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MATLAB PROGRAM FOR THE 

NUMERICAL SOLUTION OF DUHAMEL 
CONVOLUTION INTEGRAL  

 
M. BOTIŞ1    

 
Abstract: In the linear analysis of structures through modal 

superposition after decoupling the motion equations, there must be solved the 
motion equations for each degree of dynamic freedom, through  numerical 
integration, by using the Duhamel convolution integral. To find a structural 
response to earthquake action it is also needed to determine the maximum 
spectral values in displacement, speed and acceleration for any 
accelerogram of the site; these values are determined by numerical 
integration with Duhamel integral In this paper it is presented a Matlab 
program for integrating numerical of Duhamel convolution integral with 
trapezoids method that can be used both for modal analysis and spectral 
analysis of structures. 
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1. Introduction 
 
Dynamic analysis of civil structures is 

necessary when actions are time-varying. 
If dynamic analysis is linear, modal 
superposition principle can be used. To use 
modal superposition principle we must 
first achieve a modal decomposition and 
then make modal superposition. After 
decomposition modal vibration modes are 
obtained, which highlight modal deformed 
shapes associated with each mode of 
vibration and inertial mass corresponding 
to each mode of vibration.  

Through modal decomposition two 
important results are obtained, one is 
qualitative and is represented by the form 
of own modes of vibration and another is 
quantitatively and indicates level of 

participation of the inertial masses in the 
movement of dynamic system.  

The analysis of the vibration mode is 
very important because each vibration 
mode has a contribution for the motion of 
the dynamic system. 

After spectral decomposition, modal 
superposition  can be made, which 
involves composing significant vibration 
modes motion dynamic system. 

In case of a system with n degrees of 
freedom (fig.1) dynamic equation of 
motion is: 
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FxKxCxM         (1)      
 where: 
- ][M inertial matrix of dynamic system; 

- ][C damping matrix of dynamic system; 

- ][K stiffness matrix of dynamic system; 
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- }{
..

x accelerations vector for the n degrees 
of freedom dynamic; 

- }{
.

x velocity vector for the n degrees of 
freedom dynamic; 
- }{x displacement vector for the n degrees 
of freedom dynamic; 
- }{F force vector for the n degrees of 
freedom dynamic. 

 

Fig. 1. The system with n degrees of 
freedom dynamic 

 

Fig. 2. Vibrations mode and eigenvalues 
for a system with n degrees of freedom 

dynamic 

Instantaneous dynamic response on the  
degree of freedom k is obtained by linear 
superposition of instantaneous dynamic 
responses corresponding to the n modes of 
vibration fig.2: 
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To disconnect equations of motion the  
following linear transformation is used: 
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Relationship between natural coordinates 

dynamic system nktxk ...1,)(   and 

principal coordinates or modal 
niti ...1),(   can be expressed by the 

modal matrix as follows: 
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Displacement vector velocity and 

acceleration on the dynamic degrees of 
freedom nk ...1  become: 
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where: 
- ][ modal matrix 

- )}({ t displacements vector in natural 
coordinates 

- )}({
.

t velocity vector in natural 
coordinates 
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- )}({
..

t  accelerations vector in natural 
coordinates 

Replacing in the system equations of 
motion (1) real coordinates with modal 
coordinates, the equations of motion is 
released. 

Due to orthogonality of vectors 
associated vibration modes system of 
equations (1) is reduced to n decoupled 
equations of motion for each degree of 
freedom dynamic: 

As the system of differential equations of 
motion is decoupled, we can write the 
corresponding equation of motion for each 
degree, as follows: 
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ni ...1  
where: 
 

-   )}({* tFF T
ii  corresponding  

equivalent force mode i; 
 

-     i
T
ii MM *  equivalent mass 

mode i; 
 

-
i

i
i 




2

2
 corresponding damping 

mode i. 
 
- ][][][ KMC   Rayleigh damping 
matrix 

To solve decoupled equations  of motion,  
Duhamel convolution integral can be used. 

Displacement response obtained using 
The convolution integral Duhamel integral 
on each dynamic degrees of freedom is: 
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where, 

- 2* 1   ii damped pulsation 

If you know the answer in displacements  
on each dynamic degree of freedom then 
we can calculate velocities accelerations 
and inertial forces for dynamic system: 
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The analysis of the dynamics of a system 
with n degrees of freedom dynamics can 
be seen as solving the system of equations 
is reduced to calculation convolution 
integral Duhamel. 

For this reason  this paper presents a 
Matlab program for numerical integration 
of convolution integral Duhamel. 

If the t  apply an H impulse of the 
system, this is removed from equilibrium 

position with velocity mHx /
.

 , (fig.3) 
and performs free damped vibrations 
described by the equation : 

 



















tforte
m

H

te
m

H
tx

i
t

ti

)(sin

)(sin)(

*)(

*

*)(

*

*

(8) 

 

 
Fig. 3. Free response in displacement 

due to an impulse  finite H 
If the dynamic system random disturbing 

force acts  ,(fig.4) equation 
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of motion of the dynamic system is: 

m
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Action of disturbing force  applied 

dynamic system at rest can be represented 
as a continuous elementary impulses  

 , on the time interval from  
0  at t . 

After applying elementary impulse 

 displacement response of 

the dynamic system dynamic on degree of 
freedom is: 
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Dynamic displacement response of the 
system is achieved by superposition of 
effects as a integral amount of motion 
generated by elementary pulse 
succession  on the length 

of time that force acts [1]: 













 

 









0

*)(

*0

0

*)(

*

)(sin
)(

)(sin
)(

)(

*

*

dte
m

f
F

dte
m

F
tx

i
t

i
t

  

 
Fig. 4. Displacement response obtained 

by superposition of the effects of 
infinitesimal impulses dH 

If disturbing force is applied to dynamic 
system while it is in motion due to initial 
displacement and velocity conditions, the 
displacement response is expressed: 
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where, 
- 0x initial displacement for t=0 

   -
.

