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Abstract: Biomechanics is essentially the science that uses mechanical laws in studying biological structures such as muscles,
ligaments, joints and other body structures. It is important in understanding the mechanism of injury to the cervical spine (C1-C7).
We developed a mathematical approach to mechanical behavior of cervical vertebrae and inter-vertebral discs, in terms of
laboratory testing. The paper presents the mathematical model based on Lagrange equations for a frontal impact testing cranio-
cervical system. The steps for the solving these equations are exposed in the paper. These studies were combined with FEA and
dynamic analysis for determination of constants, forces and functional relations. Results and conclusions are analyzed in the final.
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1. INTRODUCTION

Biomechanics is essentially the science that uses mechanical laws in studying biological structures such as muscles,
ligaments, joints and other body structures. It is important in understanding the mechanism of injury to the cervical
spine (C1-C7).We developed a mathematical approach to mechanical behavior of cervical vertebrae and intervertebral
discs, in terms of laboratory testing.

2. PREPARING THE MATHEMATICAL MODEL

For this study was considered the three-dimensional system consisting of model used to design the test system. The
combined dummy neck, base flanges (considered fixed) and two spherical metal caps have mechanical and
mathematical model presented in Figure 1. The entire model works with 13 outside forces:
- A system external force Fe which simulates the force acting on the head (impact force) of the form:
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where: Fex - maximum component that acts on OX axis dummy head;
t1 - the time for which the impact force increases to the maximum;
t2 - time for which the impact force decreases to the minimum;
t3 -time period after the system impact.
- Forces of gravity G1, G2, G3, G4, of the mechanical system components, like:

kgmdmvtG  )()( 111

kgmdmvtG  )()( 222

kgmdmvtG  )()( 333 (2)

kgmsfmsmfmdmvtG  )()( 444444

where:
mv1 – the mass of metallic disc 1 ;
md1 – the mass of elastic disc 1 (rubber or silicone);
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mv2 – the mass of metallic disc 2 ;
md2 – the mass of elastic disc 2 (rubber or silicone);
mv3 – the mass of metallic disc 3 ;
md3 – the mass of elastic disc 3 (rubber or silicone);
mv4 – the mass of metallic disc 4 ;
md4 – the mass of elastic disc 4 (rubber or silicone);
ma4 – the mass of joint item 4 ;
ms4 – the mass of lower spherical cap of the element 4;
msf4 – the mass of upper spherical cap of the element 4;
k - unit vector of OZ axis.

- Longitudinal forces due to elastic or silicone rubber discs, like:
kqktFe  111 )(
kqktFe  222 )(

kqktFe  333 )( (3)

kqktFe  444 )(
where: ki – longitudinal elastic constants corresponding to elastic forces Fei;

qi – longitudinal generalized coordinates (i=1…4).
- Transversal elastic forces due to elastic or silicone rubber discs, like:

iqktF ttt  111 )(
iqktF ttt  222 )(

iqktF ttt  333 )( (4)
iqktF ttt  444 )(

Where: kit – transversal elastic constants corresponding to elastic forces Fit;
qit – transversal generalized coordinates (i=1…4).

The mechanical model of the studied assembly was shown in Figure 1. Were chosen as generalized coordinates
the coordinates: q1, q2, q3, q1t, q2t, q3t. The systems of coordinates O1x1y1z1, O2x2y2z2 , O3x3y3z3 si O4x4y4z4 are fixed on
the elements.
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Figure 1: The mechanical model of the studied assembly

In Figure 1 the elastic discs were replaced by rigid discs and by longitudinal and transversal springs and longitudinal
constants like k and transversal constants like kt to be determined by virtual testing.
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Figure 2: Mechanical equivalent of the elastic discs

To obtain the Lagrange equations is necessary to express the coordinates of the center of mass xG1, yG1, zG1 depending of
generalized coordinates presented in Figure 2 [1], [2], [3].
Thus, can be written:
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where: xG1,yG1,zG1 – the coordinates of the mass center for the element 1;
xC1,yC1,zC1 – the coordinates of the origin O1 of the composed element 1 reported to the world system Oxyz;
xm1,ym1,zm1 – the coordinates of the mass center for the element 1 reported to the own system O1x1y1z1;
cut =cos(u,t) – the director cosinus of the u and t axis.
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Figure 2: The lateral view of the element 1

