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Abstract: The response of a Duffing oscillator to narrow band random excitation is considered. Results obtained by applying
the method linearization statistiques to random vibration problems are discussed. The equivalent linearization are found to
give reasonable results only for very small non-linearities. This method is applicable to a variety of problems involving the
response of lightly damped systems to broad-band random excitations. The theoretical analyses are verified by numerical
results. Theoretical analyses and numerical simulations show that when the intensity of the random excitation increases.
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1. INTRODUCTION

The present approximate representation of the spectrum is applied to a nonlinear oscillator in wich the non-
linearity has pronounced on the response spectrum. The effect of non-linearities on the response power spectral
density has been studied by a number of investigators This method is applicable to a variety of problems
involving the response of lightly damped systems to broad-band random excitations. If however, any of the basic
components behave nonlinearly, the vibration is called nonlinear vibration. The differential equations that govern
the behaviour of vibratory non-linear systems are non-linear.

2 SYSTEM MODEL

Consider a Duffing oscillator of which the equation is
.. .

3( ) ( ) ( ) ( ) ( )m t c t k t k t W t        (1)
where m is the mass, c is the viscous damping coefficient, W(t) is the external excitation signal with zero mean,
 is the nonlinear factor to control the type and degree of nonlinearity in the system and ( )t is the

displacement response of the system.
Dividing the equation by m, the equation of motion can be rewritten as:

.. .
2 2 3( ) 2 ( ) ( ) ( ) ( )t p t p t p t f t         , (2)

where  is the critical damping factor and p is the undamped natural frequency, for the system.

We want to act on this oscillator random excitations narrowband random excitations products through a number
of n correlation functions containing it will introduce parameters 1 1 1,... , ,... , ,...n n nA A     real, strictly positive.

1 2
1 1 2 2( ) cos cos ... cosn

F n nR A e A e A e               . (3)

The parameter kA influences directly proportional to the spectral density of initial excitation intensity and

moderate printing relatively rapid variations. Increasing parameter k produces excitations with increases and

decreases slow spectral density. Increasing parameter k widens excitation power  and the drop was performed

narrowing the spectrum. Excitation control parameters k contribute to the excitation spectral density leves peak

delayed. We say that the parameter maximum spectral density peaks moves to the right
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The power spectral density of excitation W (t) is determined using the relationship
1

( ) ( )
2

i
F FS R e d  



 


  . (4)

Solving this integral the relation sends us
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(5)

The power spectral density of response is
2
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, (6)

Substituting equation (5) into (6), obtain
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(7)

We start from the known formula
2
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(8)
We obtain
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This formula has a integral type
2
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(10)
where

1 1 2 0 1 3 0 12 , 2 , 2h b h b b d h b db         . (11)

We finally get a 4 degree equation with unknown 2


8 6 4 2 0l n r s q           . (12)

We can find a solution of the equation as a boundary of the next string

1
1 ,

1

( )
, 1.

( )
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n n
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f x
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f x





   

(13)

3. NUMERICAL RESULTS

We consider a two component excitation and
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(14)
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Figure 1: The power spectral density of excitation 2[ ]FS N s

for 2 1 1
1 2 1 2 1 240 , 1 , 2 , 2.A A N s s n          

2




Figure 2: The power spectral density of excitation 2[ ]FS N s

for 2 1 1
1 2 1 2 1 230 , 2 , 2 , 2.A A N s s n          

2




Figure 3: The power spectral density of excitation 2[ ]FS N s

for 2 1 1
1 2 1 2 1 220 , 3 , 1 , 2.A A N s s n          

We obtain
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3 8 4 6 3 4 21458 10 6231,91 10 7254,52 10 1250 143 0
   

          
(15)

which has the solution
2 20,041m


  . (16)

2




Figure 4: The power spectral density of excitation 2[ ]FS N s

for 2 1 1
1 2 1 2 1 220 , 2 , 2 , 3.A A N s s n          

2




Figure 5:.The power spectral density of excitation 2[ ]FS N s

for 2 1 1
1 2 1 2 1 255 , 1 , 4 , 3.A A N s s n          

2




Figure 6: The power spectral density of excitation 2[ ]FS N s

for 2 1 1
1 2 1 2 1 270 , 2 , 2 , 1.A A N s s n          
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2




Figure 7: The power spectral density of response 2[ ]S m s  for 21 , 30 , 3 , 3
N Ns

m kg k c m
m m

     .

4. CONCLUSION

The theoretical analyses are verified by numerical results. Theoretical analyses and numerical simulations show
that when the intensity of the random excitation increases. A second-order closure method is presented for
determining the response of non-linear systems to random excitations. The random  excitation is taken to be the
sum of a deterministic harmonic component and a random component. The presence of the nonlinearity causes
multi-valued regions where more than one mean-square value of the response is possible. Various applications of
the theory to engineering problems are outlined.
Using computer diagrams below its trend highlighted how the power spectral density given by equation (6). The

parameter 2
kA N   influences directly proportional to the spectral density of initial excitation intensity and

moderate printing relatively rapid variations (fig. 1, 2, 3). Increasing parameter 1
k s    produces excitations

with increases and decreases slow spectral density. Increasing parameter k widens excitation power (fig. 4, 5,

6), and the drop was performed narrowing the spectrum. Excitation control parameters 1
k s    contribute to

the excitation spectral density levels peak delayed. (fig. 3, 4).
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