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Abstract: The Big BangBig Crunch (BBBC) optimization method is a recently developed meta-heuristic algorithm that mimics the
process of evolution of the universe. BBBC has been proven very efficient in design optimization of skeletal structures but yet
computationally more expensive than classical meta-heuristic algorithms such as genetic algorithms and simulated annealing. To
overcome this limitation, the paper presents a novel hybrid formulation of BBBC where the meta-heuristic search is hybridized by
including gradient/pseudo-gradient information as a criterion to perform new explosions. Each new trial design is formed by
combining a set of descent directions and eventually corrected in order to improve it further. The new BBBC algorithm is
successfully tested in two classical weight minimization problems of a spatial 25-bar truss and a planar 200-bar truss.
Keywords: Truss structures; Weight optimization; Big BangBig Crunch Optimization; Hybrid algorithms.

1. INTRODUCTION

Weight minimization of truss structures is an important engineering field under continuous development. Random
search allows to explore a larger fraction of the design space than in the case of gradient-based optimization. In order to
rationalize the search process and approach the region hosting the global optimum by performing only a limited number
of structural analyses, a variety of meta-heuristic optimization methods inspired by biology, evolution theory, social
sciences, music, physics and astronomy were developed [1-2].
Genetic Algorithms (GA) and Simulated Annealing (SA) were the first meta-heuristic optimization methods to be
applied in structural design problems and are still widely utilized nowadays. The second generation of meta-heuristic
algorithms released in the last 10 years includes population-based methods such as Particle Swarm Optimization, Ant
Colony Optimization, Harmony Search and Big BangBig Crunch. In particular, Big BangBig Crunch (BBBC) [3] is
one of the most recently developed meta-heuristic algorithms (the first paper on this subject was published in 2006).
BB-BC reproduces the evolution of the universe: each explosion generates a state of chaos which is followed by a state
of order that will last until the next explosion. In the optimization process, a set of candidate designs is randomly
generated over design space (i.e. “explosion phase”). The centre of mass of these designs is determined as a weighted
average (i.e. “contraction phase”) where each weighing coefficient depends on the value of cost function evaluated for a
trial design. A new population is generated randomly by perturbing optimization variables in the neighborhood of center
of mass. The explosion/contraction sequence is repeated until convergence.
The inherent simplicity of BBBC soon attracted structural optimization experts and several examples of application to
design optimization of skeletal structures are documented in literature [4-7]. However, BBBC implementations have a
common feature in the fact that new explosions about the center of mass are always performed after that the position of
center of mass has been updated. This entails NPOP new structural analyses in each new explosion. Furthermore, there is
no guarantee that each newly defined center of mass will always lead to improve the current best record. Starting from
these considerations, the present authors developed a novel BBBC formulation including gradient information as a
criterion to generate new trial designs and perform new explosions [8]. The above mentioned formulation is further
improved in this study and successfully tested in two classical weight minimization problems of a spatial 25-bar truss
and a planar 200-bar truss under multiple loading conditions.

2. WEIGHT MINIMIZATION PROBLEM FOR A TRUSS STRUCTURE

The weight minimization problem for a truss structure comprised of NOD nodes (k=1,…,NOD) and NEL elements
(j=1,…,NEL) can be stated as follows:
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Minimize    W(X) 
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where:
 xj is the cross-sectional area of the jth element of the structure included as sizing variable in the optimization process:
each sizing variable can range between the corresponding lower bound xj

L and upper bound xj
U;

 lj is the length of the jth element of the structure;
 g is the gravity acceleration value (9.81 m/s2);  is the material density;
 NLC is the number of independent loading conditions acting on the structure;
 u(x,y,z),k,ilc are the displacements of the kth node in the directions x,y,z, varying between limits uL

(x,y,z),k and uU
(x,y,z),k;

 j,ilc is the stress in the jth element, varying between the limits j
L (compression stress limit may include critical

bucking load) and j
U (tensile stress limit);

 The ilc subscript (ilc=1,…,NLC) refers to the ilcth loading condition. All nonlinear constraints are normalized with
respect to displacement and stress limits.