Knowing that
01 my , 01 Cy , 01 Cx (6)

can be written:
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In this case:
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That is, it can express the coordinates of center of mass of a compound element 1:
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Taking into account the chosen generalized coordinates qk equations (9) become:
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After the derivation of the equation (10) we obtain:
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Noting:
111 mdmvm  (12)

The kinetic energy of the element 1 corresponding to the generalized coordinates is given by:

 2
1

2
1

2
111 )()()(

2
1

GGG zyxmT   (13)

Replacing coordinates derivatives of the mass centers in the kinetic energy equation, we obtain:
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For the calculation of generalized forces is expressed, for the start, virtual elementary mechanical work W1:
11111   MrFW (15)

where: 1F - total external force acting on the element 1;

1r - elementary virtual displacement of the position vector 1r ;

1M - total external torque momentul acting on the element 1;

1 - elementary virtual displacement of the angle 1 .
In the case of the studied model, the torque acting on element 1 was considered invalid, so, the virtual elementary
mechanical work became:

111 rFW   (16)
The external force system acting on element 1 is:

kgmdmvqkiqkF tt  ])([ 1111111 (17)
The elementary virtual displacement of the position vector 1r ,is:

kzjyixr GGG 1111   (18)
We can write:














1111

1

1111

)(
0

)(

qzqz
y

qxqx

mG

G

tmtG






(19)
And:

kqiqr t 111   (20)
In this situation, we can express the virtual elementary mechanical work for element 1:

)(}])([{ 1111111111 kqiqkgmdmvqkiqkrF ttt   (21)
The virtual elementary mechanical work for element 1 became:

1111111111 )( qgmqkqqkrFW ttt   (22)
Similarly, the calculus was made for the elements 2, 3 and 4.
Starting from the equation of the T kinetic energy we calculate partial derivatives like

kq
T

 ,

kq
T

 and then












kq
T

dt
d


.

Knowing that the Lagrange equations has the next shape [1], [2], [3]:

k
kk

Q
q
T

q
T

dt
d
















(23)

where: T – the kinetic energy of the mechanical system;
qk – the current generalized coordinate;
Qk – the current generalized force.

We can express, for the start, the next partial derivatives:
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Generalized forces are given by the equation
i
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Using the previous equations we express the Lagrange equations:
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3. THE RESULTS OF THE SOLVING OF THE LAGRANGE EQUATIONS. RESULTS.
CONCLUSIONS

The system of differential equations (28) has the following solutions for intermediate rubber discs (ki constants were
determined using virtual experimental test based on finite element analysis [4], [5]), pendulum mass m = 30 kg initial
pendulum angle = 30 ° (pendulum mass and angle determine the force F presented in Figure 1):

q1(t)=5.072∙10-6∙sin(11.988∙t)
q2(t)=5.072∙10-6∙sin(11.988∙t)
q3(t)=5.072∙10-6∙sin(11.988∙t)
q4(t)=1.01355∙10-4∙sin2(32.165∙t)
q1t(t)=-4.5275∙10-6∙sin(29.985∙t) (29)
q2t(t)=-4.5275∙10-6∙sin(29.985∙t)
q3t(t)=-4.5275∙10-6∙sin(29.985∙t)
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Equations (29) define the entire kinematical behaviour of the experimental testing system, but we are very interested by
the behaviour of the center of mass of element 4. In the next diagrams were presented the components of the positions,
velocities and accelerations on OX and OZ axis for intermediate discs made by rubber.

Figure 3: OX and OZ position of the element 4 (head of the dummy)

Figure 4: OX and OZ velocities of the element 4 (head of the dummy)

Figure 5: Acceleration and the trajectory of the element 4 (head of the dummy)

Using the same algorithm can be determined the equations for the behavior of the dummy neck using silicone discs.
Also, these results will be compared with experimental data obtained on a dummy head-neck testing device.
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