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Abstract: In this article a procedure for a MATLAB program is presented for 
determining the velocity distribution in the case of a stationary flow. The program 
can be used for determining the velocity amplifications that appear in a fluid that 
flows around obstacles having different geometric shapes.  
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1. INTRODUCTION 

The main purpose of this paper is to determine the velocity distribution in the case of a 
stationary flow. The two-dimensional potential flow problems can be formulated in terms of a 

velocity potential function Φ. In terms of the velocity potential, the equation for a two-dimensional 

problem is given by the following: 

              
2 2

2 2 0
x y

∂ Φ ∂ Φ
+ =

∂ ∂
                                    (1) 

Where the velocity components are given by:  

                                                       ,  u v
x y

∂Φ ∂Φ
= =
∂ ∂

                     (2) 

If an ideal fluid is considered, its motion does not penetrate into the surrounding body or 
separate from the surface. This gives the boundary condition that the component of the fluid 
velocity normal to the surface must be equal to the component of the velocity of the surface in the 
same direction. Therefore, the following equation yields: 
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BV n V n⋅ = ⋅
ur r ur r

  or    x y B x B yul vl u l v l+ = +  (3) 
 

where, 

V
ur

 - is the velocity of the fluid  

BV
ur

 - is the velocity of the boundary  

n
r

 - is the outward drawn normal to the boundary  

xl , yl  - boundary direction cosines  

If the boundary is fixed ( BV
ur

=0), there will be no flow and therefore no velocity perpendicular 
to the boundary.  For that cause, all fixed boundaries can be considered as streamlines because there 
will be no fluid velocity perpendicular to a streamline. If BV

ur
=0, form (2) and (3) the following 

conditions yield:  

0                                          (4)x yl l
n y y

∂Φ ∂Φ ∂Φ
= + =

∂ ∂ ∂
 

Equation (4) indicates that the normal derivative of the potential function is zero. 
The boundary value problem for potential flows can be stated as follows. In order to find the 

velocity potential ( , )x yΦ  in a given region S surrounded by the curveΓ : 
2 2

2
2 2 0

x y
∂ Φ ∂ Φ

∇ Φ = + =
∂ ∂

 in Γ       (5) 

with the following boundary conditions: 

• Dirichlet condition: 0Φ =Φ  on 1Γ      (6) 

• Neumann condition: 0n x yV l l V
n x y

∂Φ ∂Φ ∂Φ
= = + =
∂ ∂ ∂

 on 2Γ   (7) 

where:             1 2Γ = Γ + Γ  
         0V  - is the prescribed value of the velocity normal to the boundary surface 

In order to find the velocity potential ( , )x yΦ that minimizes the functional 

2

2 2

0 2
1
2 S

I dS V d
x x Γ

⎡ ⎤∂Φ ∂Φ⎛ ⎞ ⎛ ⎞= + ⋅ − Φ Γ⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
∫∫ ∫   (8) 

we use the boundary condition:  
    0Φ =Φ on 1Γ                                       (9) 

2. THE FINITE ELEMENT SOLUTION USING THE GARLEKIN APPROACH 

The finite element analysis using the Garlekin method assumes a suitable interpolation model 
for ( )eΦ  in element e as following: 
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ne ee

ii
i

x y N x y N x y
=

Φ = Φ = Φ∑
ur ur

 (10) 

Set the integral of the weighted residue over the region of the element equal to zero by taking 
the weights same as the interpolation functions iN . This yields: 

( )

2 ( ) 2 ( )

2 2 0   , i=1,2,...,n
i

e

e e

S

N dS
x y

⎡ ⎤∂ Φ ∂ Φ
+ ⋅ =⎢ ⎥∂ ∂⎣ ⎦

∫∫   (11) 

 Equation (11) can be expressed in a matrix form as following: 
( ) ( ) ( ){ } { }e e eK P⎡ ⎤ Φ =⎣ ⎦                (12) 

where: 

( )

( )
2

( )

( )
0 2

1 2

1 2

[ ] [ ][ ]                                              (13)

{ } [ ]                                                  (14)
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x x xB
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y y y

Γ

⎡ ⎤ = ⋅⎣ ⎦

= − Γ

∂∂ ∂⎡
⎢ ∂ ∂ ∂⎢=

∂∂ ∂⎢
∂ ∂ ∂⎣

∫∫

∫

[ ]

                                    (15)

1 0
                                                                    (16)

0 1
D

⎤
⎥
⎥
⎥

⎢ ⎥⎦
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

  

Fig.1 Finite element mesh Fig.4 Resultant velocity  

  

   

Fig.2 Velocity u Fig.3 Velocity v Fig.3 Resultant velocity 
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Assemble the element equations (12) to obtain the overall equations as: 

[ ]{ } { }K PΦ =                                        (17) 

From figure 1 to 8, velocity distributions are presented for two flow domains obtained with the 
Matlab program developed by the authors.    

After determining the values of the potential functionΦ , one can calculate velocities in every 
point of the fluid flow domain.  

 
 

Fig.5 Finite element mesh Fig.9 Resultant velocity  

   

Fig.6 Velocity u Fig.7 Velocity v Fig.8 Resultant velocity 

3. CONCLUSIONS 

-The flow analysis around bodies having different geometric shapes can be done with the 
Matlab program developed by the authors.  

-With this program, global velocity distribution in the field domain as well as local velocity 
amplifications can be determined.  
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