For optimization problems including also nodal coordinates as lay-out variables, Eq. (1) can be rewritten as:

Minimize    W(X) 
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where xj1,2, yj1,2, zj1,2 are the coordinates of the nodes limiting the jth element of the structure.
Based on the degree of structural symmetry, variable linking can be adopted by grouping the NEL elements in NGR

groups: each group includes elements with identical stiffness (i.e. cross-sectional area) properties. This approach allows
the number of design variables to be reduced thus simplifying the optimization process.

3. DESCRIPTION OF THE NEW BIG BANGBIG CRUNCH FORMULATION

There is only one parameter that must be initialized in the Big Bang–Big Crunch algorithm: the number of trial designs
NPOP included in the population. Let Xk (x1

k, x2
k,…, xNDV

k) be the kth design included in the population (k=1,…,NPOP).
The following generation scheme is utilized to create the initial population for an optimization problem including NDV
design variables (j=1,…,NDV):
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where DG , j
k is the random number in the interval (0,1) for the jth optimization variable considered in the kth generation.

The center of mass XCM of the initial population, randomly generated over the entire search space with an explosion,
is defined as in the classical BBBC implementations:
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where Wk is the cost function value computed for the kth candidate design.
The definition of the center of mass (4) implies the centre of mass always be at least better than the worst design

included in the population. Therefore, two possible cases should be considered to cover any possible scenario: (i) the
center of mass is better than the current best record, that is: W(XCM)<W(XOPT); (ii) the center of mass is worse than the
current best record, that is: W(XCM)>W(XOPT).

If W(XCM)<W(XOPT) and XCM is feasible, the new BBBC algorithm simply replaces the worst design of the
population with the center of mass without performing any new explosion. The position of the center of mass is updated
until the condition W(XCM)<W(XOPT) remains satisfied and XCM is feasible. The current best record XOPT changes with
respect to the previous iteration as it coincides with the new center of mass. However, the condition W(XCM)<W(XOPT)
is not very likely to occur as the quality of the design corresponding to the center of mass accounts also for the presence

(1)
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of sub-optimal designs. Two strategies for updating design variables were originally developed in [8] to deal with the
case W(XCM)>W(XOPT).

The first design updating strategy (indicated as “Variant 1” in Ref. [8]) is similar to that implemented in the “global
annealing” scheme described in [9]. The cost function gradient W (XCM) is computed at the center of mass XCM.
Each optimization variable xj is randomly perturbed so to have (W/xj)xj<0. That is:

W/xj>0 xTR , i = 0.5 . (xCM , j +xOPT , j )  (xj
U  xj

L).NRND,j
. j

. WOPT, l  1 / WOPT, l
W/xj<0 xTR , i = 0.5 . (xCM , j +xOPT , j ) + (xj

U  xj
L). NRND,j

.  j
. WOPT, l  1 / WOPT, l

where: the random numbers NRND,j are chosen in the interval (0,1) for each design variable (j=1,…,NDV); each
weighting coefficient j is defined as |W/xj| / ||W (XCM)||; WOPT, l and WOPT, l 1 are the last two current best record
values taken by the cost function.
Equation (5) shows that the new trial design XTR is generated by perturbing optimization variables with respect to the
middle point XMID of the segment limited by the current center of mass XCM and the current best record XOPT.
In truss sizing optimization problems, the search direction STR(x1,x2,…,xNDV) defined with Eq. (5) is always a
descent direction because cost function gradients are constant over design space as cost function is linear with respect to
design variables. The direction [XOPTXCM] also is a descent direction containing the middle point XMID. Therefore,
there is a high probability of improving design as the optimization variables are being perturbed in the neighborhood of
the current best record by moving along the descent direction STR. Perturbation of optimization variables with respect to
XMID allows the search process to be maintained close enough to the current best record but, at the same time, far
enough from constraint domain boundaries. The latter can reduce the risk of generating infeasible trial points when the
search process is converging to the optimum design.
Weighting coefficients j also are constant over design space: this may lead to generate always the same movements if
the sequence of random numbers is repeated in the subsequent iterations. The ratio WOPT , l  1 / WOPT , l accounts for the
current trend taken by the cost function in the optimization process thus forcing the optimizer to take movements large
enough to maintain at least the current rate of reduction in cost function.

The second strategy for updating design variables (“Variant 2” in Ref. [8]) deals with the more general case of cost
function gradients not available explicitly and resembles the novel harmony search scheme developed in [10].

