcosA=W(t), (D)
where W(¢) is the external excitation signal with zero mean and 7(¢) is the displacement response of the
system, F, is the resistence force met in its movement in the liquid, proportional with the liquid viscosity y,
with the representative lenght of the body 1 and its velocity v, F.=Kylv, ry,7s,...,13,,, is the nonlinear factor to
control the type and degree of nonlinearity in the system and 77(¢) is the displacement response of the system.
For a sferic body K=6x,/=r,so F,=6zryv.If A is the angle of inclination of the horizontal spring, and AB is
deformed spring length at some time t, we write:

F=k(4B—l,), OB=ABcosA, cosi———P— p>= )

d*+n m

result

3 5 2n+l
ﬁ(r)+(2§p+6m%] (1) +ers 7 ()4ersn (rtermn s (O P (1—%’]00%172 2%773(f)=W(t) e

where & is the critical damping factor and p is the undamped natural frequency, for the linear system.
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We aplicate

2\, 2 4
" :l I+ 772 +l 1—77—2+377—4+... . “)
Jd2+,72 d\ d d\ 24° 8d

Using the notation

h(n(®),n(®)) = [2519 +67rrn11j[77(t) +ern O+ersn (O+..+

®)
2n+l / 5 IO 3
2 0

Feh,an  (O]+p (1—Ej77(t)+19 By (@)
the equation of motion can be rewritten as:

0O+ h(n(0),n(1) = w(t) . (6)
The idea of linearization [2,3] is replacing the equation by a linear system:

DO+ Boen 1)+ Ve (6) = W(2) @)

It is necessary to minimize the expected value [1,2] of the difference between equations (2) and (3) in a least
square sense.

Now, the difference is the difference between the nonlinear stiffness and linear stiffness terms , which is
3 5

&= (Efp n 6;;1»1)[;;(;) +ern (D+ern (0)+
m ()

. 2n+l

et ern i (O1= Been 1) = Ve 1(0)
The value of S, and y,, can be obtained by minimizing [3] the expectation of the square error.

The expression of fS,., and y,, can be obtained as:
E{(n*\E{nhy—E{nn}Einh
B = in”JE{n }; inmEn }, )

Em*yEln y~(Enn})?
2

_E{n JE@h-EnmEnh;

ech P (10)
E* Eln y—~(Etnn)?
The linear equation [2,3] for the random excitation is
- E{nh} -, E{nh
70+ E18 )+ E{’Qi 706 = (o). (an
Ein }
The displacement variance [1,2] of the system under Gaussian white noise excitation can be expressed as
o S
o =L 0 o, (12)
no Mmoo 5 _
Btz | | B
E{n"} :
Emn §
where the frequency response function [4] of the single degree of freedom system is
1
H(w)= . (13)
ml —e? +ia)E{nf} +E{nf}
o, BT
Ein }
From the Fourier-transforms [ 1] of the response, results:
n (@) = H(@)Fy, (@) ,1,(0) = H(©)Fy, (0) ... 0, (@) = H(@)Fy, (o) (14)

and the complex conjugates of these expressions are
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7 (@) =H (0)F y (0), 1 (@)= H (0)F y, (0)...7 (@)= H (@)F y, () (15)
The response spectrum is real:

n 2 n N
Sy@)= , |Hy(@) Sy (@)+2Re > H (@)H,@)Syy (@) (16)
=
r<s
For completely uncorrelated processes we have
Smm(a)):Smm_(a))zo,r;ts (17)

and the power spectral density of the response is
- 2
S@=>_ |H (@) Sy @. (18)
j=1

For completely uncorrelated processes we have
S, (@) =Sy (@)=0,r#s (19)
and the power spectral density of the response is

4 2
S @)= |H @) Sy @. (20)
=1
The variance of the process W(¢) is [4,5]

2 2
S,y dar= LO‘H(a))‘ [Siy (S, (O)+..S,y, (cor+

& =R, (0):_[°° ‘H(a))
TI —O0|

Sy (@1Sy, (O)+...Sy, (@H2Re D S,y (@)

=l

" . i 1)
2ReD Sy (@)= _[ _ s —da
r=1 e 2 .
= ? @g@a}j wa| 1
I E }
The velocity variance [4,5] is given by:
2 2 n
o = [: o |H(e) Sydeo= J: @ |H(@) [Sy (S, (.S, (2R Sy (). (22)
n r=
s=1

r<s

The power spectral density of response [5,6] is

SHO+S (D +.Sy (2R 5y (@]
=

s=1

S (@)= = (23)

n? {E{’ﬁ} _Q%Jz +3| P

Ear}

2. NUMERICAL RESULTS:

N

Form=lkg, n=2, d=lm, k=36-", c=4> | =0,5m, r=610"m,a=3m S, =S, =S, =2N-s,
m

m

2

‘2
En}

7 =410’ s> /m?, s =2,7410°s*/m*, £=0,01 can by written:

p:\/z:6sl’£=2§19:>§
m m

=0,33,
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30 1.1 x
M=) ==I(=)=——. 25
(2) 5 (2) 5 (25)
By adding two important formulas
63 4
E{n y=—-0’ Eln } (26)
4
4 2
E{n }=—r0" Bl } 27
4
2
(c+67ry) o +1210(1+37rr7jﬁ50—(c+67rr;/) 1—1—0
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Fig. 1. The power spectral density of response S, [m2 -s] for the power spectral density of excitation

So =2N?.s and y:l,393-10’2k—g (glycerin)
m-s

Obtain
o?,=0,24m’ . 29)
The standard deviation of vellocity is

0_2.: 272'S0 _ 27Z'S0 ) (30)
7 m(2§p+67rr,u) c+6mry

or
2
m
0'2_ :2,16—2
n N

(€2))

3. CONCLUSION

It observes the modus in witch the medium values are decreasing the standard deviation and velocity variance of
the moment and for speed at the grow of fluid viscosity. The decrise tens to a form approximately linear . Also
observing the decrise of pulsation at the rize of viscosity. Efficient equivalent linear systems with random
coefficients for approximating the power spectral density can be deduced. The resonant peak is described very
satisfactorily by the approximate solution.
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