0x  initial velocity for t=0 

It can be seen that if the dynamic system 
with a single degree of freedom dynamic 
system to determine dynamic response 
Duhamel convolution integral must be 
calculated.  
 
2. Mathematical aspects of numerical 

solution of the Duhamel integral 
 
To integrate numerically convolution 

integral Duhamel, further is presented 
trapezoids method which is the simplest 
method used in practice. 

Trapezoids method is based on 
approximating the area delimited by the 
graph of a function Rbaf ],[:  with the 

area of a trapezoid. If the interval ],[ ba
 is 

divided into two subintervals ],[ 1xa  and 

],[ 1 bx  then integral of function f(x) can be 
approximated by the relation: 
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To reduce the error of integration, the 
interval [a,b] may be divided in n 
subintervals with division nabh /)(  , 
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integral of function f(x) can be 
approximated by the 
relation:
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 Error in calculating introduced by the 
method of trapezoids depends on the 
integration step h and has the following 
expression on interval [ xi xi+h]:: 
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3. Implementation of Matlab program 

for calculation Duhamel integral 
 

For numerical calculation of the 
convolution integral Duhamel starts from 
response in displacement for a system with 
one degree of freedom:  
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 To solve the Duhamel integral trapezoids 
method  will be used to calculate integrals 
A(t) and B(t) with Matlab program [2]. 

% Solving convolution integral Duhamel  
%by numerical integration method  of 
%trapezoids 
%Answer in diplacement , velocity and          
%acceleration for dynamic sistem  one degree    
%of freedom 
% force ramp  

   clear;clf; 
   % Time step used 
   h=0.2; 
   % Mass system with 1GLD 
   m=175; 
   % Rigidity of the system with 1GLD 
   k=7000; 
   % Fraction of critical damping 
   niu=5/100; 
   % Pulsation system 1GLD without 

%damping  
   omega=sqrt(k/m); 
   % Pulsation system 1GLD with 

%damping 
   omegad=omega*sqrt(1-niu^2); 
   % Time interval that is computed 

%response system with 1 DOF for 
%displacement, velocity and acceleration 

   tmax=10.4; 
   % Force ramp function variation 
   curbe=[50  0  2   10.4 
               50  0  1   1  ]; 
   % Number of points of function curves 
   npt=max(size(curbe)); 
   t=0;   
f0=interp1([curbe(1,2:npt)]',... 
[curbe(2,2:npt)]',t);  

ya0=f0*1000*exp(niu*omega*t)*... 
cos(omegad*t)*(1000*m*omegad)^-1; 

yb0=f0*1000*exp(niu*omega*t)*... 
sin(omegad*t)*(1000*m*omegad)^-1; 

% Number of steps for numerical integration    
npas=tmax/h; 
   subplot(2,1,1) 
     for i=1:npas 
        t=t+h;     
        % Calculate the force at time t 
        forta=interp1([curbe(1,2:npt)]',... 
[curbe(2,2:npt)]',t) 
        f1=forta*50; 
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        f(i)=f1; 
        timp(i)=t; 

% Variation representation force 
 %function in time  

        p=plot(t,f1,'--rs','LineWidth',2,... 
                'MarkerEdgeColor','b',... 
                'MarkerFaceColor','b',... 
                'MarkerSize',2); 
        hold on; 
        grid on; 
        % Calculation of values ya and yb 

%from Duhamel convolution  integral        
ya(i)=f1*1000*exp(niu*omega*t)*... 

cos(omegad*t)*(1000*m*omegad)^-1;    
yb(i)=f1*1000*exp(niu*omega*t)*... 

sin(omegad*t)*(1000*m*omegad)^-1; 
     end 
    % Final values 
    yaa=[ya0     
        ya(1,:)' ]; 
    ybb=[yb0    
        yb(1,:)']; 
    % Method trapezoids 
    t=0 
    subplot(2,1,2) 
     for i=2:npas+1 
        t=t+h; 
        A(1)=0; 
        B(1)=0; 
        A(i)=A(i-1)+h*(yaa(i)+yaa(i-1))/2; 
         B(i)=B(i-1)+h*(ybb(i)+ybb(i-1))/2; 
% Response in motion for a ramp signal in 

%case 1GLD dynamic system 
d(i)=(A(i)*exp(-niu*omega*t)*... 
sin(omegad*t)-... 
B(i)*exp(-niu*omega*t)*... 
cos(omegad*t))*(k/50); 

% Graphical representation of the ratio of 
%dynamic displacement and static 
%displacement         
plot(t,d(i),'--rs','LineWidth',2,... 

                'MarkerEdgeColor','r',... 
                'MarkerFaceColor','r',... 
                'MarkerSize',2); 
         hold on; 
         grid on; 
     end 

4. Results and conclusion 
 

The program proposed in the paper has 
been tested in the case of a dynamical system 
with one degree of freedom dynamic. 

Dynamic analysis was performed for two 
steps of integration h=0.2 and h=0.01. 

The results after numerical integration are 
presented in fig.5 and fig.6 

 
Fig. 5. The response in displacement  for a 
dynamic system with 1 degree of freedom, 
integration step 0,2 

 
Fig. 6. The response in displacement  for a 
dynamic system with 1 degree of freedom, 
integration step 0,01 

The result obtained by numerical integration 
was compared with the exact solution, for the 
integration step h=0,2  obtain an error  13,7 %  
and if integration step is h=0.02 error was 
0,03%.   
   Although the program presented is simple,  
it can be successfully used  if the integration 
step is lower than where T/10, where T is own 
period for dynamic system 
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