Figure 1. Generation of a new trial design in BBBC “Variant 2” of Ref. [8] and further improved in this study

Variant 2 is illustrated by Figure 1. Descent directions SBEST and SFAST correspond to the largest reduction in weight and
to the steepest reduction in weight with respect to the center of mass XCM. Let us assume that there are Nbetter candidate
designs that are actually better than the center of mass. The descent direction S k=[Xbetter

kXCM] (k=1,...,Nbetter) can be
defined: the quantity Wk =[W(XCM)W(Xbetter

k)] represents the reduction in cost that would be achieved by moving
away from the centre of mass towards the candidate design Xbetter

k included in the population. The new trial design XTR
is hence generated as follows:

BESTBESTFASTFASTCMTR SSXX   (6)

where FAST and BEST are two random numbers in the interval (0,1) generated for SFAST and SBEST, respectively.
However, the random nature of Eq. (6) may cause some component of the internal product [XTRXCM] T W (XOPT) to
be positive in sign since SFAST and SBEST are descent directions with respect to the center of mass but not necessarily
also with respect to the gradient of cost function W (XOPT). For this reason, the search vector [XTRXCM] obtained
from Eq. (6) was translated to the position of the current best record. Hence, Eq. (6) was rewritten as:

(5)
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  jBESTBESTFASTFASTj,OPTjTR ]SS[signXX   (7)

if, for the jth design variable, the corresponding component of the [XTRXCM] vector does not lie on a descent direction
with respect to W (XOPT). Therefore, the “sign” parameter was set equal to 1 if the corresponding jth component of
the internal product yields [XTRXCM] T W (XOPT)<0, or equal to 1 if  [XTRXCM] T W (XOPT)>0.
The quality of the new trial design XTR is evaluated through calculation of structural weight and constraint margins. If
the correction strategy (7) is utilized, the jth term of the internal product [XTRXCM] T W (XOPT) represents the actual
change in structural weight for sizing optimization problems of truss structures as their cost function is linear in sizing.

Unlike classical BBBC, no explosions are performed until each new trial design keeps improving the current best
record. The center of mass is updated with Eq. (4) as the new best record replaces the worst design of the population.
Since new explosions are performed only if all improvement routines failed, the BBBC formulation [8] allowed the
number of structural analyses to be considerably reduced with respect to classical BBBC: at least by NPOP analyses for
each optimization iteration. Remarkably, no information on constraint gradients was required in the optimization
process if design variables are perturbed with Eqs. (6-7). The optimization algorithm hence becomes a BBBC scheme
with infrequent explosions. Approximate line searches might also be performed if the center of mass XCM ends up
infeasible but the corresponding structural weight/cost is better than for any design included in the population.
However, such an eventuality is highly improbable if one considers the definition of center of mass of Eq. (4).

In the present research, Variants 1 and 2 have been merged to generate the new trial design vector XTR as follows
(j=1,…,NDV):

jj,CMj,OPTj,CMj,ndbest2j,CMj,FAST
j,OPTj,CM

j,TR )xx()xx()xx(
2

xx
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Therefore, the new BBBC optimizer is now forced to generate a new trial design taking information from several
“good” regions of design space. In fact, the new design is formed by combining four descent directions instead of just
two directions such as it happened for the original BBBC formulation of Ref. [8]. The “mirroring” of the trial design
about the current best record is utilized to steer back the search process to a descent direction:

Xadd’ = 2XOPT  MIRRXTR (9)

In the above equation, the random number MIRR limits the step size of the jth variable thus reducing the risk that the
corrected design will turn infeasible if it tends to reduce cost function too sharply.

In the present formulation, each new explosion is performed about the middle point XMID between the current best
record and the current position of the center of mass while in Ref. [8] each new explosion was performed about the
current position of the center of mass, following the classical BBBC optimization scheme. This elitist strategy allows
the search process to better explore the neighborhood of the current best record thus limiting the effect of the presence
of less efficient designs intrinsically considered by the definition of center of mass. New explosions are now performed
as follows (j=1,…,NDV; k=1,…,NPOP):
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An interesting feature should be underlined. Unlike classical BBBC, perturbation steps given to design variables in
each new explosion by using Eq. (10) are not necessarily shrunk as the optimization process progresses. This allows the
optimization search not to be confined in regions of the design space containing only local minima and hence enhances
the meta-heuristic algorithm’s capability to explore the entire design space.

4. TEST PROBLEMS

The new BB-BC algorithm described in this paper is tested in two classical weight minimization problems of truss
structures. The first test case is the optimization of the spatial 25-bar truss structure shown in Figure 2a; the structure
has 10 nodes. The Young modulus of the material is 68.971 GPa while the mass density is 2767.991 kg/m3. The
structure is optimized with 8 sizing variables corresponding to the cross-sectional area of each group of elements in
which the structure can be divided in view of structural symmetry (see Ref. [9] for more details). The structure must
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carry two independent loading conditions: (i) 4.45 kN acting in the positive X-direction at node 1; 44,5 kN acting in the
positive Y-direction and 22.75 kN acting in the negative Z-direction at nodes 1 and 2; 2.28 kN acting in the positive X-
direction at nodes 3 and 6; (ii) 89 kN acting in the positive Y-direction at node 1 and in the negative Y-direction at node
2; 22.75 kN acting in the negative Z-direction at nodes 1 and 2.
There are 124 nonlinear optimization constraints on nodal displacements and member stresses. Displacements of the top
nodes 1 and 2 in the coordinate directions X, Y and Z must be less than ±0.00889 m (±0.35 in). The stress limit in
compression accounts also for buckling strength and hence is different for each group of elements [9]. The stress limit
in tension is uniform and equal to 275.89 MPa (40,000 psi). The minimum area gauge is 0.064516 cm2 (0.01 in2).

a) b)
Figure 2. Schematic of the truss structures optimized in this study.

The second test case is the optimization of the planar 200-bar truss structure shown in Figure 2b; the structure has 77
nodes. The Young’s modulus of the material is 206.91 GPa while the mass density is 7833.413 kg/m3. The structure is
optimized with 29 sizing variables corresponding to the cross-sectional area of each group of elements in which the
structure can be divided from structural symmetry (see Ref. [9] for more details). The structure is subject to three
independent loading conditions:
a)  4.45 kN (i.e. 1000 lbf) acting in the positive X-direction at nodes 1, 6, 15, 20, 29, 34, 43, 48, 57, 62 and 71;
b)  44.5 kN (i.e. 10000 lbf) acting in the negative Y-direction at nodes 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 15, 16, 17, 18, 19,
20, 22, 24, 26, 28, 29, 30, 31, 32, 33, 34, 36, 38, 40, 42, 43, 44, 45, 46, 47, 48, 50, 52, 54, 56, 57, 58, 59, 60,61,62,64,
66, 68, 70, 71, 72, 73, 74, 75;
c) Loading conditions a) and b) acting together.
The optimization must be performed with 1200 non-linear constraints on member stresses. The allowable stress (the
same in tension and compression) is 68.97 MPa (i.e. 10000 psi). Cross-sectional areas can vary between 0.64516 cm2

(i.e. 0.1 in2) and 645.16 cm2 (i.e. 100 in2).

5. RESULTS AND DISCUSSION

The new Big BangBig Crunch algorithm developed in this research was implemented in Fortran 90. Optimizations
were performed on a standard VAIO laptop equipped with a 2.67 GHz Intel Pentium® I5 processor and 4 GB of RAM
memory. The test cases considered in this study are indicative of the ability of the optimizer to find the global optimum
as the existence of local minima has been documented in literature (see, for example, Ref. [9]).

The present algorithm was compared with the Big BangBig Crunch formulations implemented by Camp [4],
Kaveh and Talatahari [5] and two of the present authors [8], and to other state-of-the-art optimization algorithms like
basic harmony search developed by Lee and Geem [11], improved harmony search developed by Lamberti and
Pappalettere [10], self adaptive harmony search developed by Degertekin [13], heuristic particle swarm optimization
(HPSO) developed by Li et al. [12], and multi-level and multi-point simulated annealing algorithm [9].

In the 25-bar truss problem, the size of the population NPOP was set as 20. Different population sizes ranging
between 10 and 200 candidate designs were instead considered for the 200-bar truss problem to investigate the
sensitivity of the new BBBC algorithm to the number of candidate designs.

Table 1 presents the optimization results obtained in the 25-bar truss problem. The BBBC algorithm described in
this paper found the lightest weight overall but the optimized design violated displacement constraints. However,
constraint violation is much smaller than for the BB-BC algorithm developed by Kaveh and Talatahari [5]: 0.05% vs.
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0.206%. By including this constraint violation as weight penalty, the optimized weight raises to 247.383 kg which is
absolutely competitive with the structural weight obtained by Camp [4].

The present BBBC algorithm is slightly less efficient than the BBBC formulation presented in Ref. [8] as it
performed more explosions (i.e. 8 vs. 3) and converged to a slightly infeasible design. However, in spite of having
required more than two times the number of explosions of [8], the present BBBC formulation required about the same
number of structural analyses to complete the optimization process. Therefore, the present algorithm is absolutely
competitive with that of Ref. [8]. Furthermore, convergence curves plotted in Figure 3 indicate that the present BBBC
algorithm reduced the truss weight more quickly than the other meta-heuristic algorithms taken as basis of comparison.

Table 1. Optimization results obtained for the spatial 25-bar truss structure

Design variables
BB-BC
(Present)

BB-BC [8]
(Average)

BB-BC
[4]

BB-BC
[5]

SA
[9]

Improved HS
[10]

HPSO
[12]

1 0.0100 0.0100 0.010 0.010 0.0100 0.0100 0.010
2 2.0738 1.9871 2.092 1.993 1.9870 1.9871 1.970
3 2.8665 2.9934 2.964 3.056 2.9935 2.9935 3.016
4 0.0100 0.0100 0.010 0.010 0.0100 0.0100 0.010
5 0.0100 0.0100 0.010 0.010 0.0100 0.0100 0.010
6 0.6761 0.6839 0.689 0.665 0.6840 0.6839 0.694
7 1.6637 1.6769 1.601 1.642 1.6769 1.6769 1.681
8 2.7067 2.6623 2.686 2.679 2.6621 2.6622 2.643

Structural weight
(kg)

247.259 247.282 247.380 247.280 247.281 247.282 247.294

Number of
structural analyses 593 (8) Var. 1: 582 (3)

Var. 2: 503 (3)

20566 12500 400 1050 750

Constraint
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0.050 None
None 0.206

None None None

200
250
300
350
400
450
500
550
600
650
700
750
800
850
900
950

1000
1050
1100
1150
1200
1250
1300
1350
1400
1450
1500
1550
1600
1650
1700
1750
1800
1850

0 5 10 15 20 25 30 35 40 45 50 55 60

St
ru
ct
ur
al
w
ei
gh
t(
kg
)

N u m b e r o f o p tim iza tio n  ite ra tio n s

B ig  B a n g - B ig  C ru n c h  (P re s e n t)

B ig  B a n g - B ig  C ru n c h  [8 ]

S im u la te d  A n n ea lin g [9 ]

Im p ro ve d  H a rm o n y S e a rc h  [1 0 ]

Figure 3. Convergence curves for the spatial 25-bar truss problem

The optimization results obtained for the 200-bar truss structure are listed in Table 2. It can be seen that the average
optimized weight found by the present BBBC algorithm practically coincides with the target optimum weight quoted
in literature: 11542.417 kg vs. 11542.409 kg. The present BBBC formulation outperformed the improved BBBC
algorithm [8] from which it was originated. In fact, the optimized designs obtained in the present study are practically
insensitive to the choice of initial population and the optimization algorithm never got trapped in the local minimum of
11544 kg which was instead found in [8] by setting NPOP=20 and NPOP=50. However, optimization constraints are
slightly violated in the present study while they were fully satisfied in [8].

The present algorithm required much more optimization iterations (i.e., on average 103 vs. 37) and structural
analyses (i.e. on average, 2593 vs. 983) than the original formulation reported in [8]. However, the number of structural
analyses per optimization cycle required in the present case (i.e. about 25) is practically the same as in Ref. [8]. This
leads to conclude that the present search mechanism has the same computational cost as the search mechanism
employed in [8] but is considerably more efficient as it never got trapped in the local minimum of 11544 kg.
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The new BBBC algorithm is superior over classical harmony search [11] because it converged to a slightly better
design (i.e. on average, 11542.417 kg vs. 11542.565 kg), required much less structural analyses to complete the
optimization process (i.e. on average, 2593 vs. 48000) and the optimized design violated much less stress constraints
(i.e. on average, 0.0180% vs. 3.69%). The present algorithm also outperformed the self adaptive HS algorithm
developed very recently by Degertekin [13]: in fact, the average weight of 11542.417 kg is lower than the best weight
of 11562.931 kg quoted in [13], and the optimization process required on average about 2600 structural analyses vs.
about 19700 analyses required in [13].

The SA optimum design reported in Table 2 corresponds to the average of the optimum designs quoted in [8] which
were obtained by starting the optimization process from three different initial points. The slightly lighter weight found
by SA is however associated to a larger constraint violation. As far as it concerns the computational cost of the
optimization, the present BBBC algorithm required about 25% more design cycles than SA but much less structural
analyses to converge to the optimum design.

Table 2. Summary of optimization results obtained for the planar 200-bar truss structure
Design

variables
Present BB-BC

Average
BB-BC [8]
Average

SA [9]
Average

Standard HS
[11]

Self adaptive HS
[13]

1 0.1460 0.1437 0.1467 0.1253 0.154
2 0.9401 0.9400 0.9400 1.0157 0.941
3 0.1007 0.1000 0.1000 0.1069 0.100
4 0.1002 0.1000 0.1000 0.1096 0.100
5 1.9425 1.9400 1.9400 1.9369 1.942
6 0.2971 0.2945 0.2962 0.2686 0.301
7 0.1002 0.1000 0.1000 0.1042 0.100
8 3.1110 3.1022 3.1041 2.9731 3.108
9 0.1002 0.1000 0.1000 0.1309 0.100

10 4.1117 4.0707 4.1041 4.1831 4.106
11 0.4016 0.3979 0.4034 0.3967 0.409
12 0.1722 0.1980 0.1922 0.4416 0.191
13 5.4137 5.3894 5.4283 5.1873 5.428
14 0.1002 0.1000 0.1000 0.1912 0.100
15 6.4173 6.3894 6.4283 6.2410 6.427
16 0.5643 0.5748 0.5737 0.6994 0.581
17 0.2672 0.3093 0.1326 0.1158 0.151
18 7.9787 7.8150 7.9723 7.7643 7.973
19 0.1154 0.1000 0.1000 0.1000 0.100
20 8.9745 8.8150 8.9723 8.8279 8.974
21 0.7879 0.8026 0.7048 0.6986 0.719
22 0.3114 0.1413 0.4199 1.5563 0.422
23 10.9761 10.9546 10.8656 10.9806 10.892
24 0.1002 0.1000 0.1000 0.1317 0.100
25 11.9746 11.9546 11.8646 12.1492 11.887
26 0.9996 0.8877 1.0342 1.6373 1.040
27 6.4952 6.7895 6.6831 5.0032 6.646
28 10.7175 10.8818 10.8093 9.3545 10.804
29 13.9036 13.7489 13.8324 15.0919 13.870

Structural
weight (kg)

11542.417
(0.00532)

11543.205
(0.919)

11542.319
(0.164) 11542.565 11562.931

Optimizatio
n iterations

103
(8)

37
(6)

82
(1) N/A N/A

Structural
analyses

2593
(1246)

983
(232)

9650
(1050) 48000 19670

Constraint
tolerance

(%)

0.0180
(0.00131) None

0.0662
(0.00503) 3.69 None

The convergence curves plotted in Figure 4 indicate that the present algorithm is competitive with SA but slower
than the original BB-BC formulation of Ref. [8] which however often missed the global optimum design of 11542.4 kg.
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Figure 4. Convergence curves for the planar 200-bar truss problem

6. SUMMARY AND CONCLUSIONS
This paper presented a novel formulation of the Big Bang-Big Crunch meta-heuristic optimization algorithm. Numerical
results obtained in two weight minimization problems of truss structures subject to constraints on nodal displacements
and member stresses proved that the new algorithm is superior over other advanced meta-heuristic algorithms recently
published in literature. Future investigations should be aimed at improving convergence speed as well as to enhance
global optimization capability.
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